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Abstract

This paper introduces a systematic design method for decoupling elements, which can significantly improve the isolation between

two co-located antennas, e.g. between transmit and receive antennas of an in-band full-duplex system. The design method

applies the theory of characteristic modes for controlling the phase and amplitude of the scattered fields of the decoupling

element, in order to optimally cancel the original incident fields which couple to the receiving antenna. We describe concisely

the effects that characteristic angle, modal near-field, and modal excitation of the decoupling element have on the antenna

isolation. For validating the proposed method, a planar wavetrap is designed and the isolation improvement verified with

full-wave simulations. When we use the proposed method to optimize a wavetrap that is placed between two co-located patch

antennas, we obtain an improvement of the isolation between the antennas by 33 dB at the centre frequency of their operational

frequency band, and at least 12-dB improvement across the whole 142-MHz operational bandwidth of the two antennas. As a

benchmark, the wavetrap is replaced by an absorber occupying 10 times the volume of the wavetrap. The absorber gives only

6 dB of isolation improvement, substantiating the effectiveness of the proposed wavetrap method.

1



1

Characteristic Mode Theory of Wavetraps for
Antenna Decoupling

Mikko Heino, Clemens Icheln, Pasi Ylä-Oijala, Buon Kiong Lau, Katsuyuki Haneda

Abstract—This paper introduces a systematic design method
for decoupling elements, which can significantly improve the
isolation between two co-located antennas, e.g. between transmit
and receive antennas of an in-band full-duplex system. The
design method applies the theory of characteristic modes for
controlling the phase and amplitude of the scattered fields of
the decoupling element, in order to optimally cancel the original
incident fields which couple to the receiving antenna. We describe
concisely the effects that characteristic angle, modal near-field,
and modal excitation of the decoupling element have on the
antenna isolation. For validating the proposed method, a planar
wavetrap is designed and the isolation improvement verified with
full-wave simulations. When we use the proposed method to
optimize a wavetrap that is placed between two co-located patch
antennas, we obtain an improvement of the isolation between the
antennas by 33 dB at the centre frequency of their operational
frequency band, and at least 12-dB improvement across the
whole 142-MHz operational bandwidth of the two antennas. As a
benchmark, the wavetrap is replaced by an absorber occupying
10 times the volume of the wavetrap. The absorber gives only
6 dB of isolation improvement, substantiating the effectiveness
of the proposed wavetrap method.

Index Terms—Theory of characteristic modes, monopole an-
tennas, patch antennas, mutual coupling, wavetrap, antenna
isolation, scattering.

I. INTRODUCTION

High spectral efficiency requirement of modern communi-
cation systems increases the need for high antenna isolation in
many applications. In multiple-input-multiple-output (MIMO)
systems, high antenna isolation is needed to provide diversity
gain and minimize the envelope correlation coefficient between
antennas. In in-band full-duplex systems, very high antenna
isolation is needed to provide enough isolation to make the
transmitter invisible to the receiver and thus in theory double
the spectral efficiency of the system.

One effective way to achieve decoupling is to introduce
parasitic elements to the highly coupled antennas. So far,
parasitic decoupling structures have mostly been designed by
optimizing a known structure with parametric sweeps [1]–[4].
In [1], two closely placed antennas have been isolated by
placing a decoupling element between them. Slots and split
ring resonators have been used in the ground plane of the
antennas for improved isolation [2]. In [3], the admittance
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between antennas is cancelled by using coupled resonators
between the antennas. A more rigorous approach uses a
parasitic antenna for decoupling [5]. Circuit equations were
derived to obtain the required load at the parasitic antenna to
achieve perfect decoupling. It is shown that the required load
can be made purely reactive by tuning the antenna elements.
A typical method to describe the mutual coupling has been to
derive a circuit model for the antenna system and then creating
an additional path of coupling which neutralizes the original
mutual admittance between the antennas [6], [7].

The theory of characteristic modes, first introduced by Gar-
bacz and Turpin [8], is based on diagonalizing the scattering
matrix of a conducting body to obtain orthogonal character-
istic modes. The theory was then refined by Harrington and
Mautz [9] using the linear operator theory to diagonalize the
impedance matrix to obtain the same characteristic modes.

Characteristic modes are eigencurrents obtained by solving
a weighted eigenvalue equation based on an integral equation
formulation of a conducting structure [9]. These modes can
be used to expand the induced surface current due to any
excitation or incident field. Characteristic modes only depend
on the shape and size of the conducting object, which enables
antenna design in a physically intuitive and controlled way.

Characteristic modes have been used to design MIMO
antennas with isolated modes for user devices with a small
ground plane [10]–[12]. Antenna decoupling has been studied
with characteristic modes by calculating the modal admittance
between antennas and using reactive loading to suppress
the unwanted modes [13], [14]. In [15], the eigenvalues of
mutually coupled modes were noted to reduce when a parasitic
resonator was added. However, these methods rely on calcu-
lating the modal admittance and selecting suitable loads for
the arbitrarily placed parasitic elements. Hence, they are not
easily applied when designing the shape of passive structures
for increasing antenna isolation without lumped elements.

To the authors’ knowledge, so far there exists no method to
analytically design decoupling elements based on controlling
the scattering of characteristic modes and resulting in cancel-
lation of the original fields. In [16], the idea of using the phase
of characteristic modes to engineer the scattering of elements
and design directors for antennas was suggested. In this paper,
it is shown that by carefully tuning the characteristic angles of
different characteristic modes, the phase and amplitude of the
scattered field can be tuned, so that the scattered field cancels
the original incident field at the receiving antenna location.
This approach enables physically intuitive decoupling element
design using the characteristic mode theory.

The major problem we address in this paper is that no



2

general model exists for antenna decoupling resonators that
is based on the concept of scattered fields from the theory of
characteristic modes. The main novelties of this paper are as
follows:

1) Characteristic modes are applied to study the phase of
scattered fields for antenna isolation.

2) A methodology for designing parasitic decoupling res-
onators and identifying all parameters affecting isolation
is formulated.

The paper provides a solution on how to design the scattered
fields of a wavetrap so that they cancel the original fields and
thus create high isolation. With the characteristic mode theory,
it is possible to separate the effects of the characteristic angle,
incident wave exciting the resonator, and modal near-field on
the isolation.

II. WAVETRAP SCATTERING THEORY

A. Characteristic Angle

In discrete form, the characteristic mode theory utilizes the
modal decomposition of the impedance matrix obtained with
method of moments (MoM) solution for analyzing electromag-
netic problems. The eigenvalue decomposition for an arbitrary-
shaped perfect electric conductor (PEC) object in the theory
of characteristic modes is formulated as

XJn = λnRJn, (1)

in which Z = R + jX is the impedance matrix, and Jn
the eigenvector or the characteristic current, and λn the
corresponding eigenvalue [9]. The total current induced on
a conducting body can be expressed with the formula

J =
∑
n

αnJn, αn =
Vn

1 + jλn
, Vn =

{

S

Jn ·Einc dS, (2)

where αn is the modal weighting coefficient, Einc is the
incident field on the structure, S the surface of the PEC body
and Vn is the modal excitation coefficient which describes
how well the incident field excites each mode. Each Jn is
normalized to radiate unit power [9].

The eigenvalue describes the ratio of the reactive power and
radiated power of the mode. If the mode is at resonance, the
eigenvalue λn = 0. The eigenvalue can also be expressed
as the characteristic angle an = 180◦ − tan−1 λn. If the
characteristic angle is over 180◦, the mode is storing net
electric (capacitive) energy and if it is below 180◦, the mode is
storing magnetic (inductive) energy in the reactive near field.
The mode is at resonance when the characteristic angle is
180◦.

The characteristic mode analysis and the full-wave (MoM)
simulations in this paper were performed with an in-house
MoM solver and the 2018 Altair FEKO software.

B. Quarter-Wave Wavetrap

In this paper, to illustrate the effectiveness of the theory,
decoupling elements called wavetraps were used to increase
the isolation between antennas. Wavetraps were previously
studied in [17] by using only parametric sweeps.

l w

h

Fig. 1. A planar wavetrap.

(0, 0, 0)

y x

z

Fig. 2. Surface current of J1[A/m]

A wavetrap is a planar quarter-wavelength patch short-
circuited at one end on a ground plane, as illustrated in Fig. 1.
A single wavetrap is defined by its length l, height h and width
w. By utilizing the characteristic mode theory, the fundamental
mode of the wavetrap is calculated as J1 and shown in Fig. 2.
The eigenvalue and thus the resonance frequency of this mode
depend on the height h and the length l of the wavetrap [17]. In
Fig. 3, it can be seen that as the length of the wavetrap is swept
from 23 mm to 25 mm, the resonant frequency of the mode
is reduced from 2.6 GHz to 2.4 GHz. The wavetrap height h
is kept at 5 mm. The origin of the coordinate system is in the
middle of short-circuited end of the wavetrap as indicated in
Fig. 2.

In the example cases of this paper, it is approximated
that only the fundamental mode (mode 1) of the wavetrap
is excited, and that the current distribution J1 remains fairly
consistent when length l of the wavetrap is varied. The validity
of these approximations will be discussed in Section II-H.

C. Scattering of a Decoupling Element

The electric field of a current distribution on an arbitrary
location can be calculated with the equation

Es = −jωµ
∫
S

G(r, r′)J(r′) dS′

− j

εω
∇

∫
S

G(r, r′)∇′sJ(r′) dS′,
(3)

where G(r, r′) is the Green’s function, ω the angular fre-
quency, ε permittivity and µ permeability. By combining (2)
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Fig. 3. Characteristic angles of the fundamental mode (mode 1) of a wavetrap
with different lengths and the width of 40 mm.

and (3), the following equation for the scattered field of a
conducting body is obtained

Es =
∑
n

Vn
1 + jλn

En, (4)

where
En = −jωµ

∫
S

G(r, r′)Jn(r
′) dS′

− j

εω
∇
∫
S

G(r, r′)∇′sJn(r′) dS′,
(5)

is the modal electric field.
Then, λn = tan(180◦ − an) is substituted in (4) to obtain

Es =
∑
n

1

1− j tan(180◦ − an)
VnEn

=
∑
n

√
1

1 + tan2 an
ej(an−180

◦)VnEn.

(6)

D. Farfield Approximation

If farfield approximation (|r − r′| >> 0) is assumed, the
derivative term ∇∇

k2 → 0 and (6) reduces to

Es =
∑
n

√
1

1 + tan2 an
ej(an−270

◦)ωµe
−jkr

4πr

VnFn(θ, φ), (7)

where r = |r| and Fn(θ, φ) is the characteristic mode
farfield radiation pattern at the angular position of interest.
By assuming an incident plane wave on the wavetrap, Einc =
E0e

−jkyêz and that only the fundamental mode (mode 1) is
excited in the wavetrap, the cancellation for the z-component
of the fields is calculated with

Etot,z(r)

Einc,z(r)
=
Einc,z(r) + Es,z(r)

Einc,z(r)

= 1 +

√
1

1+tan2 a1
ej(a1−270

◦) ωµe
−jkr

4πr V1F1,z(θ, φ)

E0e−jky

(8)

If we consider the cancellation only along the positive y-
axis, i.e., r = (0, y > 0, 0), the fundamental mode (mode 1)
characteristic farfield is F1(90

◦, 0◦) = 1 and (8) simplifies to

Etot,z(y)

Einc,z(y)
= 1 +

√
1

1 + tan2 a1
ej(a1−270

◦) ωµ

4πy

V1
E0

. (9)

The term
√

1
1+tan2 a1

defines the amplitude of the scattered
field in terms of the characteristic angle a1. When the mode
is at resonance, the eigenvalue λ1 = 0 and a1 = 180◦, and
the amplitude of scattering reaches its maximum value. When
the mode is either inductive or capacitive, i.e., a1 < 180◦ or
a1 > 180◦ respectively, the amplitude decreases.

In the case of the defined plane wave excitation, arg (V1) =
0. Thus, the term ej(an−270

◦) describes the phase of the
scattered field with respect to the incident plane wave. When
the mode is at resonance, i.e. an = 180◦, the phase difference
of the scattered far-field Es,z is −90◦ compared to incident
plane wave Einc,z .

When the mode is capacitive, an > 180◦, the phase
difference is smaller than −90◦. When the mode is inductive,
an < 180◦, the phase difference is larger than −90◦, i.e,
the scattered field is destructive to the incident plane wave.
Thus, the original field is cancelled by the wavetrap and it is
beneficial to design the wavetrap to be inductive.

However, it can be seen from (9) that with lower characteric
angles an the amplitude of the scattered field decreases, as the
operating frequency is moved further away from resonance.
Thus, there exists an optimal value for an for cancelling the
incident field depending on the distance r. However, cancelling
fields in the farfield of the wavetrap with plane wave excitation
is not very effective as the scattered field of the wavetrap
decreases with respect to 1/r, whereas the incident field
strength remains the same.

E. Modal Near-Field Pattern Effect

In the previous section, the farfield cancelling scattered
field of the wavetrap is considered. However, when study-
ing the cancellation effect near the wavetrap, the phase of
the characteristic near-field needs to be taken into account.
When calculating the near-field of a wavetrap from the modal
currents of the wavetrap using (3), the near-field terms in the
integral and the physical size of the current distribution cause
extra phase delay in the near-field, when compared to an ideal
far-field source for which (7) could be used.

To solve for the exact phase in the near-field, the characteris-
tic near-field is calculated from the characteristic currents. For
the planar wavetrap fundamental mode (mode 1), the phase of
the modal near-field arg (E1,z) is presented in Fig. 4.

Using (6), the following equation that shows the effect of
the modal near-field phase delay is obtained, here presented
for the z-component of the fields as

Es,z =
∑
n

√
1

1 + tan2 an
ej(an−180

◦+argEn,z)|En,z|Vn.

(10)
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Fig. 4. Phase of the characteristic mode near-field arg (E1,z) of the quarter-
wave wavetrap (w = 40 mm, l = 25.4 mm, z = 0 mm).

Fig. 5. Magnitude of the characteristic mode near-field |E1,z | of the quarter-
wave wavetrap (w = 40 mm, l = 25.4 mm, z = 0 mm).

For example, for the planar wavetrap, if the electric field
at location (0, 50, 0) mm with respect to the wavetrap is
targeted for cancellation, the phase and magnitude of the
characteristic near-field can be obtained from Figs. 4 and 5 as
E1,z(0, 50, 0) = 95.78∠102.9◦ V/m. With incident plane wave
amplitude E0 = 1 V/m, V1 = 0.0037∠0◦. Then, the ratio of
the total field and the incident field, i.e. the cancellation, is
calculated as

Etot,z(r)

Einc,z(r)
=
Einc,z(r) + Es,z(r)

Einc,z(r)

= 1 +

√
1

1 + tan2 a1
ej(a1−180

◦+argE1,z(r)+ky)V1|E1,z|.
(11)

By plotting the magnitude of this ratio in Fig. 6, it is seen
that optimal field cancellation occurs with a1 = 135.6◦ at r =
(0, 50, 0) mm. The cancellation is also plotted for distances of
25 mm, 10 mm and 5 mm from the wavetrap along the y-axis
with optimal characteristic angles of 135◦, 134.4◦ and 134.3◦,
respectively. It is seen that better cancellation is obtained close
to the wavetrap as the scattered field strength is higher there.

100 120 140 160 180 200 220 240 260
0

0.25

0.5

0.75

1

1.25

1.5

Characteristic angle a1 [◦]

|E
to

t,
z
/
E

in
c
,z
|

r=(0, 50, 0) mm
r=(0, 25, 0) mm
r=(0, 10, 0) mm
r=(0, 5, 0) mm

Fig. 6. Cancellation of the near-field z-component of the wavetrap at several
locations when excited by a plane wave as a function of the characteristic
angle a1 of a wavetrap (w=40 mm, l=25.4 mm).

F. Modal Excitation Coefficient Effect

So far, plane wave excitation is considered for the wavetrap.
Thus, the phase of the excitation coefficient has always been
in phase with the exciting plane wave, i.e, arg (V1) = 0◦ if
Einc = E0e

−jkyêz .
However, if the antenna that is exciting the wavetrap is close

to the wavetrap, the exciting wave cannot be approximated
with a plane wave, which causes a phase delay in the modal
excitation coefficient. This phenomenon can be illustrated by
looking at the current distribution J1 of the wavetrap in Fig.
2. The strongest current of this mode occurs along the shorted
edges of the wavetrap, to which the distance from the exciting
antenna is slightly longer than to the center of the wavetrap,
if the phase center of the exciting antenna is located along the
y-axis. This distance difference causes a phase delay in the
excitation of the wavetrap with respect to the wavetrap center.

In addition, if the exciting antenna is close to the region
where the incident fields should be cancelled, the exact phase
of the radiation of the exciting antenna must be taken into
account. This is because the phase of the exciting antenna is
non-linear due to the physical aperture size of the antenna and
the effect of the near-field terms in the integral equation.

Near the wavetrap, the strength of the scattered field can be
higher than the exciting field, especially if the incident field is
not a plane wave and its strength is decreasing with distance.
Therefore, the exact field strengths of modal near-field En,
incident wave Einc and the modal excitation coefficient Vn
need to be taken into account so that the wavetrap cancels
exactly the incident field at the desired location.

By taking these effects into account, the single point field
cancellation at a certain location r with respect to the z-
component of the original incident field is expressed as
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l

1

2

40 mm

5 mm

62.5 mm

100 mm x

y

z

Fig. 7. A patch antenna (antenna 2), monopole antenna (antenna 1) and a
wavetrap above an infinite ground plane.

Etot,z(r)

Einc,z(r)
=
Es,z(r) + Einc,z(r)

Einc,z(r)
= 1 +

∑
n

√
1

1 + tan2 an

ei(an−180
◦+argEn,z(r)+arg Vn−argEinc,z(r))

|En,z(r)|
|Einc,z(r)|

|Vn|
(12)

This equation describes the cancellation properties of a
wavetrap in the case when the exciting antenna and the desired
cancellation point are close to the wavetrap. To illustrate the
functionality of the equation, the case illustrated in Fig. 7 is
studied. The patch and monopole antennas resonate at 2.6
GHz and are separated by the distance of 100 mm. The
shorted edge of the wavetrap is located at the distance of
62.5 mm from the patch antenna. These values correspond
to antenna separation of 0.87λ0 and wavetrap distance of
0.54λ0 from the patch antenna. The field caused by the patch
antenna should be cancelled at the location of the monopole to
increase the isolation, i.e., the incident field Einc,z(0, 37.5, 0)
caused by antenna 2 should be cancelled. The origin of the
coordinate system is at the center of the short-circuited end of
the wavetrap as indicated in Fig. 2.

First, only the field of the patch antenna 2 is simulated,
and the phase and amplitude of the incident field is obtained
as Einc,z(0, 37.5, 0) = 2.797∠134.3◦ V/m. Then, the modal
excitation coefficient is calculated, i.e., the integral of the inci-
dent field with the modal current distribution of the wavetrap,
giving V1 = 0.0387∠−135.37◦. From the characteristic near-
field in Figs. 4 and 5, E1,z(0, 37.5, 0) = 119.5∠139.7◦ V/m
is obtained. By using (12), the cancellation with respect to the
characteristic angle is plotted in Fig. 8.

As can be seen, the optimal value for the characteristic angle
of the wavetrap is now a1 = 128.2◦. This corresponds to
l = 25.4 mm for the wavetrap. The optimal characteristic
angle is smaller than in Sections II-D and II-E because for
values a > 128.2◦, the scattered field from the wavetrap is too
strong and larger than Einc,z . The simulated S-parameters of
the patch and dipole are presented in Fig. 9 with the calculated
optimal length of the wavetrap. It is seen that the isolation is
improved by 19 dB at the design frequency of 2.6 GHz by
adding the wavetrap with the optimal characteristic angle for
the fundamental mode.
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Fig. 8. Cancellation of the near-field z-component of the wavetrap at location
(0, 37.5, 0) mm when excited by a patch antenna as a function of the
characteristic angle of a wavetrap.
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Fig. 9. Simulated S-parameters of a patch antenna and a monopole with and
without a wavetrap (w=40 mm, l=25.4 mm).

G. Multipoint Cancellation

In cases of more practical antennas, it is not enough to
cancel the fields at only one point, as was done for the
quarterwave monopole in the previous section. The fields that
couple from the transmitting to the receiving antenna need to
be cancelled across a larger area around the receiving antenna,
i.e., considering the actual current distribution of that antenna.
Therefore, the method is extended to optimize the cancellation
according to the current distribution on the receiving antenna.
As an example of this case, the coupling of two patch antennas
on a ground plane is studied. A wavetrap is placed between
the patch antennas to increase the isolation (see Fig. 10).

To decouple the patch antennas effectively, the electric
fields that excite the current distribution of the receiving patch
antenna (antenna 1) need to be cancelled. The magnitude of
the total current distribution on the surface of the receiving
patch antenna is shown in Fig. 11, when it is excited from the
feed port with a 1 V voltage at 2.6 GHz. The patch has mainly
y-directed currents on the patch and z-directed currents on the
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Fig. 10. An infinite ground plane with two patch antennas and a wide
wavetrap.

Fig. 11. Surface current ||Jp|| of the patch antenna 1 with 1 V feed voltage
at 2.6 GHz.

feed pin. To decouple the antennas, the fields that excite these
currents need to be cancelled. Therefore, the antenna coupling
coefficient is calculated with respect to the scattered field from
the wavetrap combined with the incident field. The coupling
coefficient Mtot is given by

Mtot =
{

S

Jp ·Etot dS. (13)

Then, the ratio of the coupling with the wavetrap with
respect to the original coupling with the incident field can
be obtained.

Mtot

Minc
=

v
S

Jp · (Einc +Es) dS

v
S

Jp ·Einc dS
= 1 +

v
S

Jp ·Es dS
v
S

Jp ·Einc dS

= 1 +
∑
n

√
1

1 + tan2 an
ej(an−180

◦)Vn

v
S

Jp ·En dS
v
S

Jp ·Einc dS

(14)
The optimal width of the wavetrap is mainly determined by

how well the modal near field matches the original incident

Fig. 12. Phase of the incident field Einc,y caused by the transmitting patch
antenna 2 (z = 5 mm).

field, i.e., the ratio
v
S

Jp ·En dS/
v
S

Jp ·Einc dS. The modal

excitation coefficient Vn and the characteristic angle an have
also an effect. The phase of the incident field is plotted in Fig.
12.

The value min |Mtot(a1)/Minc| is plotted in Fig. 13 for the
wavetrap, i.e, the best possible cancellation with any value of
an for each wavetrap width w. It is seen there is a minimum
at two values of w for the best possible isolation. Out of these
minima, the first one at w = 120 mm is chosen. Figures 14
and 15 show the magnitude and phase of the y-component of
the fundamental characteristic mode near-field E1 of a 120
mm wide wavetrap.
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0
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1
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c
|

Fig. 13. Best obtainable min |Mtot
Minc

| with any value of a1 when varying
wavetrap width w.

The optimal a1 for cancellation is then found by plotting
(14) in Fig. 16. It is seen that the coupling is well cancelled
when a1 = 145.5◦. This corresponds to l = 25.03 mm for the
wavetrap. S-parameters from the full-wave simulation of the
two patch antennas with wavetrap l = 25.03 mm are shown
in Fig. 17. It is seen that the isolation is improved by 33 dB
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Fig. 14. Magnitude of the characteristic mode near-field E1,y of the quarter-
wave wavetrap (w = 120 mm, l = 25.03 mm, z = 5 mm).

Fig. 15. Phase of the characteristic mode near-field E1,y of the quarter-wave
wavetrap (w = 120 mm, l = 25.03 mm, z = 5 mm).

at the design frequency of 2.6 GHz, and at least 12 dB within
the 142 MHz −10 dB bandwidth of the patch antennas.

For comparison, a block of absorber is simulated in place
of the wavetrap. The used absorber was ECCOSORB LS22
(εr = 2.2, tan δ = 1.09) [18]. With the same dimensions as
the wavetrap, only a small isolation improvement of 0.2 dB
was obtained. Thus, the height of the absorber was increased 5
times and the width 2 times to that of the wavetrap resulting in
dimensions of (120×50×25) mm3. However, this resulted in
only 6 dB of isolation improvement at the center frequency, as
compared to 33 dB improvement with the wavetrap. This result
shows that the proposed method still gives better isolation
even though the absorber occupies 10 times the volume of
the wavetrap. Moreover, in practice, the larger absorber would
increase the overall antenna profile.
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Fig. 16. The coupling of two patch antennas as a function of the characteristic
angles a1 of a wavetrap (w=120 mm).
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Fig. 17. Simulated S-parameters of two patch antennas with and without a
wavetrap (w=120 mm, l=25.03 mm).

H. Effect of Used Approximations

At 2.6 GHz, a z-polarized incident plane wave mainly
excites the fundamental mode (mode 1) of the wavetrap.
Including five of the most significant higher order modes
changes the phase of the scattered field E1,y by a maximum of
1.6◦ at r = (0, 37.5, 0) mm when compared to just using the
fundamental mode for the scattering. The change in magnitude
of the scattering is below 0.5% when including the higher
order modes. Therefore, in this paper, only the fundamental
mode is used in the analysis to ease understanding. For added
accuracy, higher order modes can be also included in the
analysis, as expressed in the summation in (14).

Another source of error is that changing the wavetrap
length l affects not only the characteristic angle an but also
changes slightly the current distribution of the mode J1. This
causes a change in the modal excitation coefficient V1 and
the modal electric field E1 which depend on J1. As the
wavetrap length l is varied from 23 to 26 mm, the change
in magnitude of V1 was below 7.5% and the change in phase



8

below 2.5◦, when it is excited with the incident field from
the patch antenna. Therefore, for accurate analysis, the search
for optimal characteristic angle should be an iterative process,
where an should be evaluated close to the optimal dimensions
of the wavetrap.

III. CONCLUSIONS

In this paper, a systematic and physically intuitive method
for designing antenna decoupling elements, which is based on
the theory of characteristic modes, is presented. For validation,
a planar wavetrap is designed to improve antenna isolation
both in the case of a monopole located close to a patch
antenna, and the case of a patch antenna close to a second
patch antenna. With the proposed method, the optimal char-
acteristic angle for the wavetrap was predicted, and confirmed
with full-wave simulations. With a single-point cancellation
model, coupling to the monopole antenna reduced by 19 dB
at its design frequency. With the coupling coefficient model
considering field cancellation across a larger area, the isolation
between two patch antennas was improved by 33 dB at their
centre frequency and by more than 12 dB across their 142
MHz operational bandwidth. As a benchmark, the wavetrap
was replaced by an absorber occupying 10 times the volume of
the wavetrap. The large structure gives only 6 dB of isolation
improvement, which further validates the effectiveness of the
proposed wavetrap method.

So far, decoupling elements such as wavetraps, slots and
split-rings, which do not rely on lumped elements, have been
designed mainly by parametric sweeps (i.e., brute force). The
novel method presented in this paper identifies the effect of
characteristic angle, modal electric field and modal excitation
coefficient on the obtained antenna isolation, hereby enabling
not only an intuitive but also a systematic design and opti-
mization of decoupling elements.

Possible future work includes studying wavetrap arrays
which would enable synthesising the cancellation with even
more degrees of freedom including also the location of the
wavetraps and antennas, which are not systematically opti-
mized in this paper. Multiresonant structures could be studied
to extend the bandwidth of the obtained isolation. The analysis
in this paper can also be performed also for other types of
parasitic resonators to compare their performance in terms of
antenna isolation.
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