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Abstract

In recent years, artificial neural networks (ANNs) have won numerous contests in pattern recognition, machine learning, and

artificial intelligence. The basic unit of an ANN is to mimic neurons in the brain. Neuron in ANNs is expressed as f(wx+b) or

f(wx).This structure does not consider the information processing capabilities of dendrites. However, recently, studies shown

that dendrites participate in pre-calculation in the brain. Concretely, biological dendrites play a role in the pre-processing to

the interaction information of input data. Therefore, it’s time to perfect the neuron of the neural network. This paper, add

dendrite processing section, presents a novel artificial neuron, according to our previous studies (CR-PNN or Gang transform).

The dendrite processing section can be expressed as WA.X. Because I perfected the basic unit of ANNs-neuron, there are so

many networks to try, this article gives the basic architecture for reference in future research.
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Abstract

Artificial neural networks (ANNs) have won numerous contests in pattern recognition, machine learning, and artificial
intelligence in recent years. The neuron of ANNs was designed by the stereotypical knowledge of biological neurons 70 years
ago. Artificial Neuron is expressed as f(wx + b) or f(WX). This design does not consider dendrites’ information processing
capacity. However, some recent studies show that biological dendrites participate in the pre-calculation of input data. Concretely,
biological dendrites play a role in extracting the interaction information among inputs (features). Therefore, it may be time to
improve the neuron of ANNs. In this study, some dendritic modules with excellent properties are proposed and added to artificial
neurons to form new neurons named Gang neurons. E.g., The dendrite function can be expressed as W i,i−1Ai−1 ◦A0|1|2|...|i−1.
The generalized new neuron can be expressed as f(W (W i,i−1Ai−1 ◦ A0|1|2|...|i−1)).The simplified new neuron be expressed
as f(

∑
(WA ◦ X)). After improving the neurons, many networks can be tried.This paper shows some basic architecture for

reference in the future. Up to now, others and the author have applied Gang neurons to various fields, and Gang neurons
show excellent performance in the corresponding fields.

Interesting things: (1) The computational complexity of dendrite modules (W i,i−1Ai−1 ◦ Ai−1) connected in series is far
lower than Horner’s method. Will this speed up the calculation of basic functions in computers? (2) The range of sight of animals
has a gradient, but the convolution layer does not have this characteristic. This paper proposes receptive fields with a gradient. (3)
The networks using Gang neurons can delete Fully-connected Layer. In other words, the parameters in Fully-connected Layers
are assigned to a single neuron, which reduces the parameters of a network for the same mapping capacity. (4) ResDD(ResDD
modules+One Linear module) can replace the current ANNs’ Neurons. ResDD has controllable precision for better generalization
capability.

Index Terms

Neural network, neuron, DD, transform, Gang neuron, Receptive fields with gradient, Acceleration algorithm
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I. INTRODUCTION

AN artificial neural network(ANNs) is an algorithmic architecture that imitates the biological brain [1], [2]. ANNs are
gradually changing our lives and improving the world [3]. Artificial neural networks, particularly ”deep learning” [4],

have recently made impressive advances in many fields, such as machine vision, speech recognition, autonomous vehicles,
and machine translation. Thus, in the tech world today, optimism is high. Some people think ANNs are approaching human
intelligence gradually [2], [3].

Neurons are the fundamental units of the biological brain. Accordingly, the fundamental units of ANNs are artificial neurons.
With the development of technology, people have a deeper understanding of the biological brain and neurons. However, the
artificial neuron has maintained its original architecture. It may be time to improve the neuron of the artificial neural network.

The following briefly introduces the necessary knowledge and latest developments in artificial neural and biological neural
networks.
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A. Artificial neural networks

An ANN consists of many interconnected functional units or neurons and can learn the relationship between input space
and output space. Thus, they are usually used to solve classification and regression problems [5]. Over the years, based on
the characteristics of the application and data, different ANN architectures have been developed, such as Convolutional Neural
Networks (CNN) [6], [7] in computer vision, Recurrent Neural Networks (RNN) [8], or Long Short Term Memory Networks
(LSTM) [9] in sequence and time series modeling, and Generative Adversarial Network (GANs) [10].

In the last decade, some newer architectures have been developed to endure the need to develop human-like efficient
machines in different application areas. From the perspective of information, they can be divided into a network focusing on
spatial information [CNN, the representative field is computer vision (CV).] and a network focusing on temporal information
[RNN, the representative field is natural language processing (NLP).]. There are several newer CNN architectures and efficient
mechanisms: Alexnet [7], VGG [11], Googlenet [12], Inception-V3 [13], ResNet [14], ResNeXt [15], Convolutional Block
Attention Module (CBAM) introduced by Woo et al. [16], and competitive squeeze-excitation (SE) mechanism introduced by
Hu et al. [17]. There are several newer RNN architectures and efficient mechanisms: Deep Recurrent Attentive Writer (DRAW)
[18], Grid Long Short-Term Memory [19], gating mechanism introduced by Jing et al. [20], and factorized recurrent network
architecture introduced by Belletti et al. [21].

In addition, ANN learning strategies that approximate the relationship between input and output spaces by changing the
weight distribution are investigated. Lately, success has been achieved in many techniques, such as L1 and L2 regularization
[22], batch normalization [23], a good collection of weight initialization techniques [24], [25], and a good set of activation
functions [5].

B. Biological neural network

The human brain has approximately 100 billion biological neurons, and neurons are connected via specialized structures
known as synapses to sense stimulations and pass signals to other neurons [26]. A neuron is the fundamental structural and
functional unit of the neural information network and comprises a cell body (soma), dendritic trees, and an axon [27], [28].
The most extended parts of many neurons are dendrites [29], and the active electrical properties of dendrites shape neuronal
input.

In the field of biology, researchers have been studying the mechanism of the element of neurons over the years [27],
[30]–[32]. Recently, a study discovered a class of calcium-mediated dendritic action potentials (dCaAPs) [32], [33]. Here, we
quote the original words in the literature: “These dCaAPs enabled the dendrites of individual human neocortical pyramidal
neurons to classify linearly nonseparable inputs—a computation conventionally thought to require multilayered networks.” [32]
Computing exists at the intersection of dendrites. This means that biological dendrites participate in pre-calculation in a
biological neural network.

Reviewing the previous ANNs, I found few studies highlight improving the neuron of ANNs in applications(Up to 2020).

II. TRADITIONAL ARTIFICIAL NEURON

In 1943, McCulloch and Pitts proposed ANN models with adjustable weights [34]. More than a decade later, Rosenblatt
put forward the Perceptron Learning Algorithm [35]. In 1986, Rumelhart et al. proposed learning representations by back-
propagating errors [36]. By then, a typical artificial neuron was established.

Fig. 1 shows the traditional artificial neuron.

Fig. 1. Traditional neuron. (a) Traditional artificial neuron. (b) Traditional imitation for biological neuron.
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This architecture ignores the pre-calculation of dendrites. If X is the input and f is the nonlinear activation function, the
output y can be represented by,

y = f(W 21X) (1)

Where W 21 is the weight matrix, {1, x1, x2, · · · , xn} = X . In the back-propagation procedure, the weight matrix can be
updated with,

W 21
new =W 21 − η ∂E

∂W 21
(2)

Where W 21
new is the updated weight matrix for W21, E is the cost function or errors from the later layer in back-propagation,

and η is the learning rate.

III. NOVEL GANG NEURON

For the biological neurons, the XOR operation is performed in the dendrites with dCaAPs [32], [33], and AND/OR operations
are performed at the soma and at tuft and basal dendrites with sodium and NMDA spikes [37]–[39]. The XOR/AND/OR
operation means the pre-processing to the interaction information of input data. In the task of understanding a picture, it
refers to the relationship between parts of an input-picture. In the task of understanding an article or a speech, it refers to the
relationship between words of sentences. However, traditional artificial neurons only simulate the cell body.

In this section, some dendritic modules with excellent properties are proposed and added to artificial neurons to form
new neurons named Gang neurons(Dendrite+Cell body, see Fig. 2).

Fig. 2. Novel neuron. (a) Gang neuron. (b) Novel Imitation for biological neuron.

A. Novel Dendrite

1) Dendrite module (◦X):
In previous studies, Gang et al. [40] presented a dendrite module named DD module, and introduced the logical relation of
inputs [40], [41]. DD module has low computational complexity,and solves linearly inseparable problems by Hadamard product.
The module is represented as follows.

Ai =W i,i−1Ai−1 ◦X (3)

Where Ai−1 and Ai are the input and output of the module, respectively, and X is the original input. ◦ denotes Hadamard
product.

In Fig. 2a, the dendrite is simulated by one module. The “dendrite” contains the interaction item between both inputs and
can be represented as follows.

A =W 10X ◦X (4)

Where A is the output of dendrite or the input of the cell body. ◦ denotes Hadamard product.
Additionally, the dendrite can also be simulated by more modules. The “dendrite” in Fig.3 contains the interaction items

between multiple inputs. The number of modules plus 1 is the number of interactive inputs. For example, if we use two
modules to simulate the dendrite, the “dendrite” contains the interaction items among three inputs and can be represented as
follows. {

A1 =W 10X ◦X
A2 =W 21A1 ◦X

(5)
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Fig. 3. Gang neuron with multiple dendrite modules.

Where A2 is the output of dendrite or the input of the cell body. ◦ denotes Hadamard product. The mapping capacity of Gang
neuron can be adjusted by the number of dendrite modules.

2) Generalized Dendrite module (◦Ai):

Fig. 4 shows a generalized Dendrite module. The module is represented as follows.

Ai =W i,i−1Ai−1 ◦A0|1|2|...|i−1 (6)

Where Ai−1 and Ai are the inputs and outputs of the module, respectively. A0|1|2|...|i−1 is any of A. ◦ denotes Hadamard
product.

Fig. 4. Generalized Dendrite module. ‘|’ denotes ’or’. The dotted line represents any of them.

We can adjust the promotion degree or the number of interactive variables added for the single module by A0|1|2|...|i−1.
When we add a module, the degree of network can increase by at least one and by i at most.

When A0|1|2|...|i−1 = A0, the degree increases by 1 for one module, which is similar to Horner’s method. The degree
increases with the number of modules linearly. For a certain degree of network, the computational complexity is n−1, , where
n denotes the number of modules.

When A0|1|2|...|i−1 = Ai−1, the degree increases by i for one module. The degree increases with the number of modules
exponentially. For a certain degree of network, the computational complexity is approximate logn2 , where n denotes the number
of modules. This is similar to exponentiation by squaring. However, exponentiation by squaring is only used for calculation, and
the modules in this paper are used for approximation. The weight matrix in Fig. 4 can be solved for by error backpropagation.

Here, I give a off-topic special USES. When this module is connected in series, it is used for polynomial calculation (Fig.
4). When A0|1|2|...|i−1 = Ai−1, there is no doubt that its computational complexity is far lower than Horner’s method.This can
change many things. The typical functions (e.g., sin) are stored in the form of polynomial coefficients in the computer. The
value of the function is calculated by polynomial when we invoke these functions. We can solve for the polynomial coefficients
of the new module (A0|1|2|...|i−1 = Ai−1) and store these coefficients in the computer. The value of the function is calculated
by the network in Fig. 4 when we invoke these functions. Note:For deeper levels, we can use ResDD or DenseDD (see the
ResDD and DenseDD section).

3) Generalized Residual Dendrite module (◦Ai):
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In order to make DD deeper, a residual strategy can be used (see Fig. 5) [42]. The module is represented as follows.

Ai =W i,i−1Ai−1 ◦A0|1|2|...|i−1 +W i,i−1Ai−1 (7)

Where Ai−1 and Ai are the inputs and outputs of the module, respectively. A0|1|2|...|i−1 is any of A. W i,i−1 is a weight
matrix. ◦ denotes Hadamard product.

Fig. 5. Generalized Residual Dendrite module. ‘|’ denotes ’or’. The dotted line represents any of them.

4) ResDD-X or Residual Dendrite module (◦X):

Fig. 6 shows the Residual Dendrite module-X(ResDD-X). The module is represented as follows.

Ai =W i,i−1Ai−1 ◦X +W i,i−1Ai−1 (8)

Where Ai−1 and Ai are the inputs and outputs of the module, respectively. X is the inputs of DD. W i,i−1 is a weight matrix.
◦ denotes Hadamard product.

Fig. 6. ResDD-X or Residual Dendrite module (◦X).

Fig. 8 (a) shows ResDD-X code for MNIST dataset. The number of modules can be adjusted according to the task.
In addition, we can also add a weight matrix to the short-circuit route. Fig. 7 shows the Residual Dendrite module-

XW(ResDD-XW). The module is represented as follows.

Fig. 7. Residual Dendrite module-XW(ResDD-XW).

Ai =W i,i−1Ai−1 ◦X +W i,i−1
R Ai−1 (9)

Where Ai−1 and Ai are the inputs and outputs of the module, respectively. X is the inputs of DD. W i,i−1 and W i,i−1
R are

two different weight matrixes. ◦ denotes Hadamard product.
Fig. 8 (c) shows ResDD-XW code for MNIST dataset. The number of modules can be adjusted according to the task.
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Fig. 8. ResDD code for MNIST dataset. (a) shows Ai = W i,i−1Ai−1 ◦X +W i,i−1Ai−1. (b) shows Ai = W i,i−1Ai−1 ◦ Ai−1 +W i,i−1Ai−1. (c)
shows Ai = W i,i−1Ai−1 ◦X +W i,i−1

R Ai−1. (d) shows Ai = W i,i−1Ai−1 ◦Ai−1 +W i,i−1
R Ai−1.

5) ResDD-A or Residual Dendrite module (◦Ai−1):

Fig. 9 shows the Residual Dendrite module-A(ResDD-A). The module is represented as follows.

Ai =W i,i−1Ai−1 ◦Ai−1 +W i,i−1Ai−1 (10)

Where Ai−1 and Ai are the inputs and outputs of the module, respectively. W i,i−1 is a weight matrix. ◦ denotes Hadamard
product.

Figure 8 (b) shows ResDD-A code for MNIST dataset. The number of modules can be adjusted according to the task.
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Fig. 9. Residual Dendrite module-A(ResDD-A).

In addition, we can also add a weight matrix to the short-circuit route. Fig. 10 shows the Residual Dendrite module-
AW(ResDD-AW). The module is represented as follows.

Ai =W i,i−1Ai−1 ◦Ai−1 +W i,i−1
R Ai−1 (11)

Where Ai−1 and Ai are the inputs and outputs of the module, respectively. W i,i−1 and W i,i−1
R are two different weight

matrixes. ◦ denotes Hadamard product.

Fig. 10. Residual Dendrite module-AW(ResDD-AW).

Fig. 8 (d) shows ResDD-AW code for MNIST dataset. The number of modules can be adjusted according to the task.
6) Shared weight of Dendrite module:

If convolution is the shared weight of the “plane”, then this section denotes the shared weight of depth. This section is described
in the form of Python code (example).

Fig. 11 shows the DD module code for MNIST (example).
Fig. 12 shows the Shared ResDD module code for MNIST (example).

Fig. 11. DD module code for MNIST dataset. (a) Unshared DD module.(b) Shared DD module.
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Fig. 12. Shared ResDD module code for MNIST dataset.

B. Simplified neuron(Dendrite+Cell body)

1) Architecture-Gang neuron with one module:
Figure 2 shows the Gang neuron with one module. The architecture of Gang neuron can be represented as{

A =W 10X ◦X
y = f(W 21A)

(12)

Where W 10 and W 21 are the weight matrix, {1, x1, x2, · · · , xn} = X . ◦ denotes Hadamard product. In the back-propagation
procedure, the weight matrix can be updated with,

W 21
new =W 21 − η21 ∂E

∂W 21
(13)

W 10
new =W 10 − η10 ∂A

∂W 10

∂E

∂A
(14)

Where W 21
new and W 10

new are the updated weight matrix for W 21 and W 10 respectively, and E is the cost function or errors
from the later layer in back-propagation. η21 and η10 are the learning rates. The learning rates of “dendrite” and cell body can
be different.
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2) Architecture-Gang “neuron” of unicellular organism:
In nature, there are unicellular organisms, such as bacteria and fungus. The first organisms to appear on Earth were presumably
single-celled [43]. Thus, Fig. 3 shows the Gang “neuron” with multiple interactions to imitate unicellular organisms. The
architecture can realize excellent nonlinear expression [40], [41] and can be represented as follows.

A1 =W 10X ◦X
A2 =W 21A1 ◦X

...

Al =W l,l−1Al−1 ◦X
y = f(W l+1,lAl)

(15)

Where l represents the number of the dendrite modules. ◦ denotes Hadamard product.
3) Architecture-simplified Gang neuron:

The weight matrix of the cell body W 21 in Fig.2 or W l+1,l in Fig. 3 is defined as a constant matrix where all its elements
are 1.The architecture in Fig. 2 can be represented as

y = f(Wones(W
10X ◦X)) (16)

And the architecture in Fig. 3 can be represented as

A1 =W 10X ◦X
A2 =W 21A1 ◦X

...

Al =W l,l−1Al−1 ◦X
y = f(WonesA

l)

(17)

C. ResGangneuron(RGN)

ResGangneuron module is the combination of ResDD and residual cell body(see Fig. 13). The formula can be expressed as
follows. 

A1 =W 10A0 ◦A0 +W 10A0

...

Ai =W i,i−1Ai−1 ◦A0|1|2|...|i−1 +W i,i−1Ai−1

Y = f(W i+1,iAi) +Ai

(18)

Where Ai−1 and Ai are the inputs and outputs of the module, respectively. A0|1|2|...|i−1 is any of A. W i,i−1 is a weight
matrix. i represents the number of the dendrite modules. ◦ denotes Hadamard product.

Ai-1Wi,i-1 A0|1|2|…|i-1A2A2W32W32 A0|1|2A1A1W21W21 A0|1A0A0W10W10 A0A0
A0A0 X= ...A1A1 A2A2

AiAiF(     )+ AiAiAiAi

Y

Fig. 13. ResGangneuron module. ‘|’ denotes ’or’. The dotted line represents any of them.
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Fig. 14 shows a simple example of using four ResGangneuron.

0 0.5 1 1.5 2 2.5 3 3.5 4
Number of times (10*Batch) 104
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M
SE

Training loss

Fig. 14. Approximation using ResGangneuron (RGN-A) for CIFAR-10 dataset (example). Training loss minimum: 2.117 × 10−4. Note that this is just a
simple example without tuning.

D. DenseGangneuron (DGN)

1) Dense Dendrite module (DenseDD) :
In order to make ResDD denser, Generalized Dense Dendrite module can be designed (see Fig. 15). The module is represented
as follows.

Ai =W i,i−1Ai−1 ◦A0|1|2|...|i−1 +X (19)

Where Ai−1 and Ai are the inputs and outputs of the module, respectively. A0|1|2|...|i−1 is any of A. W i,i−1 is a weight
matrix. X denotes the DD’s inputs. ◦ denotes Hadamard product.

Ai-1Wi,i-1 A0|1|2|…|i-1A2A2W32W32 A0|1|2A1A1W21W21 A0|1A0A0W10W10 A0A0

A0A0 X= ...A1A1 A2A2

AiAi

Fig. 15. Generalized Dense Dendrite module. ‘|’ denotes ’or’. The dotted line represents any of them.
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Additionally, similar to ResDD module, the code for the special case is shown in Fig. 16.

Fig. 16. Dense Dendrite module code (example). (a) and (b) are with the form of the unshared weights. (c) and (d) are with the form of the shared weights.

2) DenseGangneuron: DenseGangneuron module is the combination of DenseDD and Dense cell body. Here, I show two
special examples.

Example 1 (DenseGangneuron-X) can be expressed as follows.(see Fig. 17)

A1 =W 10A0 ◦A0 +X

...

Ai =W i,i−1Ai−1 ◦A0|1|2|...|i−1 +X

Y = f(W i+1,iAi) +X

(20)
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Where Ai−1 and Ai are the inputs and outputs of the module, respectively. A0|1|2|...|i−1 is any of A. W i,i−1 is a weight
matrix. i represents the number of the dendrite modules. X denotes the DD’s inputs. ◦ denotes Hadamard product.

Ai-1Wi,i-1 A0|1|2|…|i-1A2A2W32W32 A0|1|2A1A1W21W21 A0|1A0A0W10W10 A0A0
A0A0 X= ...A1A1 A2A2

AiAiF(     )+ XXAiAi

Y

Fig. 17. ResGangneuron-X module. ‘|’ denotes ’or’. The dotted line represents any of them.

Example 2 (DenseGangneuron-A) can be expressed as follows.(see Fig. 18)

A1 =W 10A0 ◦A0 +X

...

Ai =W i,i−1Ai−1 ◦A0|1|2|...|i−1 +X

Y = f(W i+1,iAi) +Ai

(21)

Where Ai−1 and Ai are the inputs and outputs of the module, respectively. A0|1|2|...|i−1 is any of A. W i,i−1 is a weight
matrix. i represents the number of the dendrite modules. X denotes the DD’s inputs. ◦ denotes Hadamard product.

Ai-1Wi,i-1 A0|1|2|…|i-1A2A2W32W32 A0|1|2A1A1W21W21 A0|1A0A0W10W10 A0A0
A0A0 X= ...A1A1 A2A2

AiAiF(     )+AiAi

YAiAi

Fig. 18. ResGangneuron-A module. ‘|’ denotes ’or’. The dotted line represents any of them.

As an example, Fig. 19 shows the code when ◦Ai−1 is used in the dendrite module.
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Fig. 19. DenseGangneuron code (example). The left figure is DenseGangneuron-X. The right figure is DenseGangneuron-A.

For ease of description, this paper describes the Gang neuron with the best-represented architecture (◦X). In use, we can
replace (◦X) by (◦A0|1|2|...|i−1) or using ResDD, DenseDD, ResGangneuron, or DenseGangneuron (see the ResGangneuron
section and the DenseGangneuron section). Linear modules (WA) can be inserted anywhere in Gang neuron to adjust
the dimensionality. E,g., the DD module (W i,i−1Ai−1 ◦ Ai−1) is inserted into a linear module and can be written as
W i,i−1Ai−1 ◦W i,i−1

L Ai−1; Insert linear modules before the dendrite module to adjust the dimensionality.
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IV. SOME TYPICAL ANN ARCHITECTURE USING GANG NEURON

A. Single-layer network

Fig. 20 shows the single-layer network. This architecture imitates the intricate dendrite of multiple neurons. Multiple neurons
may obtain the same signal [32], [33], [43]. “f(...)” in Fig. 20 can be set as the function that we plan to use for application.
For example, when “f(...)” is set as softmax, it can be used for classification.

Fig. 20. Single-layer network.

B. Multi-layer perceptron (MLP) using Gang neuron

MLP is the most typical neural network. Here, Fig. 21 shows a MLP using Gang neuron with one module. The forward
propagation can be represented as follows.

Fig. 21. MLP using Gang neuron.

{
Ah =W 10

h X ◦X
Hh = f(W 21

h Ah)
(22)

{
Ao =W 10

o Hh ◦Hh

Yo = f(W 21
o Ao)

(23)
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Where H = [1;Hh] , W 10
h , W 21

h , W 10
o , and W 21

o are the weight matrix, {1, x1, x2, · · · , xn} = X . ◦ denotes Hadamard
product. The backpropagation can be represented according to formula 13 and 14.

Additionally, when the simplest form of Gang neuron is used, MLP can be represented as follows.Hh = f(
∑

(W 10
h X ◦X))

Yo = f(
∑

(W 10
o Hh ◦Hh))

(24)

C. Information fusion network

Figure 22 shows the information fusion of different neurons. This information interaction is common in the biological brain
[37]–[39]. The architecture in Fig. 22 can be expressed as follows.

Fig. 22. Information fusion network.
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A1
x =W 10

x X ◦X
A2

x =W 21
x A1

x ◦X
...

Al
x =W l,l−1

x Al−1
x ◦X

h1 = f(W l+1,l
x Al

x)
...

A1
z =W 10

z X ◦X
A2

z =W 21
z A1

z ◦X
...

Al
z =W l,l−1

z Al−1
z ◦X

he = f(W l+1,l
z Al

z)

(25)

{
Ah =W 10

h H ◦H
y = f(W 21

h Ah)
(26)

Where {1, x1, x2, · · · , xn} = X ,{1, z1, z2, · · · , zk} = Z , and {1, h1, h2, · · · , he} = H . e is the number of neurons. ◦
denotes Hadamard product. The network architecture can be trained by error backpropagation according to formula 13 and 14.

In fact, these network architectures using Gang neuron can be trained by PyTorch expediently. [Note that the inputs and
outputs are normalized to [−1, 1]. ] The architectures presented in this paper are like some plugins and can be used to other
larger architectures where we want to design to improve networks’ mapping capacity.

D. Convolution layer using Gang neuron

Fig. 23 compares the architecture of using a Gang neuron with a traditional neuron in the convolution layer (an example).
The Gang neuron extracts interaction information between inputs.

Fig. 23. Convolution layer using Gang neuron or traditional neuron.
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The network using Gang neurons can delete the Fully-connected Layers of traditional networks. In other words, the parameters
of the Fully-connected Layer are assigned to a single neuron, which reduces parameters of network for the same mapping
capacity. The Fully-connected Layers do not exist in human brain.

For example, the number of parameters in the Fully-connected Layer is 10000× 100. When the parameters are assigned to
a single neuron, the number of parameters can be 100× 10× 10. [100 denotes the number of Gang neurons.]

E. Schematic diagram of RNN using Gang neuron

Fig. 24 compares the architecture of using a Gang neuron with a traditional neuron in RNN. The Gang neuron extracts the
interaction information between inputs about time. Where x represents the currents input and h represents the outputs of the
previous time.

Fig. 24. Schematic diagram of RNN using Gang neuron.
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V. BIOMIMETIC ARCHITECTURE USING GANG NEURON

A. Module 1: Retina,attention(focus),and convolution-like scan

Fig. 25 shows a retina module. This module imitates the focus mechanism of the human eye when we observe things. At the
focus, our eye extracts the multiple relationships of the picture, and then, the extracted texture is more and more rough along
the direction of focus diffusion. Additionly, Attention in Fig. 25 can scan the entire picture, which happens to be similar to
convolution. However, my architecture contains gradients related to focus, and the maximum receptive field can be set as the
entire picture (Of course, we can also set a small range of receptive field with gradient). I show a 4th-order gradient in Fig.
25. The number of gradients can be adjusted by dendrite modules appropriately. For specific details, please see the specific
formula in the Fig. 25.

Fig. 25. Module 1: Retina,attention(focus),and convolution-like scan. The gap between the ‘squares’ only aims to distinguish the ‘squares’ in drawing. The
calculation of each color block consists of two steps(see Fig. 23): 1) Transform X into a 1-dimensional input; 2) use the dendrite modules. In terms of the
activation function, we can use what we want, such as relu. Besides, linear activation function (e.g.,Y = WA) also can be used because the dendrite module
has the nonlinear mapping capacity. Additionally, as an example, the figure shows the calculation process of one channel. For more channels, each channel
can be calculated separately. Then, the outputs of channels are averaged in the same position. Note that the above formulas express one operation like a
convolution kernel. The later layer is generated by a convolution-like scan.

B. Module 2: Population coding in brain

The dendrites of neurons are crisscrossed. In population coding of biological brain, the primary afferent fibre whose receptive
field centre is closest to the point of stimulation will produce more action potentials than those on the periphery (Fig. 26, the
green fibre has a greater action potential frequency than the blue fibres) [44].

Fig. 26. Module 2: Population coding in brain. Refer to Fig. 15 for the calculation of neurons. Besides, as an example, the figure shows the calculation
process of one channel. For more channels, each channel can be calculated separately. Then, the outputs of channels are averaged in the same position.

Fig. 26 shows a biomimetic population coding module. Two points are important to emphasize.
1)Biomimetic dendrite is staggered; 2)When we design a network by multilayer Module 2 in Fig. 26, the dimension of

output decreases as the layer.
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C. Application methods

This paper shows three usage.
1) In the existing networks, the convolutional layers can be replaced by module 1.(Compared with the existing convolution,

module 1 has a larger receptive field and can extract the position information.)
2) Multi-layer modules 2 are interconnected to build a new neural network.
3) Module 1 and Module 2 are used together. There is a special architecture imitating the biological brain. The first layer

is designed by module 1, and all the later layers are designed by module 2.

VI. TIPS OF GANG NEURON

A. Avoiding curse of dimensionality and improving generalization ability

1) Adjusting the range of inputs: When the absolute value of the dendrites’ inputs is less than 1, there is an inhibitory
effect on higher-order terms.

lim
n→+∞

xn = 0 (27)

Where |x| < 1, n ∈ N+. Simultaneously, i, j ∈ N+, when i < j, xi > xj . The simulation example is shown in Fig. 27 . The
degree of suppression of higher-order terms can be changed by adjusting the range of x (see Fig. 27).
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Fig. 28. L1-regularization (Example,PyTorch code).

2) Regularization: Regularization (e.g.,L1-regularization [45]) is used to balance the weight distribution, which makes Gang
neuron more inclined to approximate the data set by using low-order terms. Gang neuron (e.g., ResDD) uses lower-order terms
as much as possible, and then higher-order terms are used to approximate details, which is consistent with what we expect.
Here, I show an example of L1-regularization(see Fig. 28).

VII. SOME THEORIES FOR GANG NEURONS

The following content is only to explain Gang neurons and does not contain strict proof.

A. Polynomial, Convolution, and Dendrite in this paper

Understanding dendrites for feature extraction from the perspective of convolution
Convolution:
The convolution of f and g is written f ∗ g, denoting the operator with the symbol ∗. It is defined as the integral of the

product of the two functions after one is reversed and shifted. As such, it is a particular kind of integral transform:∫ ∞
−∞

f(τ)g(t− τ)dτ (28)

We can express it in discrete form. ∑
f [k]g[x− k] (29)

Polynomial multiplication:
E.g: (x× x+ 3× x+ 2)(2× x+ 5)
The calculation process is as follows:

(x× x+ 3× x+ 2) (2× x+ 5)

= (x× x+ 3× x+ 2)× 2× x+ (x× x+ 3× x+ 2)× 5

= 2× x× x× x+ 3× 2× x× x+ 2× 2× x+ 5× x× x+ 3× 5× x+ 10

(30)

Then, merge the same terms:

2x× x× x
3× 2 + 1× 5x× x
2× 2 + 3× 5x

2× 5

−−−−
2× x× x× x+ 11× x× x+ 19× x+ 10

(31)
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The polynomial can be regarded as a vector space, and its basis can be selected as {1, x, x× x, x× x× x, · · · }. Then any
polynomial can correspond to a coordinate vector in an infinite-dimensional space.

(x× x+ 3× x+ 2) corresponds to (1 3 2); (2× x+ 5) corresponds to (2 5).
We perform coordinate calculation according to the definition of convolution:
(1 3 2) ∗ (2 5) is expressed as follows.

2 3 1

− − 2 5

−−−−−−
2

(32)

2 3 1

− 2 5

−−−−−−
6 + 5 = 11

(33)

2 3 1

2 5

−−−−−−
4 + 15 = 19

(34)

− 2 3 1

2 5

−−−−−−
10

(35)

e.i., (1 3 2) ∗ (2 5) = (2 11 19 10)
Now we look at Eq.31: (x×x+3×x+2)(2×x+5) = 2×x×x×x+11×x×x+19×x+10. Polynomial multiplication

is equivalent to convolution of coefficient vectors. Therefore, we can also understand the calculation of Dendrite modules from
the perspective of convolution.
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VIII. CURRENT APPLICATIONS OF GANG NEURONS

A. Traffic:IEEE Internet of Things Journal (Journal, IF:10.238)

Study using Gang neurons [46]:”A Hybrid Data-Driven Framework for Spatiotemporal Traffic Flow Data Imputation”(see
Fig. 29)

An accurate estimation of missing data in traffic flow is crucial in urban planning, intelligent transportation, economic
geography, and other fields. Thus, improving the data quality of traffic flow is a necessary step in data modeling. Most existing
studies use data-driven models to determine spatiotemporal patterns in traffic flow data and fill in the missing information
automatically. However, simple data-driven models have unsatisfactory results for describing complex patterns in traffic flow
and filling in missing data. This study treated the complex patterns in traffic flow as integrating multiple simple patterns and
proposed a hybrid missing data imputation framework called ST-PTD based on Gang neurons. The results showed that the
ST-PTD framework outperformed the eight existing baselines in terms of imputation accuracy.

The key model in this paper（Gang neuron)This paper used DD of Gang neuron.

Fig. 29. Traffic:IEEE Internet of Things Journal (Journal, IF:10.238)

B. Energy:Energy (Journal, IF:8.857)

Study using Gang neurons [47]:”High Spatial Granularity Residential Heating Load Forecast Based on Dendrite Net
Model”(see Fig. 30)

With the application of smart meters, more information is available from residential buildings for support heat load forecast.
Yet, there is still a lack of an effective method to exploit the value of the high spatial granularity information, particularly
for residential communities with high randomness in human behaviors. To fill this gap, this paper proposes a data-driven heat
load forecast method based on Gang neurons. The results demonstrate that the method shows higher forecast accuracy, the
root-mean-square error is 0.0029, in some research cases the coefficient of determination can reach 0.99–1, and wide scope
of application in the area of heat load forecast.

The key model in this paper（Gang neuron)This paper used DD(DN) of Gang neuron.

Fig. 30. Energy:Energy (Journal, IF:8.857)
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C. Energy:Applied Energy (Journal, IF:11.446)

Study using Gang neurons [48]:”Energy saving of buildings for reducing carbon dioxide emissions using novel dendrite
net integrated adaptive mean square gradient”(see Fig. 31)

In this paper, Gang neurons is used to energy saving and emission reducing of the construction industry. Compared with
other methods, the experimental results show the availability of Gang neurons. Through predicting the heating and cooling
loads based on Gang neurons, the construction plan is adjusted to decrease the energy consumption of buildings. Moreover,
the appliances energy consumption is predicted and analyzed by Gang neurons to improve energy efficiency and cut carbon
dioxide emissions.

The key model in this paper（Gang neuron)This paper used DD of Gang neuron.

Fig. 31. Energy:Applied Energy (Journal, IF:11.446)

D. Mechanical Engineering:Engineering Optimization (Journal, IF:2.616)

Study using Gang neurons [49]:”A radial sampling-based subregion partition method for dendrite network-based reliability
analysis”(see Fig. 32)

In sampling-based reliability analysis, a constraint with multiple failure points may lead to an inefficient iteration process
and inaccurate results. To examine this problem, a novel analysis method based on Gang neurons is proposed in this article,
which achieves multiple failure point-based constraint model construction. In the proposed method, a radial sampling-based
subregion partition method is presented to locate the potential failure subregions that may have a failure point and to construct
a subregion partition model to find the model refinement points in parallel. In addition, a new machine learning algorithm, the
Gang neuron, is adopted to construct the constraint model and the subregion partition model, and a network-matched learning
function is designed to assist model refinement. Test results demonstrate that the number of training samples is decreased
compared with other citation methods.

The key model in this paper（Gang neuron)This paper used Gang neuron.

Fig. 32. Mechanical Engineering:Engineering Optimization (Journal, IF:2.616)
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E. Meteorology:Frontiers in Plant Science (Journal, IF:6.627)

Study using Gang neurons [50]:”An Algorithm for Precipitation Correction in Flood Season Based on Dendritic Neural
Network”(see Fig. 33)

In recent years, the National Climate Center has developed a dynamic downscaling prediction technology based on the
Climate-Weather Research and Forecasting (CWRF) regional climate model and used it for summer precipitation prediction, but
there are certain deviations, and it is difficult to predict more accurately. The CWRF model simulates the summer precipitation
forecast data from 1996 to 2019 and using Gang neurons to conduct a comparative analysis of summer precipitation correction
techniques. The results show that the correction effect based on Gang neurons is better than the CWRF historical return, in
which, the anomaly correlation coefficient (ACC) and the temporal correlation coefficient (TCC) both increased by 0.1, the
mean square error (MSE) dropped by about 26%, and the overall trend anomaly (Ps) test score was also improved.

The key model in this paper（Gang neuron)This paper used Gang neuron.

Fig. 33. Meteorology:Frontiers in Plant Science (Journal, IF:6.627)

F. Brain-Computer Interface:IEEE Transactions on Neural Systems and Rehabilitation Engineering (Journal, IF:4.528)

Study using Gang neurons [51]:”An Algorithm for Precipitation Correction in Flood Season Based on Dendritic Neural
Network”(see Fig. 34)

Modeling the brain as a white box is vital for investigating the brain. However, the physical properties of the human brain are
unclear. Therefore, BCI algorithms using EEG signals are generally a data-driven approach and generate a black- or gray-box
model. This paper presents the first EEG-based BCI algorithm (EEG-BCI using Gang neurons, EEGG) decomposing the
brain into some simple components with physical meaning and integrating recognition and analysis of brain activity. EEGG
decomposed the biological EEG-intention system of this paper into the relation spectrum inheriting the Taylor series (in analogy
with the data-driven but human-readable Fourier transform and frequency spectrum), which offers a novel frame for analysis
of the brain.

The key model in this paper（Gang neuron)This paper used Gang neuron.

Fig. 34. Brain-Computer Interface:IEEE Transactions on Neural Systems and Rehabilitation Engineering (Journal, IF:4.528)
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G. Myocardial Infarction:IEEE Sensors Journal (Journal, IF:4.325)

Study using Gang neurons [52]:”Application of Convolutional Dendrite Net for Detection of Myocardial Infarction Using
ECG Signals”(see Fig. 35)

Myocardial infarction (MI) is a sudden-onset medical emergency. Without timely diagnosis and treatment, mortality is very
high. Gang neuron realizes the classification of images by extracting the logical relationship between features. The method
based on Gang neuron is verified by Physikalisch Technische Bundesanstalt (PTB) dataset. The results show that the average
detection accuracy and time of one patient are 98.95% and 2.09 ms, respectively.

The key model in this paper（Gang neuron)This paper used Gang neuron.

Fig. 35. Myocardial Infarction:IEEE Sensors Journal (Journal, IF:4.325)

H. Mechanical Engineering:Energies (Journal, IF:3.252)

Study using Gang neurons [52]:”An Accuracy Prediction Method of the RV Reducer to Be Assembled Considering
Dendritic Weighting Function”(see Fig. 36)

There are many factors affecting the assembly quality of rotate vector reducer, and the assembly quality is unstable. Matching
is an assembly method that can obtain high-precision products or avoid a large number of secondary rejects. Selecting suitable
parts to assemble together can improve the transmission accuracy of the reducer. In the actual assembly of the reducer, the
success rate of one-time selection of parts is low, and “trial and error assembly” will lead to a waste of labor, time cost, and errors
accumulation. In view of this situation, a Gang neuron model based on mass production and practical engineering applications
has been established. The size parameters of the parts that affected transmission error of the reducer were selected as influencing
factors for input. The key performance index of reducer was transmission error as output index. After data standardization
preprocessing, a quality prediction model was established to predict the transmission error. The experimental results show that
the dendritic neural network model can realize the regression prediction of reducer mass and has good prediction accuracy
and generalization capability. The proposed method based on Gang neuron can provide help for the selection of parts in the
assembly process of the RV reducer.

The key model in this paper（Gang neuron)This paper used Gang neuron.

Fig. 36. Mechanical Engineering:Energies (Journal, IF:3.252)
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I. Mechanical Engineering:2022 MLISE

Study using Gang neurons [53]:”Unteady aerodynamics modeling method based on dendrite-based gated recurrent neural
network model”(see Fig. 37)

System identification-based aerodynamic reduced-order model (ROM) is an effective method for solving nonlinear unsteady
aerodynamics prediction. However, most of the ROMs are shallow neural network architecture which is difficult to capture
nonlinear aerodynamic behavior with large samples and Varying Mach Numbers. This paper proposes a dendrite-based(Gang
neurons) gated recurrent neural network (DD-GRU) fusion model from deep learning theory to improve the capability of
system identification-based ROM in varying flow conditions. DD-GRU network can process time-series data, which is also
suitable for capturing the time-delay effect of unsteady aerodynamics. Unlike other recurrent models, DD-GRU uses the dendrite
method to re-extract the logic of information of GRU. The approach is evaluated by predicting NACA64A01 airfoil transonic
aerodynamic loads across multiple flow conditions. The example demonstrates that the model accurately predicts the harmonic
aerodynamic response in the frequency and time domains with different flow conditions.

The key model in this paper（Gang neuron)This paper used DD of Gang neuron.

Fig. 37. Mechanical Engineering:2022 MLISE

J. Epilepsy(Magnetoencephalography):2022 ICRCV

Study using Gang neurons [54]:”An Efficient CADNet for Classification of High-frequency Oscillations in Magnetoen-
cephalography”(see Fig. 38)

Epilepsy is a chronic neurological disease, and locating the lesions precisely is crucial to the success of epilepsy surgery. The
high-frequency oscillations (HFOs) in magnetoencephalography (MEG) of epileptic patients can be used to detect seizures.
Due to the inefficient and error-prone operation of traditional HFOs detection, it is necessary to develop an approach for
the detection of HFOs, which can automatically classify HFOs in MEG. This paper proposed a novel deep learning-based
CADNet(Gang neuron) for the classification of HFOs in MEG. The model was evaluated on MEG dataset, and the accuracy,
precision, recall, and F1-score of the optimized model reached 0.97, 0.98, 0.97, 0.97. This paper compared the proposed
CADNet with other deep learning models, the result demonstrates that CADNet based on Gang neuron outperforms others.

The key model in this paper（Gang neuron)This paper used DD of Gang neuron.

Fig. 38. Epilepsy(Magnetoencephalography):2022 ICRCV
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K. Mechanical Engineering:Processes (Journal, IF:3.352)

Study using Gang neurons [55]:”Multi-Objective Optimization for the Radial Bending and Twisting Law of Axial Fan
Blades”(see Fig. 39)

The performance of low-pressure axial flow fans is directly affected by the three-dimensional bending and twisting of the
blades. A new blade design method based on Gang neurons is adopted in this work, where the radial distribution of blade
angle and blade bending angle is composed of standard-form rational quadratic Bézier curves. The simulation results show
that the optimal blade load distribution along the radial direction becomes uniform, and the suction surface separation vortex
and passage vortex are restrained. On the other hand, the tip leakage vortex is enhanced and moves toward the blade leading
edge. According to the experimental results, the maximum efficiency increases by 5.44%, and the maximum total pressure
coefficient increases by 2.47% after optimization.

The key model in this paper（Gang neuron)This paper used DD of Gang neuron.

Fig. 39. Mechanical Engineering:Processes (Journal, IF:3.352)

Gang neurons have been used in many fields and has demonstrated excellent characteristics. Here, I will not list them
all due to the limited space of the article.

IX. DISCUSSION AND CONCLUSION

In this paper, I compared the development of artificial neural networks with biological neural networks. As expected, the
direction of their research fields is different. Researchers in ANNs pay attention to the architectures for different applications,
while researchers in biology focus on exploring neural mechanisms. Both directions achieve success. It may be time to learn
from each other.

As we know, artificial neural networks are inspired by biological neural networks. Seventy years ago, people designed
artificial neurons with the knowledge about biological neurons at that time. Today, we have a better understanding of how the
work of neurons, especially dendrites.

The traditional artificial neurons ignore that dendrites participate in pre-calculation in a biological neuron or biological neural
network. More specifically, biological dendrites play a role in the pre-processing of the interaction information of input data.
Two examples can be mentioned in this regard. In understanding a picture, biological dendrites play a role in extracting the
relationship between parts of an input picture. In understanding an article, biological dendrites play a role in extracting the
relationship between parts of an article.

Therefore, this paper improved the neuron of ANNs by introducing the dendrite module and presented a novel neuron named
Gang neuron.

X. OUTLOOK

This paper shows some basic architecture using Gang neurons. These network architectures using Gang neurons can be
trained by PyTorch expediently. [Note that the inputs and outputs are normalized to [−1, 1]. ] These architectures in this
paper are like some plugins. They can be used for other larger architectures that we want to design to improve the mapping
capacity of networks.

There is an interesting phenomenon. Some data augmentation methods improve networks’ performance, such as flipping
and zooming in or out pictures. I believe this shows that the existing networks can not fully extract some simple information,
such as flipping and zooming in or out pictures. However, our brains do this well.
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