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Abstract

The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using Machine

Learning (ML) techniques to build more efficient and reliable Intrusion Detection Systems (IDSs). However, the advent of larger

IDS datasets has negatively impacted the performance and computational complexity of ML-based IDSs. Many researchers

used data preprocessing techniques such as feature selection and normalization to overcome such issues. While most of these

researchers reported the success of these preprocessing techniques on a shallow level, very few studies have been performed on

their effects on a wider scale. Furthermore, the performance of an IDS model is subject to not only the utilized preprocessing

techniques but also the dataset and the ML algorithm used, which most of the existing studies give little emphasis on. Thus,

this study provides an in-depth analysis of feature selection and normalization effects on various IDS models built using two IDS

datasets namely, NSL-KDD and UNSW-NB15, and five different ML algorithms. The algorithms are support vector machine,

k-nearest neighbor, random forest, naive bayes, and artificial neural network. For feature selection and normalization, the

decision tree wrapper-based approach, which tends to give superior model performance, and min-max normalization methods

were respectively used. A total of 30 unique IDS models were implemented using the full and feature-selected copy of the

datasets. The models were evaluated using popular evaluation metrics in IDS modeling, intra- and inter-model comparisons

were performed between models and with state-of-the-art works. Random forest achieved the best performance on both NSL-

KDD and UNSW-NB15 datasets with prediction accuracies of 99.87% and 98.5%, as well as detection rates of 99.79% and

99.17% respectively, it also achieved an excellent performance in comparison with the recent works. The results show that

both normalization and feature selection positively affect IDS modeling with normalization shown to be more important than

feature selection in improving performance and computational time. The study also found that the UNSW-NB15 dataset is

more complex and more suitable for building and evaluating modern-day IDS than NSL-KDD.
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Abstract 

The rapid rise of cyberattacks and the gradual failing of traditional defense systems and approaches led to the use 

of Machine Learning (ML) techniques aiming to build more efficient and reliable Intrusion Detection Systems 

(IDSs). However, the advent of larger IDS datasets brought about negative impacts on the performance and 

computational time of ML-based IDSs. To overcome such issues, many researchers utilized data preprocessing 

techniques such as feature selection and normalization. While most of these researchers reported the success of 

these preprocessing techniques on a shallow level, very few studies are performed on their effects on a wider scale. 

Furthermore, the performance of an IDS model is subject to not only the preprocessing techniques used but also 

the dataset and the ML algorithm used, which most of the existing studies on preprocessing techniques give little 

emphasis on. Thus, this study provides an in-depth analysis of the effects of feature selection and normalization 

on various IDS models built using four separate IDS datasets and five different ML algorithms. Wrapper-based 

decision tree and min-max are used in feature selection and normalization respectively. The models are evaluated 

and compared using popular evaluation metrics in IDS. The study found normalization to be more important than 

feature selection in improving performance and computational time of models on both datasets, while feature 

selection on UNSW-NB15 failed to reduce models computational time, and in the case of models built using NSL-

KDD, it decreases their performance. The study also reveals that, compared to the UNSW-NB15 dataset, the NSL-

KDD dataset is less complex and unsuitable for building reliable modern-day IDS models. Furthermore, the best 

performance on both datasets is achieved by Random Forest with accuracy of 99.75% and 98.51% on NSL-KDD 

and UNSW-NB15 respectively. 

 

Keywords: Feature Selection, Intrusion Detection System, Machine Learning Techniques, Normalization, NSL-

KDD and UNSW-NB15. 

1 Introduction 

As the internet and computer systems play increasingly vital roles in modern society, they have become the targets 

of cybercriminals. Therefore, we need to find the best ways possible to ensure the safety of our network and 

systems. User authentication, data encryption, and firewall were initially used, but they are proved to be 

insufficient; due to their limitations, Intrusion Detection Systems (IDSs) are nowadays been utilized to monitor 
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intrusion on a computer and network security. The IDSs use specific analytical techniques to detect attacks, 

identify their sources, and alert network administrators. 

 

The signature-based detection approach has dominated IDSs use in practice. However, the continual advent of 

new types of intrusion attacks, and the failure of the approach to detect those novel attacks made the signature-

based IDS approach unreliable and thus, anomaly-based IDS become an area of interest for cybersecurity 

researchers. In quest of developing more reliable and efficient IDSs, ML techniques are generally used. The ML 

techniques need to learn from experience, a dataset in this case, to be able to correctly detect network intrusion. 

However, the advent of larger IDS datasets has increased the computational time needed to develop an IDSs 

model, as well as decreased their performance [1]. To overcome such issues, data preprocessing techniques such 

as feature selection and normalization are utilized by many researchers. Feature selection has been widely used in 

selecting relevant features for building robust IDSs models and has been influential on both efficiency and 

performance of IDS models [2], [3]. Furthermore, the use of normalization in handling IDS dataset features with 

large value range has proven to be very influential on the implementation of IDS models, reduce learning time 

and improving IDS model performance [4], [5]. 

 

While most of the existing IDS studies aimed at utilizing either normalization or feature selection or both on a 

few IDS datasets using a few machine learning algorithms, very few in-depth studies are performed on the effects 

of those two preprocessing techniques. Furthermore, a generalized conclusion on the positive effect of feature 

selection and/or normalization on the IDS models are normally reported in many shallow studies. However, this 

may not always be true because the performance of an IDS model is subject to not only feature selection and 

normalization but also dataset and machine learning algorithm used, which most of the existing studies give little 

emphasis on. Thus, IDS models must be developed using various ML algorithms and many IDS datasets to enable 

fair comparison and more holistic understandings on the implication of feature selection and normalization in IDS 

modeling. Hence, this work aimed at addressing this gap.  

 

An in-depth analysis of the effects of feature selection and normalization is performed in this study. Five of the 

widely used ML algorithms in IDS modeling [6] are selected, two datasets, one considered outdated (NSL-KDD), 

and the other considered current (UNSW-NB15) [7], are also selected. To enable comparison and analysis of the 

effects of feature selection, a feature selected version of each dataset was made using a wrapper-based feature 

selection approach with a decision tree algorithm as the feature evaluator. To determine the effect of normalization, 

min-max normalization, one of the most common [8] and the predominantly used normalization method in IDS 

modeling [5], [9], [10], is used, Using the four final datasets (full and feature selected version of each) three 

different IDS programs were implemented, each program contains ten distinct IDS models, with some of the 

models developed without applying normalization. Table 1.1 below summarized the three programs. The IDS 

models are evaluated using well-known and most used evaluation metrics in IDS modeling.  

Table 1.1 – Programs Implemented 

IDS Program Dataset Features 
Min-Max 

Normalized 
Primary Dataset ML Algorithms 

Total IDS 

models 

Program A Full Datasets Yes 10 
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Program B Feature Selected Yes Both NSL-KDD and 

UNSW-NB15 

 

All selected 

algorithms 

 

10 

Program C Feature Selected No 10 

Total number of IDS models implemented 30 

 

In addition to the primary aim of this study, some other important contributions of the study are: 

I. This study provides various in-depth comparisons on many aspects such as feature selection, 

normalization, datasets, and IDS models. 

II. We propose a hybrid approach towards IDS modeling using a classifier for feature selection alongside 

another classifier in implementing IDS model to increase accuracy and efficiency of IDS 

III. Dataset issue is one of the IDS challenges, many consider the oft-used KDD99 and its variant such as 

the NSL-KDD dataset to be outdated and their usage, a matter of concern [7], we contribute to the 

literature by verifying those claims; comparing it with a contemporary UNSW-NB15 dataset on 

effectiveness, reliability, and consistency facets. 

IV. The use of five of the most used ML algorithms in IDS modeling to implement many IDS models, and 

the use of many model evaluation metrics to assess and compare the performance of these models. 

The rest of the paper is organized as follows: A review of literature, their limitations, and way of overcoming the 

limitations are presented in Section 2, Section 3 presents an explanation about basic IDS concepts, Machine 

learning, and the two preprocessing techniques. The experimental procedures observed are presented in Section 

4, while in Section 5, we provide the evaluation results and the stated comparative analysis is performed. Finally, 

we conclude the paper and give suggestions for further research in Section 6. 

2 Literature review 

2.1 Related Works 

In this section, some of the recent and related work combining the use of feature selection and normalization in 

modeling IDS using various approaches and ML methods are presented along with their limitation. A summary 

of the related works is shown in Table 2.1 

 

Depren et al., [11] proposed a novel hybrid IDS model based on a self-organized map (SOM) for anomaly 

detection and J48 tree for misuse detection on the KDDcup99 dataset. A number of six basic features from 41 

features were selected, however without explanation of the used feature selection technique, for modeling. The 

attributes were normalized using the min-max technique and WEKA software was used for the modeling work. 

The performance of the model was promising with a detection rate of % 99.90. 

Wang et al., [4] modeled IDS using three methods: k-NN, PCA, and SVM on a normalized KDDCup99 dataset. 

They used 34 numeric features, ignoring the remaining 7 nominal features, of the dataset. Four different attribute 

normalization methods were employed and compared on the dataset for anomaly intrusion detection. The 

performances of the three models are evaluated using detection rate, and false positive rate and they found Z-

score (Statistical normalization) performs better on larger datasets than the rest of the normalization methods. 

Somwang and Lilakiatsakun [12] proposed an anomaly-based IDS using a hybrid algorithm of supervised and 

unsupervised learning schemes on a non-zero normalized KDDcup99 dataset. The proposed technique integrates 
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Principal Component Analysis (PCA) with Support Vector Machine (SVM). 10/41 features were selected using 

the PCA and the SVM was then used to model the IDS classify. Hit, Miss, Detection rate and false positive rate 

were the performance measure used in evaluating the classifier. The experiment shows a detection rate of 97.4%, 

however, as they hinted, more work needs to be done using various theories and techniques as one or two models 

can hardly provide a sufficient and reliable result. 

Sivatha Sindhu et al., [13] proposes a lightweight IDS for multi-class categorization using a wrapper-based genetic 

algorithm for feature selection and a hybrid of neural network and decision tree (neurotree) for actual classification. 

They used 16/41 features of NSL-KDD datasets and a min-max method to normalize the selected attributes. 

WEKA’s evaluation measures were used to evaluate the performance of their, and compared to tree-based single 

classifiers their proposed methods achieved the highest detection rate of 98.38%. 

Song et al., [14] proposed an IDS method consisting of a combination of feature selection, normalization, fuzzy 

C means clustering algorithm, and C4.5 decision tree algorithm. They used the KDDcup99 dataset and selected 

8/41 features using WEKA’s CfsSubsetEval filter. Min-max normalization was used to convert the data to a range 

of between 0 and 1, then fuzzy C means clustering method is used to partition the training instances into clusters 

and for each cluster, a C4.5 algorithm was used for detection of anomaly/normal instance on test data. The 

performance of the method was assessed using six measures and WEKA was used for comparison with a single 

C4.5 classifier, one with a feature selection algorithm and the other without. Their proposed method improves the 

performance results obtained by C4.5 while using only 19.5% of the total number of features. 

Thaseen and Kumar [15] evaluated the classification ability of six distinct tree-based classifiers on the NSL-KDD 

dataset. They used WEKA’s CONS and CFS filters to select 15/41 features of the dataset, however, no 

normalization was done on the data (possibly because it has no impact on the performance of tree-based algorithms 

[16]). To evaluate the performance of the models, WEKA’s evaluation measures were used and the RandomTree 

model holds the highest degree of accuracy and reduced false alarm rate. 

Ghaffari Gotorlar et al., [17] proposed a harmony search-support vector machine (HS-SVM) method for intrusion 

detection on a KSL-KDD dataset. They used harmony search to select 21/41 best features and the numerical 

features were normalized using the min-max method whereas the nominal values were converted to numeric. 

LibSVM library was used for training the SVM model. Detection rate and test time were used to evaluate the 

model performance, and the results show that the proposed HS-SVM method overcomes the SVM drawback of 

time-consuming during testing. 

Khammassi and Krichen [18] proposed the use of three distinct decision tree-based algorithms on a genetic 

algorithm-logistic regression wrapper selector (GALR-DT) in building IDS models. The three decision tree 

classifiers used are C4.5, Random Forest, and Naïve Bayes Tree. They applied a wrapper approach based on a 

genetic algorithm as a search strategy and logistic regression as a learning algorithm to select the best subset of 

features on KDDcup99 and UNSW-NB15 datasets. 18/41 features were selected in KDDcup99 and 20/42 features 

were selected in UNSW-NB15 datasets by the GA-LR wrapper. Log-scaling and Min-max of the 0-1 range were 

applied to normalized the data. Dataset-wise performance of the models was compared using the detection rate, 

accuracy, and false alert rate. Their results show that UNSW-NB15 provides the lowest FAR with 6.39% and a 

good classification accuracy compared to KDDcup99 and thus, they conclude that the UNSW-NB15 dataset is 

more complex than the KDD99 dataset. 
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Setiawan et al., [19] proposed an IDS model using a combination of the feature selection method, normalization, 

and Support Vector Machine. WEKA’s modified rank-based information gain filter was used to select 17/41 NSL-

KDD dataset features and the numerical features were log normalized. The model was evaluated using WEKA’s 

evaluation measures and they achieved an overall accuracy of 99.8% 

Khan et al., [20] proposed a novel two-stage deep learning (TSDL) model, based on a stacked auto-encoder with 

a soft-max classifier, for efficient network intrusion detection. The model comprises two decision stages and is 

capable of learning and classifying useful feature representations in a semi-supervised mode. They evaluate the 

effectiveness of their methods using KDD99 and UNSW-NB15 datasets. DSAE feature selection is used to select 

10 features in each dataset, which are normalized using the min-max method. Most used IDS model evaluation 

metrics were used to assess the performance of their proposed model, achieving high recognition rates, up to 

99.996% and 89.134%, for the KDD99 and UNSW-NB15 datasets respectively. 

Table 2.1 - Summary of Related Works 

Paper 

‘Year 

FS Method (No. of 

selected features) 
ML Algorithm 

Normalization 

type/method 

Dataset (ID 

approach) 
Evaluation Metrics 

[11] 

‘05 
Not mentioned (6/41) 

SOM/ J.48, DSS 

(Weka) 
Minmax (0-1) 

KDD99 / 

Hybrid 

Detection rate, False positive 

rate, and Missed rate 

[4] 

‘09 

Not used, selected 

numeric features only 

(34/41) 

PCA, k-NN, 

SVM 

Z-score, Ordinal, 

Minmax, and 

Frequency 

KDD99/ 

Anomaly 

Accuracy, Detection rate, and 

False positive rate 

[12] 

‘11 
PCA (10/41) SVM Non-zero 

KDD99 / 

Anomaly 

Detection rate, False positive 

rate, Mis, hit 

[13] 

‘12 
GA (16/41) 

Hybrid of 

Nuerotree 
Minmax 

NSL-KDD/ 

Anomaly 

TP Rate, FP Rate, Precision, 

Recall, F- Measure 

[14] 

‘13 
Weka’s Filters (8/41) 

Fuzzy C / 

C4.5(Weka) 
Minmax (0-1) 

KDD99 / 

Anomaly 

True positive rate, False 

positive rate, Precision, Recall 

F-score 

[15] 

‘13 

CFS & CON Filters 

(18/41) 

Tree-based 

Classifiers 
Not mentioned 

NSL-KDD/ 

Anomaly 

Accuracy, TP Rate, FP Rate, 

Precision, Recall, F- Measure 

[17] 

‘15 

Harmony Search 

(20/41) 
SVM (LibSvm) Min-max (1-13) 

NSL -KDD / 

Anomaly 
Detection rate, Test Time 

[18] 

‘17 

GA-LR wrapper 

KDD99 (18/41) 

UNSW-NB (20/42) 

C4.5, Random 

Forest, and 

Naïve Bayes 

Tree (C++) 

Log-scaling, 

Minmax (0-1) 

KDD99, 

UNSW-NB15 

/ Anomaly 

Confusion Matrix, Accuracy, 

Detection rate, False alarm 

rate 

[19] 

’19 

IG Weka’s Filter 

(17/41) 
SVM Log-norm NSL-KDD 

Accuracy, Sensitivity, 

Specificity, False, and True 

positive. 

[20] 

‘19 
DSAE (10/45) 

Soft-max 

classifier 
Min-max (0-1) 

KDD99, 

UNSW-NB15 

/ Anomaly 

Accuracy, precision, recall, F-

measure, and false alarm rate 

(FAR) 
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2.2 Limitations of Related Works 

After a thorough review of the related works, it’s clear that each of the reviewed work suffers from one or more 

of the below listed five identified limitations. The limitation can be classified into three categories: preprocessing 

stage (transformation, and feature selection), modeling stage, and dataset issues. 

I. Preprocessing: Transformation (encoding, discretization/normalization), Feature selection  

II. Modeling Stage: Issues with classifier choice and less use of multiple classifiers 

III. Dataset Issues: Outdated datasets are used in most of the studies. No comparisons made. 

 

I. Data Encoding 

Most of the Machine learning algorithms cannot handle categorical features unless they are converted to numerical 

values. The categorical features can be nominal (no particular order) or ordinal (ordered). Many algorithm’s 

performances vary based on how categorical features are encoded. For example, the “Protocol_type” feature of 

the NSL-KDD is a nominal feature with three values (UDP, TCP, and ICMP), by converting this attribute to a 

single numeric attribute using ordinal encoding, one is implicitly introducing an ordering over the nominal values 

which is a bad representation of the data, because it does not make sense to say TCP should be in between UDP 

and ICMP, and this may be misinterpreted by the algorithm and can have an unwanted effect on the IDS model. 

This mistake can be seen in some of the reviewed literature [14], [17], [18], [20]. A better solution to this is to use 

binary encoding or yet better, one-hot (dummy) encoding, that map each category to a vector that contains 1 and 

0 denoting the presence or absence of the features’ value.  

II. Data Discretization and Normalization 

While the discretization of numerical features is influential in data preprocessing [21], however, unlike 

normalization, it generally also leads to a loss of information [22]. Normalization is an important data 

preprocessing step which can improve the accuracy and efficiency of especially classification algorithms [23] and 

have shown to improve the accuracy of IDS model built with large dataset [4], [5], although either or both can be 

applied; in the case of IDS where the data contains a wide range of traffic values, normalization is indispensable 

and discretization alone should not be used as there is less need for ranging the values, nonetheless, [15] chooses 

to use it at the cost of normalization. Furthermore, most of the reviewed studies give very little emphasis on the 

impact of normalization on the performance of the IDS models. 

III. Feature selection 

In recent years, due to the high dimensionality and size of IDS datasets, many researchers are using dimensionality 

reduction methods to reduce the dataset dimension and select optimal subset features to represents the entire 

dataset [24] thereby reducing computational time, resource utilization, as well as increase accuracy and 

performance of IDS models. There are three basic feature selection methods, only two of these methods were 

mainly applied in IDS modeling, and most of the reviewed literature used filters that ignore the effects of the 

selected feature subset on the performance of the IDS model [25]. Contrary to wrappers which, though 

computationally expensive, produce better performance for the predefined classifier. Furthermore, some of the 

reviewed work [4], [11] hand-picked certain features without using any of the feature selection methods which 

may lead to removing influential features.  

IV. Modeling Stage 
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To develop an accurate and good IDS Model, there is a need of exploring various algorithms and techniques [12] 

because using one or two algorithms can hardly offer reliable and good performing IDS models; however, most 

of the reviewed work uses one or two algorithms. Furthermore, there was too much usage of tree-based algorithms 

in some reviewed work [15], [18] without validating their performances by comparing with other algorithms. 

Unfortunately, trees-based algorithms (bar ensemble trees such as a random forest) generally do not have the same 

level of predictive accuracy as some regression and classification algorithms [16].  

V. Dataset Issues 

Most of the reviewed literature made use of either KDDcup99 or its variant NSL-KDD which are among the 

widely used in IDS academic research [6], [7]. However, despite that, they are considered to be outdated and not 

containing contemporary attacks [2], [26]. In the current environment of continually emerging new threats, 

building reliable and accurate IDS models requires using an up-to-date ID dataset. A number of modern datasets 

were proposed [27]–[29], Ring et al., [30] also recommended some selected few datasets suitable for general 

network intrusion detection evaluation. Both the proposed and recommended datasets are publicly available and 

can be used for building better and more reliable IDS models. Furthermore, Ring et al., [30] also made 

recommendations on using more than one dataset with at least one publicly available dataset to avoid overfitting 

of IDS model to one dataset, ensure reproducing of the work, and its generic evaluation. However, most of the 

reviewed literature used only one dataset. 

In summary, this study addressed those limitations. Since most of the selected ML algorithms in this work consider 

all features during training simultaneously, One-hot encoding, an approach suited for such ML algorithms [31], 

is used. Furthermore, Minmax, one of the most common normalization method [8], is also used. Five among the 

widely used ML algorithms in IDS modeling [6] were selected, and as recommended, two datasets, one considered 

outdated (NSL-KDD) and the other considered current (UNSW-NB15) [7], are also selected for this study. The 

decision tree wrapper-based feature selection approach is used to select the best optimal subsets from the datasets. 

A total of thirty models are developed and evaluated. In what follows next, the five selected ML algorithms are 

explained, the feature selection concept is also introduced. 

3 Basic Theory and Related Knowledge 

3.1 Intrusion Detection System (IDS) 

An IDS is a software program or hardware device that monitors traffic passing across networks and through 

systems to check for suspicious behavior, policy violations, and presence of known threats, sending alarms 

when such things are encountered IDS are security tools that, like other measures such as firewalls, antivirus 

software, and access control schemes, are intended to strengthen the security of information and communication 

systems [32]. An IDS can be classified in two ways: based on data source/location and detection approach [33]. 

Based on the data source, Network Intrusion Detection Systems (NIDS) and Host Intrusion Detection Systems 

(HIDS) are the most well-known classification. At the most basic level, NIDS looks at network traffic, while 

HIDS looks at actions and files on the host computers. By detection approach, the most well-known types are 

misuse-based (recognizing registered bad patterns) and anomaly-based (detecting deviations from a model of 

"good" traffic, which often relies on machine learning) [34]. The former can only detect known attack types and 

the latter is prone to generate false positive alarms. Due to the complementary nature of these two approaches, a 

hybrid approach, combining both of these techniques, is often used [35]. The literature nowadays is focusing on 
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developing a wide variety of automated, fast, and efficient IDSs using expert-crafted rules, sophisticated statistical 

learning, and machine learning techniques [2], [32]. 

3.2 Machine Learning 

Machine Learning (ML) algorithms are the most widely used techniques in designing IDSs [6]. The ML 

techniques are based on establishing an explicit or implicit model that enables classifying patterns in raw data. 

The use of ML techniques in IDSs can be with single, hybrid, or ensemble classifiers. The used classifier can be 

categorized into three operating modes: supervised, unsupervised, and semi-supervised. Generally, supervised 

mode outperforms the remaining modes [3], [32]. Some of the ML algorithms used in IDSs include Artificial 

Neural Network, k-Nearest Neighbor, Naive Bayes, Genetic Algorithm, Support Vector Machine, Logistic 

Regression, and Decision Trees. Developing any Machine learning model consist of four basic steps, namely, data 

collection, data preprocessing, model selection and training, and model evaluation [36].  The two important 

concepts of this work, feature selection, and normalization are among the many tasks performable in the data 

preprocessing step. 

 

Figure 3.1 - Machine Learning Basic Steps 

3.2.1 Feature Selection 

This is a data reduction technique that involves selecting a subset of relevant features for building a model, without 

changing the dimension of the features. Feature selection reduces model training time, simplifies a model, and 

improves generalization while reducing the chances of overfitting. Besides, it improves classification accuracy. 

Feature subset selection requires a search strategy and direction to select features subset, an objective function to 

evaluate the selected features, a termination condition, and an evaluation of result. There are three main feature 

selection approaches: (a) the filters which extract features from data without involving any learning algorithm. (b) 

the wrappers that use a learning algorithm to determine useful features. (c) the embedded techniques that combine 

the two mentioned approaches and the classifier establishing [37]. In this work, the wrapper method is used. 

3.2.2 Normalization 

This is a data transformation technique that is used to transform wide range numeric values in a dataset to a 

common scale, without distorting differences in the range of the values. Normalizing data attempts to give all 

attributes an equal weight. Normalization helps speed up the model training stage and is particularly useful for 

classification algorithms involving neural networks or distance measurements such as nearest-neighbor 

classification and clustering [8]. There are many normalization methods, some of the most used methods are min-
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max normalization, z-score normalization, and decimal scaling [38]. In this work, Min-max normalization is used, 

its general formula is as follow:  

 𝑥𝑛𝑒𝑤 =
𝑥 − 𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
 (3.1) 

3.3 Selected Machine Learning Algorithms  

A collection of the most used ML algorithms in IDS is provided in [6] and five among them are selected and used 

in this study. The algorithms are explained below. 

3.3.1 Support Vector Machine (SVM) 

A support vector machine is a supervised learning algorithm that uses hyperplane graphing to analyze new, 

unlabeled data. They are mostly employed for classification problems, but can also be used for regression 

modeling and outlier detection. SVMs are well known for their generalization capability and are mainly valuable 

when the number of features is large than the number of samples [26]. In this work, Scikit-learn implementation 

of support vector classifier based on LibSVM with the Radial Basis Function (RBF) as the kernel is utilized.  

3.3.2 Artificial Neural Network (ANN) 

ANN is a computational model composed of interconnected artificial neurons capable of learning from their inputs 

to perform tasks without given any task-specific rules. ANNs aims to realize a very simplified model of the human 

brain [39]. There are three main ANN classes: Feedforward, Convolutional, and Recurrent neural networks (NNs). 

ANNs are used in IDS, mainly because of their flexibility and adaptability to environmental changes [32]. In this 

work, a Multi-layered perceptron (MLP) which is a widely used feedforward neural network is used.  

3.3.3 k-nearest neighbor (KNN) 

The KNN algorithm is a simple, supervised machine learning algorithm that can be used to solve both 

classification and regression problems. It computes the approximate distances between different points on the 

input vectors and then assigns the unlabeled point to the class of its k-nearest neighbors. The assignment depends 

on the task k-NN is used for: classification, the output is a class membership assigned to neighbors with the highest 

vote, whereas with regression, the output is the property value for the object. This value is the average of the 

values of the k nearest neighbors [40].  

3.3.4 Random forests (RF) 

Random forests are an ensemble learning method that operates by randomly creating and merging multiple 

decorrelated decision trees at training time into a “forest” and outputting the class result. For a classification task, 

the mode of classes is the result, whereas for regression the result is the mean prediction of the individual trees. 

RF uses bagging ensembling methods to combine decision tree’s simplicity with the flexibility to increase 

accuracy and overcome the decision tree’s habit of overfitting to their training set [41]. 

3.3.5 Naive Bayes (NB) 

Naive Bayes classifier is a form of probabilistic classifier inspired by the Bayes theorem with a simple assumption 

of independence among features, it aims to process, analyze, and categorize outcome based on probabilities of its 

occurrence in training data. They require a small amount of training data to estimate the necessary parameters. 

NB model is easy to build and particularly scalable to larger datasets since it takes linear time. NB is a popular 

baseline method for text categorization and with appropriate pre-processing, it is competitive with more advanced 

methods including support vector machines [42].  
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4 Methodology 

This section described how the experiment is conducted by following the four basic machine learning steps. It 

also provides the tools used in experimenting. 

4.1 Experimental Tools 

In the literature, several tools are used for implementing, evaluating, and comparing various IDS works. WEKA, 

general-purpose programming languages (such as Java, Python, etc.), and Matlab are the most used tools [6]. In 

this work, Excel, WEKA, and Python are used for data analysis and exploration, preprocessing, implementing, 

and validating the IDS models. Jupyter Notebook is used as the execution environment for Python and its libraries. 

4.2 Dataset Acquisition 

In this work, two datasets: the UNSW-NB15 dataset and, an old benchmark dataset, the NSL-KDD are used to 

evaluate and compare the models.  

4.2.1 UNSW-NB15 Dataset 

The UNSW-NB15 dataset is a new IDS dataset created at the Australian Center for Cyber Security (ACCS) in 

2015. About 2.5 million samples or 100GB of raw data were captured in modern network traffic including normal 

and attack behaviors and are simulated using the IXIA Perfect Storm tool and a tcpdump tool. 49 features were 

created using the Argus tool, the Bro-IDS tool, and 12 developed algorithms. The created features can be 

categorized into five groups: flow features, basic features, content features, time features, and additional generated 

features. The dataset has nine different modern attack types, five more attack types than NSL-KDD, the attacks 

are Backdoor, DoS, Generic, Reconnaissance, Analysis, Fuzzers, Exploit, Shellcode, and Worms [28]. The 

UNSW-NB15 is considered as a new benchmark dataset that can be used for IDSs evaluation by the NIDS research 

community [43] and is recommended by [30]. For easy use and work reproducibility, the UNSW-NB15 comes 

along with predefined splits of a training set (175,341 samples) and a testing set (82,332 samples) [44], however, 

the publicly available training and testing set both contain only 44 features: 42 attributes and 2 classes. Only the 

training set (UNSW NB15 training-set) is used for both training and testing in this work. And since our primary 

focus is binary classification, the broad distribution of total attacks (anomaly) and normal traffic samples of the 

training set used is shown in Table 4.1. 

Table 4.1 - UNSW-NB15 Distribution Sample 

Category Sample Size Distribution (%) 

Total Attacks  119,341 68.06 

Normal 56,000 31.94 

Overall Samples 175,341 100 

4.2.2 NSL-KDD Dataset 

The KDDcup99 dataset contains more than 5 million training samples and more than 2 million testing samples. It 

also has a huge number of redundant samples, and imbalance classes [45]. The NSL-KDD [46] is an optimized 

version of the KDDcup99 dataset, which removes redundant records and provide reasonable and diversified 

samples in training and testing sets. Like the KDDcup99, the NSL-KDD dataset also has 41 features, with 3 

categorical features and 38 numeric features. The dataset has four different attack types: Denial of Service (DoS), 

Probe, User to Root (U2R), and Root to Local (R2L) attacks. The NSL-KDD dataset is considered to be outdated 

[2]. The NSL-KDD is also arranged into a training set of 125973 samples (KDDTrain+) and a testing set of 22544 

samples (KDDTest+). Here also, only the training set (KDDTrain+) is used for both training and testing in this 
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work. Table 4.2 summarizes the sample's distribution of all attacks (anomaly) and normal traffics in the training 

set of the NSL-KDD dataset. 

Table 4.2 - NSL-KDD Distribution Sample 

Category Sample Size Distribution (%) 

Total Attacks  58,630 46.54 

Normal 67,343 53.46 

Overall Samples 125,973 100 

4.3 Data Preprocessing 

In this study, two major preprocessing steps are used, namely, data reduction (filtration and feature selection) and 

data transforming (data normalization and encoding). 

4.3.1 Data Reduction 

4.3.1.1 Data filtration 

As stated above, we used the UNSW-NB15 dataset (UNSW NB15 training-set.csv), and the NSL-KDD dataset 

(KDDTrain+.arff). Irrelevant data was removed to reduce computational time and prepare the data for feature 

selection. The UNSW-NB15 dataset comes with 42 attributes, 2 class attributes, and an additional id attribute, the 

id is removed. Since we are interested in binary classification, the class attribute attack_cat indicating the 

categories of attacks and normal state is also removed before feature selection. No issues were found with the 

NSL-KDD, so no filtration was done on the dataset. Both the UNSW-NB15 and the NSL-KDD datasets are 

divided into train and test sets of unique samples with a proportion of 67% (2/3) and 33% (1/3) respectively as 

shown in Figure 4.2 below. WEKA’s unsupervised instance Resample filter is used to ensure balance splitting 

and to avoid developing overfitted models that might perform poorly when given out-of-sample data.  

4.3.1.2 Feature Selection 

In feature selection, avoiding information leakage and subsequent building of misleading models is very important 

[47], thus only the training set is used for feature selection, while the testing set is solely used for performance 

assessment to ensure getting a reliable model. The wrapper-based approach, though computationally expensive, 

tends to give superior model performance [48], is employed in this work with a decision tree algorithm as the 

feature evaluator as shown in Figure 4.1.  

 

Figure 4.1 - DT Wrapper-Based FS 

Scikit-learn implementation of feature selection was initially considered but because their current decision tree 

implementation does not support categorical features [49], and encoding the categorical features will result in 

removing some of the then values – now features, of encoded features thus making partial feature selection and 

losing count on the actual number of selected features, The WEKA’s implementation is used instead [50]. The 

J48, a java implementation of Quinlan’s C4.5 [51] decision tree algorithm [47] is used as the feature evaluator. 

BestFirst Forward search strategy is used in feature search with 5 consecutive non-improving nodes as the search 
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stopping criteria, and accuracy as the evaluation measure. After performing the feature selection, twenty (20) and 

nineteen (19) features were the best optimal feature for UNSW-NB15 and NSL-KDD respectively and WEKA’s 

supervised attribute Remove filter is used to collect the features subsets. Thus, two more datasets are derived 

bringing our total datasets to four: 2 complete datasets and 2 feature selected versions of UNSW-NB15 and NSL-

KDD, description of the full datasets is available in [28] and [45] respectively, Table 4.3 below shows the selected 

optimal features of the datasets. 

Table 4.3 - Selected Optimal Features 

UNSW-NB15 NSL-KDD 

No. Feature name No. Feature name  

2 *proto 1 duration 

3 *service 3 *service 

4 *state 4 *flag 

5 spkts 5 src_bytes 

7 sbytes 6 dst_bytes 

8 dbytes 11 num_failed_logins 

11 dttl 14 root_shell 

14 sloss 17 num_file_creations 

15 dloss 23 count 

17 dinpkt 24 srv_count 

18 sjit 25 serror_rate 

27 smean 26 srv_serror_rate 

31 ct_srv_src 27 rerror_rate 

32 ct_state_ttl 32 dst_host_count 

33 ct_dst_ltm 34 dst_host_same_srv_rate 

34 ct_src_dport_ltm 35 dst_host_diff_srv_rate 

36 ct_dst_src_ltm 38 dst_host_serror_rate 

39 ct_flw_http_mthd 39 dst_host_srv_serror_rate 

40 ct_src_ltm 40 dst_host_rerror_rate 

41 ct_srv_dst   

(*) – indicates categorical features 

4.3.2 Data Transformation  

4.3.2.1 Data Normalization 

The full and formed datasets consist of features of two types: numeric and nominal. To avoid classifier bias 

towards numeric features with large value ranges, normalization is performed on all the numeric features across 

the four datasets. Min-max normalization is applied to normalized all the numeric features within a range of 0 to 

1 using equation (3.1) above. The normalization process is performed after feature selection in order not to affect 

the selection process.  

4.3.2.2 Data Encoding  

All the categorical (nominal) features across the datasets are one-hot encoded. In the NSL-KDD dataset, three 

features (protocol_type, service, and flag) are nominal and are one-hot encoded, an example of the protocol_type 

encoding is shown in Table 4.4 below. This procedure maps the 41-dimensional features into 122-dimensional 

features: 38 continuous and 84 with encoded binary values of the 3 categorical features (protocol_type, service, 

and flag). The same encoding is performed on the NSL-KDD feature selected version that has only two (service 
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and flag) nominal features. Similarly, both the UNSW-NB15 and its feature selected version has three nominal 

features (proto, service, and state) and one-hot encoded accordingly. Table 4.5 provides a summary of the four 

datasets dimensions before and after encoding. Because one-hot encoding increase dataset dimension, so to avoid 

losing some nominal features’ values encoded in the feature selection process, the encoding is performed after the 

feature selection and normalization processes. 

Table 4.4 - One-Hot Encoding Example 

 

After encoding the features, the dimensions of the four final datasets increased as shown in Table 4.5. Only the 

final encoded features are used in training and evaluating the models.  

 

Table 4.5 - Final Datasets Dimensions 

One-Hot Encoding 
UNSW-NB15 dataset  NSL-KDD dataset 

All features  Feature selected All features Feature selected 

Before Encoding 42 20 41 20 

After Encoding 194 172 122 98 

4.4 Model Selection and Training 

Model selection is the estimation of different model’s performance using a cross-validation or hold-out approach 

to choose the best one [41]. However, model selection in this work is the selected ML algorithms. An explanation 

of the algorithms was given in the previous section of this work. Default Scikit-learn implementation of these 

algorithms is used in developing the models with SVM’s probability set to true as the only changed parameter. 

Three different programs are implemented and using the algorithms, a total of thirty (30) distinct IDS models are 

developed using the four datasets. The model developing constitute of two stages: training stage and testing stage. 

During the training stage, the algorithms are trained using the training dataset, then in the testing stage, the test 

dataset is used to assess the performance and reliability of the built IDS models. Figure 4.2 below depicted the 

entire model training and testing process. To measure the impact of normalization and feature selection as well as 

the effectiveness of IDS datasets, some evaluation metrics are used to evaluate and compare the models. The 

evaluation metrics and the result of the evaluations are provided in the next section of this work. A summary of 

the three different IDS model implementations performed is as follows: 

I. Program A: models implemented with full, non-feature selected, normalized datasets. 

II. Program B: models implemented with feature selected, normalized datasets. 

III. Program C: models implemented with feature selected, unnormalized datasets. 
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Figure 4.2 - Conceptual Framework of the IDS models 

 

4.5 Model Evaluation Metrics 

A model evaluation metric is a criterium by which the performance of a model can be measured. The performance 

of an IDS model can be evaluated based on its ability to classify network traffic into the correct type. Most of the 

IDS works used three of those metrics, namely; classification accuracy, detection rate (DR), and false alarm rate 

(FAR) [26]. Similarly, in this work, these metrics are adopted in addition to computational time. Confusion Matrix 

and the metrics are explained below. The Confusion matrix in itself is not a performance measure per se, but 



 15 

because all the evaluation metrics used in this work (bar time) are based on the Confusion Matrix and the numbers 

inside it, we see it important to explain it.  

4.5.1 Confusion matrix 

The Confusion matrix is one of the most intuitive and easiest metrics used for finding the correctness and accuracy 

of a model. It is used for classification problems where the output can be of two or more types of classes. No 

confusion matrix is included in this work due to the number of implemented models. 

Table 4.6 - Confusion Matrix 

  Predicted Class 

  Anomaly Normal 

Actual 

Class 

Anomaly TP (Good: Correct detection) FN (Bad: Incorrect prediction) 

Normal FP (Bad: Incorrect detection) TN (Good: Correct prediction) 

 

Basic Confusion Matrix terminologies 

True positive (TP): Number of attacks correctly detected as an attack. 

False negative (FN): Number of attacks incorrectly detected as normal. Aka Type II error. 

False positive (FP): Number of normal incorrectly detected as an attack. Aka Type I error. 

True negative (TN): Number of normal correctly detected as normal. 

4.5.2 Accuracy (ACC) 

Accuracy is the amount of correctly classified instances of the total instances, defined as the ratio of the number 

of correct predictions to the total number of predictions. It is suitable to use on a dataset with symmetric target 

classes and equal class importance [52].  

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐴𝐶𝐶) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4.1) 

4.5.3 Detection Rate (DR) 

Aka Recall, Sensitivity, Hit rate, or True positive rate (TPR), it is the measure of correctly identified positive 

(anomaly) instances from all the actual positive instances, defined as the ratio of correct positive predictions to 

the total number of positive predictions. Or more simply, how sensitive the classifier is for detecting positive 

instances. The higher its value the better 

 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒(𝐷𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4.2) 

4.5.4 False Alert Rate (FAR) 

Aka fall-out or False positive rate (FPR), is the measure of the incorrectly classified negative (normal) instance 

as an anomaly from all the actual negative instances, or defined as the proportion of negative prediction this is 

mistakenly considered as positive (anomaly) for all negative predictions. The lower its value the better. 

 𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑒𝑟𝑡 𝑅𝑎𝑡𝑒(𝐹𝐴𝑅) =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (4.3) 

4.5.5 Computational Time 

The computational time is the entire time taken to train and evaluate a model. However, the time reported in this 

work does not include time taken by feature selection operation. Because the timing depends on factors beyond 

our control (such as CPU task switching, etc.), we try to avoid running heavy tasks whilst executing the programs, 

prevent the computer from sleeping and also re-run the programs a number of times to verify the timing and ensure 

minimal interference. 
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5 Result and Discussion 

This chapter presents the platform on which the experiment is performed, the result obtained, and the interpretation 

of the results. The following comparisons are made: 

I. Comparison between the IDS models developed using full datasets and feature selected datasets to assess 

the impact of feature selection. 

II. Comparison between the IDS models developed using normalized and unnormalized feature selected 

datasets to assess the impact of normalization. 

III. Comparison to measure the effectiveness, reliability, and complexity of the IDS datasets. 

5.1 Experimental Platform  

To avoid interference from the experimental platform, all the programs are implemented and executed in the same 

environment using the same programming language as shown in Table 5.1.  

Table 5.1 - Experimental Platform 

Name Details 

Computer MacBook Pro 

OS macOS Catalina version 10.15.3 

CPU 2.5 GHz Dual-Core Intel Core i5 processor 

RAM 8GB 1600 MHz DDR3 

Storage Disk 480GB SSD 

Execution platform Jupyter Notebook 

Experimental Tools Excel, WEKA, Python 

 

5.2 Comparisons on Feature Selection 

Table 5.2 below presents the evaluation results of models built using both NSL-KDD and UNSW-NB15 full 

features and feature selected data. Feature selection generally improves performances and reduce computational 

time [9], [10], [14]. The boldly written values indicate the anticipated improvement in performances or decrease 

in computational time after feature selection. It can be seen that, in the case of NSL-KDD, with 19 selected features 

the performances of all the models are, although almost the same as the full features, slightly lower (this is 

consistent with [18]) with only RF achieving better performance, in terms of accuracy (99.75%) and detection 

rate (99.72%), while maintaining the second-lowest false alert rate of 0.22%. Unlike with UNSW-NB15, the 

performance accuracy of three of the models (RF, KNN, and NB) is better using only 20 selected features with 

both KNN and RF achieving a remarkably higher performance across all the metrics, while ANN and SVM 

performances with the 20 selected features are almost the same with full features. It can thus be deduced that 

feature selection improves the performances of models implemented with UNSW-NB15 more than those 

implemented with NSL-KDD; and in both datasets, RF benefitted the most from the feature selection. The 

computational time of all models built with the selected features of NSL-KDD, except ANN, reduces. Conversely, 

the exact contrary is observed with models built on selected features of UNSW-NB15. Although high 

computational complexity is often observed on large datasets [32], it is not clear why higher computational time 

is observed on UNSW-NB15 models even after feature selection. In both datasets, the NB models achieved the 

best and lowest computational time whereas SVM achieved the opposite. Strangely, feature selection increases 

both computational time and performance on UNSW-NB15 models, whereas the exact contrary effect is observed 

on NSL-KDD models. Similar effects are observed from an overall perspective, Table 5.4 below summarizes the 

sum of computational time taken by the full and feature selected-based models across the two primary datasets. 
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Table 5.2 - Feature Selection Comparison 

Models Evaluation 

metrics 

NSL-KDD UNSW-NB15 

Full Features Features Selected Full Features Features Selected 

ANN ACC 99.69 98.98 94.62 94.32 

DR 99.6 99.09 97.54 98.48 

FAR 0.23 1.11 11.64 14.56 

Time 1.57m 2.05m 5.81m 5.43m 

SVM ACC 98.56 98.06 93.67 93.56 

DR 98.13 97.18 99.63 99.54 

FAR 1.08 1.17 19.14 19.19 

Time 16.21m 15.36m 86.89m 170.61m 

KNN ACC 99.57 99.13 93.81 95.8 

DR 99.49 99.24 96.24 97.28 

FAR 0.36 0.97 11.42 7.36 

Time 9.32m 5.52m 8.38m 12.46m 

RF ACC 98.81 99.75 95.74 98.51 

DR  99.71 99.72 97.84 99.17 

FAR 0.1 0.22 8.77 2.89 

Time 0.25m 0.22m 0.54m 0.56m 

NB ACC 85.69 84.81 48.08 48.11 

DR 69.5 67.61 23.91 23.76 

FAR 0.22 0.22 0.02 0.01 

Time 1.31s 1.07s 2.89s 4.8s 

 

5.3 Comparisons on Normalization 

Table 5.3 below presents the evaluation results of models built using NSL-KDD and UNSW-NB15 normalized 

and unnormalized feature selected data. Normalization typically improves performance and decrease computation 

time [4], [5], the boldly written values indicate the increase in performances or decrease in computational time on 

models built without normalization, and the italic written values indicate surprising results. It can be seen that in 

the case of NSL-KDD, the performances of distance-related classifiers, SVM and KNN both expected to improve 

after normalization [40], [53], are contrary. KNN’s performance decreases whereas SVM’s performance 

drastically improved, however, SVM’s poor performances on unnormalized NSL-KDD raises a question about 

the reliability of the dataset, especially given that the performance of SVM is not severely affected by lack of 

normalization in UNSW-NB15. NB which is not a distance-based classifier also achieves two opposing results; 

with NSL-KDD, it performs surprisingly poor on the unnormalized dataset and improved drastically on 

normalized NSL-KDD, however, with UNSW-NB15, it instead expectedly performs well on the normalized 

dataset and performs better on the unnormalized dataset with both performances in close range. RF also achieves 

two opposing performances across the two datasets; with NSL-KDD, it performs better without normalization 

and, on the contrary, it performs better with normalization on UNSW-NB15. Only ANN performs as anticipated, 

with its performances both relatively better after normalization across the two datasets. Thus, since with UNSW-

NB15, the performance of 4 classifiers have improved after normalization and similarly, performances of 3 of the 

5 classifiers have also improved after normalization with NSL-KDD, it can be deduced that normalization, 

although its importance in IDS tasks is often ignored [4], does certainly improve model performances in IDS. 

These findings are consistent with Wang et al., [4], who compare four different normalizations for anomaly 

intrusion detection using SVM, PCA, and KNN. In the case of computational time, most of the NSL-KDD and 

UNSW-NB15 models correspondingly observed a similar pattern of behavior except KNN which, unlike the rest, 

seen an increase in computational time after normalization. This, essentially, is as expected [40]. The 



 18 

computational time of RF and NB is also quite acceptable giving that they both do not necessarily need 

normalization [40], [54]. Similarly, in both datasets, the NB models achieved the best and lowest computational 

time whereas SVM achieved the opposite. Therefore, it can be deduced that the normalization does also reduce 

computational time in addition to improving performance. From an overall perspective, the sum of computational 

time taken by the normalization-based models is considerably lower than those built with unnormalized data in 

both NSL-KDD and UNSW-NB15 as shown in Table 5.4 below, this is similar to what was observed on analyzing 

individual models.  

Table 5.3 - Normalization Comparison 

Models Evaluation 

metrics 

NSL-KDD UNSW-NB15 

Normalized Unnormalized Normalized Unnormalized 

ANN ACC 98.98 96.0 94.32 93.38  

DR 99.09 94.6 98.48 96.93 

FAR 1.11 2.78 14.56 14.18  

Time 2.05m 3.59m 5.43m 5.93m 

SVM ACC 98.06 53.5 93.56 75.49 

DR 97.18 0.11 99.54 97.88 

FAR 1.17 0.03 19.19 72.23 

Time 15.36m 165.65m 170.61m 484.48m 

KNN ACC 99.13 99.42 95.8 94.91 

DR 99.24 99.47 97.28 97.11 

FAR 0.97 0.63 7.36 9.78 

Time 5.52m 0.76m 12.46m 6.31m 

RF ACC 99.75 99.88 98.51 98.49 

DR  99.72 99.8 99.17 99.17 

FAR 0.22 0.04 2.89 2.95 

Time 0.22m 0.2m 0.56m 0.6m 

NB ACC 84.81 53.41 48.11 52.3 

DR 67.61 1.71 23.76 32.25 

FAR 0.22 1.57 0.01 4.97 

Time 1.07s 0.02s 4.8s 5.36s 

 

5.4 Comparisons of Datasets 

To evaluate the reliability and complexity of the datasets, we consider two perspectives. Firstly, a more general 

close observation of the models’ performances in Table 5.2 and Table 5.3 above, specifically focusing on those 

models whose performances or computation time was rather surprising or does not show similar effects after 

performing related actions to the similar models on corresponding datasets. And secondly, although the feature 

selection process on both datasets is the same, more features were selected in UNSW-NB15 (20) than in NSL-

KDD (19), so for fair and transparent comparisons, we consider the performances of the models implemented 

using full and normalized features (Program A) since the same normalization is performed on both full datasets. 

5.4.1 Reliability Comparison 

Since KNN typically uses Euclidian distance to find k nearest points from any given point, using normalized 

features should generally enable all features to be of equal importance thereby improving its performance [40]. 

However, while normalization does improve KNN performance with UNSW-NB15, the reverse is seemingly the 

case with NSL-KDD across all the metrics. Moreover, while the poor performances of SVM and NB with NSL-

KDD in Table 5.3 can largely be attributed to lack of normalization, however, a closer look at how they both 

performed without normalization with UNSW-NB15 implies that the poor performances have more to do with 

the dataset itself. As seen in Table 5.2, the feature selection doesn’t seem to improve the performance of KNN 
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and RF (bar on RF’s accuracy and detection rate) with NSL-KDD, however, with UNSW-NB15, the performances 

of both KNN and RF across all the metrics improved. 

Table 5.4 - Computational Time Summary 

 
Program A 

(Norm) 

Program B 

(FS + Norm) 

Program C 

(FS) 
Total 

NSL-KDD 27.37m 23.17m 170.22m 220.76m 

UNSW-NB15 101.67m 189.14m 497.41m 788.22m 

Total 129.04m 212.31m 667.63m  

 

As shown in Table 5.4, a clear decrease of models’ computational time in the unnormalized datasets (Program C) 

can be observed after normalizing the datasets (in Program B), however, in comparison to full featured datasets 

(in Program A), two opposing computational times were seen on the selected features (in Program B), with the 

computational time of NSL-KDD models decreasing and those of UNSW-NB15 increasing. The unexpected 

increase in models computational time on the selected features of UNSW-NB15 would have been normal had the 

increased occurred on NSL-KDD instead, but given the reported reliability of UNSW-NB15 in literature [30], this 

is quite strange and although it is obscure whether this is an indication of its complexity or not, this however, 

leaves query on UNSW-NB15 dataset. Nonetheless, this highlights the opposing nature of the two datasets. 

Furthermore, the constant deviations from the anticipated performance of models built using NSL-KDD highlights 

an inconsistent and unreliable behavior in the NSL-KDD. Thus, the reaction of UNSW-NB15 on feature selection 

and normalization operations in comparison to NSL-KDD summarizes the very distinct differences between the 

two and shows how one is more reliable, conformant, and consistent over the other. 

5.4.2 Complexity Comparison 

Accuracy, Detection rate, and False alert rate metrics are used in this comparison. As explained above, the 

performances of Program A models (implemented using full and normalized features) are used for the comparison. 

Figure 5.1, Figure 5.2 and Figure 5.3  provide a summary of the comparisons on Accuracy, Detection rate, and 

False alert rate respectively.  

In Figure 5.1, all NSL-KDD models outperform their corresponding UNSW-NB15 implemented models. ANN 

and RF achieve the highest accuracy of 99.69% and 95.74% over NSL-KDD and UNSW-NB15 respectively, 

while both datasets achieved their worst accuracy on NB. Furthermore, it can be observed that, in the detection 

rate depicted in Figure 5.2, which stands for the accuracy rate for the attack classes, the NSL-KDD models were 

largely able to detect more attacks than the UNSW-NB15 models except with SVM which achieves DR of 99.63%. 

RF again achieves the overall highest DR of 99.71% with NSL-KDD and once more, the low DR obtained for 

both datasets is on NB with its UNSW-NB15 model achieving the poorest DR of just 23%. 
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Figure 5.1 - Program A Models Accuracy 

 

 

Figure 5.2 - Program A Models Detection Rate 

 

Very low false alert rates are generally the target in IDS. The FAR depicted in Figure 5.3 shows a notable alert 

rate differences between the NSL-KDD and UNSW-NB15 models. All the UNSW-NB15 models, except NB 

which has the lowest FAR of 0.02%, have higher percentages of false alert than their corresponding NSL-KDD 

models. The highest FAR of 19.14% is achieved by SVM on UNSW-NB15. The summation of the FAR 

percentage for all the NSL-KDD models is 1.99, averaging 0.398% per model which is 25.62 times less than the 

average on UNSW-NB15 models. The UNSW-NB15 models reported a total of 50.99 FAR percentage, averaging 

10.198% FAR per model. 
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Figure 5.3 - Program A Models False Alert Rate 

Overall, the results of the accuracy, DR, and the FAR of models built with NSL-KDD appears to be higher than 

those built using UNSW-NB15, a typical interpretation will be that NSL-KDD is indeed better; however, it can 

be observed that UNSW-NB15, unlike NSL-KDD which have few and outdated attack families, contains different 

modern low footprint attack families which exhibit similar behavior to normal network traffic, this will essentially 

make it difficult for many classifiers to accurately detect it’s attack patterns. And this reflects, precisely, the 

contemporary real-world network traffic scenarios, thus UNSW-NB15 can be considered more complex and 

reliable for evaluating modern-day IDSs than NSL-KDD. The current real-world environment is much more 

challenging than the ones depicted by the outdated NSL-KDD dataset. 

6 Conclusion 

Network and computer systems are continually facing attacks like never before and our existing protective 

mechanisms are failing, thus more effort should be exerted towards analyzing and improving them, as well as in 

developing more sophisticated protection methods to secure our systems and meet up with the current challenging 

environments. This paper analyzes the effects of feature selection and normalization techniques on NSL-KDD 

and UNSW-NB15 IDS datasets using five machine learning algorithms to implement thirty IDS models. Accuracy, 

Detection rate, False alert rate, and Computational time are used to evaluate and compare the models. The 

following conclusions can be deduced from this work:  

I. Normalization improves the performance and computational time of both datasets. Whereas feature 

selection improves the performance of models on UNSW-NB15 only, in the case of models built using 

NSL-KDD, it reduces computational time only. Thus, Normalization is found to be more important than 

feature selection. We hence, strongly recommend the use of normalization, especially when using 

algorithms such as SVM [53], to increase accuracy. Table 6.1 below summarized the performance-wise 

and computational time-wise effects of feature selection and normalization on NSL-KDD and UNSW-

NB15 datasets. A tick indicates where either of the criteria is improved by the given preprocessing 

technique.  
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II. Generally, RF models achieved remarkably higher performances across all the datasets, making the 

random forest algorithm the most robust among the oft-used ML algorithms in IDS. The SVM requires 

normalization and takes higher computational time than the other algorithms. The NB models takes the 

lowest time, it however achieved the lowest performances on average also, making it the worst IDS 

algorithm in this work, and, in comparison to many supervised ML algorithms, the poorest [55].  

III. Compared to NSL-KDD, the UNSW-NB15 which contained more modern low footprint attack families 

is found to be more complex and reliable for evaluating modern-day IDSs than NSL-KDD which 

contained fewer and outdated attack families. Thus, based on our findings, NSL-KDD is not suitable for 

the IDS evaluation benchmark and hence, we recommend using UNSW-NB15 for building reliable IDS 

models.  

IV. It’s interesting to also note that, most of the reviewed works using other than one-hot encoding method, 

generally achieve lower performance results compared to our work. Thus, although its effect is not quite 

clear, the use of the One-hot encoding method certainly has influenced the classifiers’ performances. It 

will be interesting to study the effect of various encoding methods in IDS modeling 

Table 6.1 - Preprocessing Effects Summary 

 NSL-KDD UNSW-NB15 

Criteria Feature Selection  Normalization  Feature Selection  Normalization  

Performances     

Computation Time     

 

While the overall results have shown great promises and distinctive conclusions particularly concerning the 

preprocessing techniques influence and the UNSW-NB15 and NSL-KDD datasets, there exist more open gaps for 

future research. Some of them are as follow: 

I. Dataset and Algorithms: Among the many available IDS dataset benchmarks and machine learning 

algorithms, this work only made use of two datasets, and a maximum of five algorithms. It will be 

interesting to use more datasets and more algorithms for broader insights. 

II. Alternative feature selection and normalization: There are three feature selection methods, Wrapper 

method is considered in this study, the other two methods can be considered in future studies. The same 

wrapper method can also be used in a different approach such as change of evaluation algorithm, or 

searching strategy and soon. Similarly, the use of different normalization methods can also be explored. 

III. Multi-classification: This work primarily focused on binary classification of normal and attack network 

traffics, however, both the used datasets contained varied attack types, thus multi-classification work can 

be done to enable further analysis of the effect of preprocessing techniques on distinctive classes of 

attacks.  

IV. Reduction of FAR: A good IDS should have high detection rates and very low false alert rates. While the 

models built with the UNSW-NB15 datasets generally achieved higher DR, however, a higher number 

of FAR is also eminent, and although this highlights the complexity of the dataset, further work can be 

performed to reduce it. 
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