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Abstract

We propose and develop comprehensive foundations for the analysis of nonlocal radiating systems using a special momentum-

space approach. Part I focuses on the rigorous mathematical basis of the theory and their conceptual implications.
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Abstract—Nonlocal radiating systems are functional structures comprised of externally applied
currents radiating in nonlocal domains, for example hot plasma, optically active media, or nano-
engineered spatially dispersive metamaterials. We develop here the mathematical foundations of the
subject needed for investigating how such new generation of radiating system can be analyzed at
a very general level. A key feature in our approach is the adoption of a fully-fledged momentum
space perspective, where the spacetime Fourier transform method is exploited to derive, analyze, and
understand how externally-controlled currents embedded into nonlocal media radiate. In particular, we
avoid working in the spatio-temporal domain as is typical in conventional local radiation theory. Instead,
we focus on the basic but nontrivial problem of infinite generic (anisotropic or isotropic) homogeneous
nonlocal domain excited by an external source and investigate this structure in depth by deriving the
dyadic Green’s functions of nonlocal media in the momentum space. Afterwords, the radiated energy
in the far-zone is estimated directly in the spectral domain using a generalized momentum space energy
density concept and coupled with the power theorem. The resulting derived expression of the radiation
pattern power of the source can be computed analytically provided the medium dielectric functions and
the dispersion relations of the nonlocal metamaterial are available.

1. INTRODUCTION

The main objective of this paper is to formulate the main themes of electromagnetic radiation theory
in a language conductive to research on novel and future types of radiating systems, in particular those
operating in complex non-classical environments best described by a nonlocal electromagnetic material
response function. Nonlocality includes most prominently spatial dispersion, i.e., the dependence of the
material response function on the wavevector k besides the classical (temporal) dispersion characterized
by the appearance of another dependence on ω, the circular frequency [1–3]. Inspired by the earliest
formulation of the problem of electromagnetic wave propagation in spatially-dispersive media, we adopt
the Fourier space approach to solving and studying the less-known problem of antenna analysis and
design in such media. The Fourier space approach replaces the frequency domain formulation where
the fields are considered in the frequency-space domain, i.e., functions in the form F(r, ω), by moving
to a fully-fledged 4-dimensional Fourier space where all fields (electromagnetic fields and their current
sources) take the form F(k, ω). Following the common convention in physics, we capture the dependence
on k by the term momentum space since momentum p and the wavevector k are related to each
other in quantum physics by mere constant (the de Broglie relation p = ~k). The momentum space
formulation of electromagnetic theory is extensively used in diverse disciplines, including condensed-
matter physics [4], plasma physics [3], quantum field theory [5], quantum optics [6]. However, momentum
space does not seem to have been widely used in classical antenna theory where most treatments tend
to favor the frequency-space formulation, with some exceptions like [7], [8–10]. For example, the plane-
wave spectrum, a momentum representation of EM fields, was deployed for applications to near-field
measurement [11], computation of Green’s functions in inhomogeneous media [12, 13], subwavelength
imaging [14], and characterizing mutual coupling and interactions [7, 9, 15–17]. Periodic structures are
examples of systems in which wave propagation analysis is fundamentally conducted in the spatial
Fourier space, although in that case it is usually referred to as reciprocal space [18].

1 Correspondence can be addressed to the author at the address said.m.mikki@gmail.com.
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Figure 1: Nonlocal antenna theory is a new emerging cross-disciplinary research area involving several
existing disciplines.

Some previous work on controlling the radiation emitted by sources embedded into metamaterials
(MTMs) include [19–24], where most of the focus is on conventional metamaterials used to modify the
emission characteristics o optical sources in metamaterials. However, all conventional metamaterials
exhibit spatial dispersion so the subject of spatial dispersion has been taken up more explicitly in
more recent works such as [25]. In this paper, we propose a momentum space formalism for antenna
theory using techniques that had originated in some earlier applications in physics but here adapted
and extended for the needs of antenna theory in engineering and applied physics. Our goal is to sketch
out in broad manner the general ideas, basically how to define radiation patterns and array theory
in momentum space instead of time-space or frequency-space when the radiation domain is filled up
with infinite homogeneous generic nonlocal metamaterial (NL-MTM). A good theory of electromagnetic
radiation in nonlocal domains should also provide a framework for understanding how the surrounding
metamaterial domain itself should be designed such that the combined current source/MTM can deliver
new functional performance. The main application of the theory is for future antennas utilizing
engineered metamaterials exhibiting carefully-tailored nonlocal behaviour, where in that particular
case we argue that the Fourier space approach adopted here provides the best means to tackle the
subject [10, 26]. One of the key advantages of the proposed theory is that only dispersion relations are
needed to construct the radiation pattern (far-zone energy/power density) using an analytical procedure
that can be easily automated and canonized. The proposed theory is valid for arbitrary isotropic and
anisotropic homogeneous domains surrounding a fully arbitrary radiating (external) current. The only
restriction imposed on our metamaterial in this theory is that it must be homogeneous. Aside from
this, the entire theory is developed using exact analysis and no approximations are made. The proposed
theory is cross-disciplinary and is expected to involve multiple different fields of research, including both
fundamental theory and applications, see Fig. 1.

This theory has its background in previous research conducted by the author and collaborators
during the last 15 years in which the focus has been on looking for new fundamental ideas
and perspectives relevant to both theory and applications of electromagnetic waves and materials
[15, 27–33, 33–39], where the emphasis has been from the start on the fundamental spatial structures
hidden in fields and space and during their interaction with complex material domains [26, 40–46],
especially in connection with near fields [8,47–50], energy [9,51–54], and nanoelectromagnetics [55–62].
The purpose is to systematically and comprehensibly explicate hpw adding additional spatial degrees
of freedom within the context of field-matter correlation/interaction can enhance our understanding of
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electromagnetic radiation and possible suggest new applications to antenna technology.
The theory of nonlocal antenna systems is expounded in two parts. Part I (the present paper)

focus is on the generic and fundamental theoretical aspects of the problem developed rigorously but
also provides some additional philosophical and methodological guidelines and remarks on the emerging
research field of nonlocal antenna systems. Part II [63] is concerned with applying the general theory
developed in Part I to concrete settings (specific metamaterials and radiating sources) and will be
reviewed in its own introduction. For the remainder of the current introduction, we give an overall view
on the various sections to follow. Sec. 2 provides an overall philosophical and conceptual take on the
emerging research area whose main object of study is nonlocal antenna systems. We propose a precise
definition of such systems and explain their physical nature and explain why it is important to investigate
their behaviour and explore methods to design and build them. The theory proper starts in Sec. 3
where the presentation commences from Maxwell’s equations in space-time and gradually introduces
all tools needed, like the 4-dimensional Fourier transforms, the proper vector potential formalism, the
generalized material (dielectric) response method, and tensor Green’s functions. The main goal is to
set up the problem entirely in momentum space with all main results created from first principles to
facilitate understanding with maximum possible clarity and self-completeness. The Green’s functions
of nonlocal domains thus derived is exploited in Sec. 4 to recruit an idea originally due to Brillouin [64]
in which the far field radiation energy density is estimated directly from the source without the need
to invert the spectral Green’s functions to obtain the spatio-temporal fields first. Therefore, we can
obtain the angular frequency-dependent radiation energy density in the far field, but not the fields
themselves in space-time. Since the initial efforts of researchers in the emerging domain of nonlocal
antenna systems are now focused on the far zone radiation pattern, these results obtained analytically
here using momentum space methods should suffice for the near future. Finally, in Sec. 5 we summarize
the overall analytical and computational aspects of the derived radiation pattern expressions and also
point out the pros and cons of the proposed theory in addition to providing some remarks on future
antennas Finally, we end with the conclusion. At the end, Appendices are given to collect technical
results used throughout the present paper in addition to and various mathematical properties and
theorems that will be also used in Part II to perform calculations.

2. AN OVERALL VIEW ON NONLOCAL RADIATING SYSTEM: WHAT THEY
ARE AND WHY DO WE NEED TO STUDY THEM

Why do we need to study nonlocal antenna systems? First of all, the theory of how spatial dispersion
modifies radiation by external sources is interesting in itself and hence has aroused the curiosity of some
past researchers several decades ago, with deep roots going back into the earliest days of plasma and
condensed-matter physics. Indeed, like any new research area, the subject had not suddenly erupted
into the scene without any precursor, but is the cumulative outcome of a long process in waiting. The
study of spatially dispersive problems goes back to the 1940s and 1950s when people were investigating
propagation of electromagnetic waves in crystals and plasma. The subject till very recently was treated
as part of optics and plasma physics where spatial dispersion is key to explaining the generalized response
function of magnetic materials (spatial dispersion can be induced by such magnetic response) and optical
activity. However, nowadays a resurgence in nonlocal metamaterials is due to the general desire to
enlarge the concept of materials from ”natural” to “artifical” or metamaterials. Since classical antennas
have been investigated very extensively either in free space or temporally dispersive media, nonlocal
antenna theory, or the analysis of radiators in nonlocal domains, is a natural enlargement of radiation
and antenna theory that is now very timely. A second advantage of studying nonlocal radiation theory
is the fact that nonlocal wave propagation may lead to completely different physical behaviour absent
in even the “wildest” types of temporally dispersive metamaterials. Some of these new phenomena will
be briefly treated in Part II, including virtual arrays, longitudinal waves, and the remarkable ability to
design perfectly isotropic radiating structures using dipole antennas as external source. We also add
some other potentials, like negative group velocity and dispersion management [65], energy storage and
recovery [10, 45, 46], directive emission control using MTMs [19, 25]. These applications and numerous
others strongly suggest the need for systematic research programs focusing on exploring new applications
with this novel spatially responsive generation of engineered material domains. However, to understand
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and motivate some or all of these applications, a strong theoretical and conceptual foundations for the
topic, best given in the shape of a comprehensive rigorously developed mathematical theory of radiation
by external sources in nonlocal MTM domains, is needed. This paper attempts to provide an initial
general theory in this direction.

We next define these nonlocal radiating systems and also provide some additional remarks about
the general scope of the present two-part paper. A nonlocal antenna system (NL-AS) is defined as an
engineered structure composed of two major components:

(i) An externally-controlled current distribution Jant(r, t).

(ii) A surrounding nonlocal metamaterial domain into which the current Jant(r, t) is embedded.

An overall sketch of this system is given in Fig. 2. The most immediate observation about the definition
given above is that the subject of nonlocal radiation theory is inherently multidisciplinary since it
involves interaction between classical antenna (radiation) theory, the science of understanding radiation
into free space and designing efficient radiators, and the physics of electromagnetic materials, the latter
in itself large and cross-disciplinary involving several subdomains like condensed-matter physics, plasma
physics, optics, electromagnetic engineering, and so on. A second observation about the definition of
nonlocal antenna systems is that it is crucial to maintain independence of the radiating current Jant from
the surrounding metamaterial domain in the sense that the value of the radiating current is not effected
by the ongoing radiation processes. This is the fundamental idea behind any externally-controlled
radiator. Indeed, if back-reaction of the radiated fields (now existing in the MTM domain) can change
the current supplied by the user, then use of the system for applications like wireless communications will
be severely limited. For example, if sending a pulse encoding the digital symbol 1 may lead to radiation
back-reaction distorting the pulse to the degree it now more resembles the the signal representation of
the digital symbol 0, then the probability of correct detection at the receiver will be degraded even with
high signal-to-noise-ratio (SNR). In all traditional antenna theory and applications the assumption that
the externally-supplied current is indeed external is taken for granted. However, in nanoscale radiation
problems and other processes depending on quantum effects, the combined system of radiating particles
and photons (radiation) are usually treated self-consistently, leading to back-reaction of radiation on the
radiating currents. For that reason, true antennas do not exist in the ultimate microscopic realm, but
only approximations of them can be maintained if a stabilizing mechanism can be put in use in order
to ensure the protection of radiating currents from their own radiated fields. In nonlocal domains, since
many nonlocal phenomena are due to quantum effects, stating that the current source in the NL-AS is
assumed to be exactly external is then important for the purpose of developing an initial viable theory of
nonlocal electromagnetic radiation. Clearly, the most simple and direct such theory would be a nonlocal
antenna theory where the radiating current enjoys stability and absence of back radiation reaction. Laser
sources are famous examples of such radiating systems where the radiating current is shielded from the
back reaction of the photons it produces through a self-regulating feedback mechanism. Technical,y
throughout this paper we write the current in spacetime domain as an externally determined function
in the form Jant(r, t), while the corresponding momentum-space representation is Jant(k, ω). As usual
in antenna theory, a current distribution is ultimately produced by an external localized source (electric
and/or magnetic fields). For simplicity, we refer for completeness to the voltage source signal vs(t) in
Fig. 2. However, in this paper we do not address how the current is excited by a given voltage source.
Instead, we focus on understanding how a given current distribution will radiate into the surrounding
MTM domain and how the domain itself (and possibly the current) may be modified in principle such
that a given radiation characteristics might be obtained (only one example, isotropic radiator design, is
given in Part II.)

Immediately surrounding the external current Jant in Fig. 2 is the MTM domain, which in this
work is assumed to satisfy the following fundamental assumptions:

(i) The MTM domain is large enough for the radiated fields to reach its outer edge to be considered
far-zone fields, i.e. the characteristic scale of the MTM, say D, satisfies D � λ = 2π/k.

(ii) The material is electromagnetically homogeneous, i.e., the microscopic scale of matter a satisfies
a� λ = 2π/k for all ranges of k we are interested in.

(iii) The material is time invariant.
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Figure 2: An overall sketch of a generic nonlocal radiating (antenna) system.

Under these conditions, it is well-known that the general dielectric tensor can be written as ε(t−t′, r−r′)
[1–4,6, 66,67]. By performing a Fourier transformation on R4, we end up with

ε(r− r′, t− t′) F←→ ε(k, ω), (1)

which, after with the earlier mentioned assumption on the independence of the radiating current,
represent the second key assumption in the momentum space approach of this paper. The dielectric
tensor used above will be defined more carefully in Sec. 3. The form ε(k, ω) is the momentum space
representation of the space-time response function. The dependence on k is often referred to in literature
as spatial dispersion [1, 2, 68]. However, we should keep in mind that nonlocality is more general than
spatial dispersion since inhomogeneous nonlocal domains, which must be modeled by dielectric response
function of the form ε(r, r′; t−t′), can not be expressed in Fourier space as ε(k, ω) [4]. Since in this paper
our focus is only on homogeneous media, and those still fall under the form (1), we need not consider
any response function other than the general tensorial form ε(k, ω) of spatially dispersive domains.

An important remark should be added here regarding the scope of the present theory. In both Parts
I and II, we completely avoid the issue of how incident waves interact with interfaces separating two
different spatially dispersive domains. Such problems clearly involve inhomogeneous dielectric functions
and hence are not within the general form (1), the main material tensor model treated in our present
work. However, a vast body of literature has been dedicated to the excitation of surface waves in such
domains and several solutions to particular problems were proposed in various contexts. A popular
approach is the use of additional boundary conditions (ABCs), leading to the analytical derivation and
numerical computation of new modes excited in nonlocal domains that would otherwise not show up
if the medium is local. Nevertheless, and as was pointed out long time ago in a penetrating analysis
of the problem [2], no completely general description of electromagnetics at the interface between two
nonlocal domains is possible using the form (1), the reason being that the very presence of an interface
forces the microscopic nonlocal response to differ near the interface from its behaviour in the deep bulk
region. The bulk domain form (1) is indeed valid only away from the edge or surface of the material. It
is not clear how a very general boundary between the fuzzy “surface region” and “bulk region” interface
can be established without using quantum theory, and that in turns requires working with specialized
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assumptions about the light-matter interaction Hamiltonian, leading to loss of generality. Since our goal
is to develop the theory at the macroscopic level of the phenomenological bulk model (1), it is assumed
throughout that the entire MTM domain is one homogeneous region modeled by otherwise completely
unrestricted and general material tensor of the form (1). In particular, the radiating source current
is an externally supplied current distribution directly embedded into the surrounding nonlocal MTM
domain and no gaps or discontinuities need to be considered since we will use the Green’s function (GF)
to compute radiation. As is will known, the GF method works best with an external input smoothly
embedded into a host domain [12,13,69].

We now move on to draw a broad sketch of the subject of future nonlocal antenna systems. The
cross-disciplinary research field within which these systems are expected to be investigated is nonlocal
antenna theory, see Fig. 1. There are there major components in any viable future nonlocal antenna
theory:

(i) Forward radiation theory.

(ii) Reverse design methodology.

(iii) Final physical layout realization.

In (i), the fundamental question is how to compute the radiated fields given a specific current source and
embedding (host) nonlocal MTM. This is a forward problem and the usual method to solve it is using
the Green’s function technique. On the other hand, (ii) asks about how the current source itself and
the MTM parameters should be determined such that a desired radiation characteristics may obtain.
Finally, in (iii) specific physical domains, processes, manufacturing techniques, etc, are sought in order
to realize the model with the optimum design parameters found in (ii). In this paper, Part I will focus
mainly on step (i) for the most general level. Part II will continue to address (i) but within a more
concrete MTM framework – isotropic nonlocal MTM – but also touches on the design aspects of (ii).
The final physical realization requires more concrete focus on specific physical problems like plasma,
crystals, manufactured thin films, nanotechnology, quantum optics, and other specialized areas, and
hence will be treated elsewhere since the subject falls outside the scope of the present work. However,
we would like to mention few more words about steps (ii) and (iii) here before moving forward to the
fundamental theory of (i) in the remaining sections of the present paper. Using a proper microscopic
theory, ultimately quantum theory, it is possible in general to derive fundamental expressions for the
components of the response tensor function ε(k, ω) [1–4, 6, 67]. In general, these functions are often
expanded using Taylor series summations into few terms in powers of k. For simplicity, let us assume
here that only k appears in these expansions (this is the case in isotropic nonlocal MTM treated in
more details in Part II. However, there is no loss in generality for the discussion to follow.) Experience
accumulated with several types of nonlocal domains since the 1950s suggests that there are two major
types of media, resonant (R) and nonresonant (NR) materials, with domain functions having the forms

εR
ij(k, ω) =

∑M
m=1 a

m
ij (ω)km∑N

m=1 b
m
ij (ω)km

, εNR
ij (k, ω) =

N∑
m=1

cmij (ω)km, (2)

respectively, where in general M < N . These forms (2) are often obtained in the following way:
First, fundamental theory is deployed to derive analytical expressions for εR

ij(k, ω) and εNR
ij (k, ω).

Afterwards, depending on the concrete values of the various physical parameters that enter into
these expressions, e.g., frequency, temperature, molecular charge/mass/spin, density, etc, the obtained
analytical expressions are expanded in Taylor series with the proper number of terms. Since the
wavenumber is inversely proportional to the field physical spatial scale via k = 2π/λ, expanding in
terms of powers of k is equivalent to estimating the relative size of the nonlocal domain radius as
measured from r′ [1, 68]. In this paper, we define the process of designing a nonlocal metamaterial
as simply finding the data M,N, amij , b

m
ij , c

m
ij , in multi-scale expressions like (2). In general, we will

not assume any form like (2) in Part I, where the discussion is intentionally kept at a very general
level conforming only to the homogeneous domain criterion of nonlocality given in (1). In Part II, the
nonresonant nonlocal metamaterial case (NR-NL-MTM) is singled out and studied in details for the
case of only quadratic dependence on k. We expect in future applications more complicated types of
MTMs will need to be considered, for example, those involving resonant excitation of surface waves, but
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their investigations is outside the scope of the present paper, which is mainly developing the rudiments
of radiation theory in nonlocal antenna system analysis and design.

3. THE DYADIC GREEN’S FUNCTION OF NONLOCAL DOMAINS: THE VIEW
FROM MOMENTUM SPACE

The key mathematical apparatus to be deployed throughout this work is the spatio-temporal Fourier
transform. In fact, this is precisely the very idea of doing antenna theory in momentum space: expressing
the radiated fields, radiating currents, and the material constitutive response functions, in terms of both
frequency ω and wavevector k. Both are spectral variables, and hence they naturally arise from taking
the 4-dimensional Fourier transforms of all relevant quantities. The 4-dimensional Fourier transform of
a generic vector field F(r, t) in space-time is defined by [70]

F(k, ω) :=

∫
R4

d3rdt F(r, t)e−ik·r+iωt. (3)

If the field F(r, t) is well-behaved in R4, then the inverse Fourier integral exists and is giving by [71]

F(r, t) =

∫
R4

d3kdω

(2π)4
F(k, ω)eik·r−iωt. (4)

Throughout this paper, we assume that all relevant electromagnetic fields and currents in nonlocal
material domains possess Fourier transforms in the sense that the pair (3) and (4) exist. It is enough
for example to merely assume that the fields and currents are smooth (have continuous derivatives of
all orders.) However, this might be too restrictive in some applications, especially when it comes to
the behaviour of current and charge source distributions, which are usually required only to be Holder
continuous (for a condition of slightly stronger continuity, e.g., see [72].) Nevertheless, in what follows,
we will not worry much about how exactly the fields and sources mathematical functions are behaving
but assume they are “sufficiently well- behaved” such that the integrals (3) and (4) exist.

In the spatio-temporal domain, Maxwell’s equations can be expressed as a system of partial
differential equations in the form:

∇×E(r, t) = −∂B(r, t)

∂t
, (5)

∇×B(r, t) = µ0ε0
∂E(r, t)

∂t
+ µ0J(r, t), (6)

∇ ·B(r, t) = 0, (7)

∇ ·E(r, t) =
1

ε0
ρ(r, t). (8)

Here, ε0 and µ0 are the electric permitivity and magnetic permeability of free space, respectively.†

In order to move from the spatio-temporal domain to the momentum-frequency space (hereafter,
momentum space for brevity), i.e., the main configuration space on which electromagnetic fields live in
the present work, we simply apply the 4-dimensional Fourier transformation (3) to the space-time form
of Maxwell’s equations. In fact, in the Fourier domain, Maxwell’s equations (5)-(8) become

k×E(k, ω) = ωB(k, ω), (9)

ik×B(k, ω) = µ0J(k, ω)− iω

c2
E(k, ω), (10)

For further details about the precise mathematical conditions, see [5, 70,71].
Sometimes even more restrictions might be needed – such as uniform convergence or stronger conditions – in order to ensure that

integrals and other limiting operators, e.g., integro-differential operators, can be interchanged. However, we will not address this
here at a very general level due to space limitations but instead leave such issues to be handled on case-by-case whenever they arise
throughout the development of the theory.
† The electric field vector E is measured in V/m, while the magnetic flux density has the units of Tesla. The source distributions
are two types, volume current density J measured in A/m2, and volume charge density ρ in C/m3.
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k ·E(k, ω) =
−i

ε0
ρ(k, ω), (11)

k ·B(k, ω) = 0, (12)

where E(k, ω), B(k, ω), and J(k, ω) are the space-time Fourier transforms of the electric field, magnetic
flux intensity, and the source current distribution, respectively. We immediately note how Maxwell’s
laws acquire in momentum space a considerably simpler and more manageable algebraic form, in direct
contrast to the complicated differential form possessed by the original set (5)-(8). This is not accidental
but has been one of the key motivation to the now universal use of Fourier transform methods in physics
and engineering. More remarkable still, the relations (9)-(12) are still valid in arbitrary material domain
with both temporal and spatial dispersion. This, in fact, provides another fundamental motivation
for rebuilding antenna theory in momentum space. Indeed, as will be shown below, it is often very
difficult – if not nearly impossible – to fully characterize and understand how antennas embedded into
nonlocal media operate if one restricts the formalism to space-time. This is because in generic spatially
dispersive domains, the space-time forms of the constitutive relations become 4-dimensional convolution-
type integrals, transforming Maxwell’s equations from partial differential equations to complicated and
unfamiliar integro-differential equations. On the other hand, by working in the momentum-frequency
space representation, most of the calculations can be done first algebraically, then only one inverse
4-dimensional Fourier transformation in the form (4) is needed to go back to space-time (if needed.) At
this point it is interesting to anticipate what will be rigoursly proved later in this paper, namely that
if we are only interested in the far-field of the antenna, then even the last mentioned inverse Fourier
integration becomes unnecessary, which is one of the key advantages of the choice of the momentum
space approach to construct a radiation theory of nonlocal antenna systems.

However, in spite of such considerable reduction in complexity, the purely algebraic equations (9)-
(12) cannot be solved till we provide a description of the material response function, most preferably
in the form of constitutive material relations dictating how matter responds to external fields at the
macroscopic level [1, 2, 68]. In this paper, we follow the Fourier transform approach – adopted from
some formulations commonly used in plasma and condensed-matter physics – for our quest to construct
the constitutive relation.‡ Our key starting point will be the setup of an unambiguous and direct
demarcation between the antenna current distribution on one hand, and the current induced in the
nonlocal medium as a result of interaction between direct fields originally produced by the antenna
current source and matter. Since this separation process possesses a microscopic origin, it should be
ultimately grounded on solving a set of appropriate coupled quantum-Maxwell’s equations, e.g., within a
semiclassical approach or fully-fledged quantum-field theoretic framework [4]. However, we will work at
the macroscopic level, allowing only averaged currents and fields as the permissible type of the unknown
dynamic variables to be determined by solving the Maxwell’s equation (9)-(12). In particular, within
such phenomenological framework the total current J(k, ω) may be decomposed into two parts [68,73]

J(k, ω) = Jant(k, ω) + Jind(k, ω), (13)

where Jant(k, ω) is the externally supplied antenna current distribution while Jind(k, ω) is the current
induced in the medium as a response to the excitation electric field. The ultimate proof of (13) rests on
the linearity of the coupled matter-Maxwell’s equations since one may envision the current production
processes as the quantum-mechanical response of charged microscopic material particles to the presence
of electromagnetic fields. Since in microscopic scattering formulations the total field is the sum of the
direct and scattered field, one can deduce immediately from this that the various current distribution
components, which are here essentially manifestation of a linear processes responding to applied fields,
will also add up to give the form (13) above. Alternatively, one may consider (13) a fundamental axiom
in the antenna theory model developed in this paper. Now, within the regime of linear response theory,
the response of matter to applied fields should be a linear operator [1, 4, 6]. The simplest form of such
an operator is a dyadic tensor transformation, allowing us to write

Jind(k, ω) = σ(k, ω) ·E(k, ω), (14)

‡ Therefore, in what follows the much more familiar multipole expansion approach, which is very often used in the engineering
literature, will not be deployed. Monographs on the electromagnetics of continuous media often either use the Fourier transform
approach or the multiple expansion, but rarely both. Even rarer is a comparison between the two, but see [10, 26, 66] for more
extensive discussion of the background to the use of alternative formulations to describe matter-field interaction.
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where σ(k, ω) is called the material conductivity tensor [4]. Note that spatial dispersion (nonlocality)
is captured by the dependence of conductivity on k, while the appearance of ω reflects normal or
temporal dispersion [1, 2]. Spatial and temporal dispersion can be physically interpreted as indication
of the presence in the material/metamaterial of key phenomena expressive of nonlocality and memory,
respectively [68, 73]. Let the electric displacement vector in space-time be D(r, t) with corresponding
space-time Fourier transform denoted by D(k, ω). In momentum-frequency space, the relation between
the electric displacement vector D(k, ω) and electric field E(k, ω) can now be written as

D(k, ω) = ε0ε(k, ω) ·E(k, ω), (15)

where the dimensionless dyadic tensorial quantity ε is defined by

ε(k, ω) := I +
i

ωε0
σ(k, ω). (16)

Here, I is the unit dyad operator, capturing the direct field, while the tensor ε(k, ω) in (16) is
called the equivalent dielectric function of the medium in frequency-momentum space [2, 26]. The
additive structure in (16) parallels that of (13). The dielectric tensor ε(k, ω) supplies the most general
description of the nonlocal medium in the frequency-momentum space [4]. Note that in contrast to the
traditional multipole formalism, the Fourier space approach to the electromagnetic response of material
domains include all electric and magnetic responses in one response tensor, namely the tensor ε, while
enjoying several properties that are based on universal principles such as energy conservation, causality,
reciprocity, etc, hence valid irrespective to the actual microscopic details of the medium [2,4,10,68,73,74].
We mention here only those generic properties of the material tensor related to dissipation and non-
dissipation because they will pop out frequently in the radiation theory to be developed below. Namely,
the material response tensor in general can be expanded as

ε(k, ω) = εH(k, ω) + εA(k, ω), (17)

where here we define the hermitian and antihermitian components by

εH(k, ω) :=
1

2

[
ε(k, ω) + ε

∗
(k, ω)

]
, εA(k, ω) :=

1

2

[
ε(k, ω)− ε∗(k, ω)

]
. (18)

respectively. Here, ∗ is the complex conjugation operation. In component form, it is clear that the
hermitian and antihermitian functions satisfy the symmetry properties

εH
ij = εH∗

ij , εA
ij = −εA∗

ij . (19)

It can be shown that only the antihermitian part of the response functions σ and ε actually contributes
to dissipative processes such as wave growth or decay inside the medium [2, 4, 6]. Throughout this
paper, we assume as typical in literature that dissipation is either small or negligible. In this case, the
relevant dispersion relations of propagating modes will be determined solely by the hermitian part of
the material response function.

As mentioned in Sec. 2, a key assumption posed in the momentum space radiation theory presented
here was that the antenna current is an independent function externally imposed from the “outside” of
the material. That is, in contrast to Jind, the antenna current Jant is not determined by microscopic
processes immanent to the nonlocal material system itself; instead, the induced current Jind collects all
individual subprocesses in the material system produced in response to the applied external source, e.g.,
polarization current, conductive current, magnetization, etc. Now, in order to find the electromagnetic
fields produced by the antenna current source Jant, the vector magnetic potential A(r, t) and the scalar
electric potential φ(r, t) are often introduced where

E(r, t) = −∇φ(r, t)− ∂A(r, t)

∂t
, B(r, t) = ∇×A(r, t). (20)

There is then the well-known freedom of choosing a suitable gauge condition (relation between A and φ)
since Maxwell’s equations in themselves are compatible with an infinite number of valid choices of these
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potential functions (gauge freedom, see [5, 69, 70].) It turns out that for the development of antenna
theory in nonlocal material domains, a very convenient gauge condition to utilize is the Fourier gauge

The Fourier Gauge : φ(r, t) = 0. (21)

Consequently, in this case from (20) the electric field in space-time and momentum space can be
expressed as

E(r, t) = −∂A(r, t)

∂t
, E(k, ω) = iωA(k, ω). (22)

The gauge condition (21) will be imposed throughout this work. In particular, let us write the wave
equation in the Fourier (momentum) space. From (9)-(11), we easily deduce

ω2

c2
E(k, ω) + k× [k×E(k, ω)] = −iωµ0J(k, ω). (23)

With the help of (22), this leads to

ω2

c2
A(k, ω) + k× [k×A(k, ω)] = −µ0J(k, ω). (24)

Note that the remaining field and source components, namely B and ρ, can be determined from other
equations like (9) and the equation of continuity, giving rise to

B(k, ω) =
1

ω
k×E(k, ω), ρ(k, ω) =

1

ω
k ·E(k, ω). (25)

In other words, in momentum space, the only effective unknown is the frequency-momentum space
electric field E(k, ω) while all other quantities can be determined based on this field variable via simple
algebraic calculations. Moreover, using the Fourier gauge, only the momentum space vector potential
A(k, ω) needs to be found by solving (24). Both (23) and (24) are in fact algebraic equations, allowing us
to derive exact analytical expressions for the antenna radiation in nonlocal media as will be demonstrated
later.§

Using (13), (14), and (22), we can introduce a slightly different material tensor ζ(k, ω) defined by

Jind(k, ω) = ζ(k, ω) ·A(k, ω), (26)

where
ζ(k, ω) := iωσ(k, ω). (27)

In terms of this tensor, the effective dielectric tensor can be re-expressed as

ε(k, ω) = I +
1

ω2ε0
ζ(k, ω). (28)

With the help of (27) and (28), we restate the wave equation (24) in the following more compact
operator form

G
−1

(k, ω)·A(k, ω) = −µ0c
2

ω2
Jant(k, ω), (29)

where the dyadic tensor

G
−1

(k, ω) := −k
2c2

ω2

(
I− k̂k̂

)
+ ε(k, ω) (30)

§ In the Fourier gauge, the only restriction is that ω 6= 0, an assumption made here. However, for applications to antennas, this is
already the case since radiation does not occur in the static regime ω = 0.
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is the inverse of the momentum-space radiation operator (spectral dyadic Green’s function) G(k, ω)
defined through the relation

A(k, ω) = −µ0c
2

ω2
G(k, ω) · Jant(k, ω). (31)

Here, k := |k| is the magnitude of the wavevector k and k̂ := k/k is the unit vector pointing in the
direction of k. The tensor G is often called in the physics literature the photon propagator [5, 6]; here,
we just refer to it as the nonlocal medium dyadic Green’s function (GF). The relations (30) and (31)
are essential for the entire momentum-space radiation theory to follow in this paper. In particular, (31)
provides a very convenient method to compute and understand the radiation field A(k, ω) in momentum
space when the space-time Fourier components of the antenna current J(k, ω) are available. In fact, the
momentum-space Green’s function G(k, ω) turns out to be much easier to work with in nonlocal domains
than the conventional dyadic GFs often used in local electromagnetics such as in [12, 13]. Note that
the nonlocal medium Green’s function (30) can be expressed analytically by the following closed-form
expression:

Gij(k, ω) =
Cij(k, ω)

G−1(k, ω)
, (32)

where Cij are the co-factors of the matrix representation of the tensor G
−1

satisfying

G
−1

(k, ω) ·C(k, ω) = IG−1(k, ω), (33)

where
G−1(k, ω) := det

[
G
−1

(k, ω)
]
. (34)

Here, ‘det’ is the determinant operator.‖ The detailed expressions of the co-factor matrix are lengthy
and will not be given here but can be found in comprehensive textbooks on matrix theory, e.g., see [75].
However, in Appendix C we give a series of general expressions suitable for electromagnetic theory
applications derived using tensor algebra methods. What is important for us here is that aside from
the the general functional dependence of ε(k, ω), the nonlocal medium Green’s function is essentially a
polynomial rational function in both k and ω. If the dielectric function itself is now expanded in power
series of both k and ω as in (2) – and also as will be done in Part II – then the GF effectively becomes
a rational polynomial in the spectral variables k and ω.

When there is no source (Jant = 0), the relation (29) reduces to

G
−1,H

(k, ω)·A(k, ω) = 0, (35)

where G
−1,H

(k, ω) is the hermitian part of the tensor G
−1

(k, ω). Here, we adopted the general
approach in plasma and condensed-matter physics where losses – introduced in our case by dissipation

in G
−1

(k, ω), ultimately caused by the antihermitian part of ε(k, ω) via (30) – is treated as small
perturbation added to the main component of the Green’s function tensor, which is hermitian [1,2,68].
For that reason, only the hermitian part is relevant to the determination of radiation modes.¶

From the homogeneous wave equation in momentum space (35), the existence of nonzero solutions
representing source-free wave fields propagating in the nonlocal domain with positive group velocity is

guaranteed only at those special combinations of ω and k at which the operator G
−1,H

(k, ω) becomes
singular (non-invertible). Since the latter operator is dyadic, this case occurs when the following equation
holds

G−1,H(k, ω) = 0, (36)

‖ It can be shown that the determinant of C is equal to G−2. Consequently, from the determinant product rule and (33), it follows
that det(G) = G, which explains our notation.
¶ We will however drop the superscript H in the future whenever that does not cause confusion in order to simplify the notation.
Note that dissipation is a more general concept than losses. For example, Landau damping in plasma domains is a collision-free form
of dissipation, hence cannot be understood as losses. The mathematical treatment of all dissipation processes, however, invariably
involves the decomposition of some suitable quantities into hermitian and antihermitian components, see [2,4,68,74] for more details.
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which is referred to universally as the dispersion relation of the domain who dielectric function is
ε(k, ω). In general, there exists multiple solutions to (36), each labeled by an integer l captured by
the lth mode dispersion relation, which is usually put either in the form ω = ωl(k) or k = kl(ω).
Each such solution of the dispersion relation will give rise to a field distribution Al(k, ω) obtained by
solving the corresponding wave equation (35), where this field can be thought of as a vector element

belonging to the null space of the Green’s dyad operator G
−1,H

(k, ω). Note that since the wave equation
is homogeneous, an arbitrary complex normalization factor is present and hence it is best to work with
normalized modal fields êl(k, ω) instead of Al(k, ω), which we define by:

êl(k) :=
A(k, ωl(k))

|A(k, ωl(k))|
. (37)

Furthermore, since a polarization vector is defined only with respect to a given modal dispersion relation
ω = ωl(k), the modal field is really a function of k only and hence it will always be written as êl(k)
instead of êl(k, ω). In addition, to normalize the modal fields, the following standard orthonormality
condition is imposed:

êl(k) · ê∗l (k) = 1. (38)

Clearly, the modal fields are complex. Additionally, a further classification of modes is also possible
depending on how the vector êl(k) is oriented with respect to k̂. Whenever êl(k) is parallel to k, we
say that the corresponding mode is longitudinal (L). On the other hand, when êl(k) is orthogonal to k,

i.e., êl(k) · k̂ = 0, the mode is called transverse (T). However, note that these L and T modal concepts
acquire clear meaning only within momentum space.

As will be illustrated next, it turns out that the antenna radiation pattern (evaluated here in the
momentum space), is completely determined by the propagating modes arising from the solution of the
dispersion relation (36). For that reason, the art and science of designing antennas with desired far-
field radiation patterns in nonlocal metamaterials requires careful proper engineering of these radiation
modes.+ For these reasons, the dispersion relation (36) will play a crucial role in the remaining
fundamental and applied sections of this paper, especially in Part II where concrete solutions of specific
dispersion equations of L and T modes will be computed. The overall body of theory and experiments
devoted to investigating the different types of modes arising from solving dispersion relations in various
local and nonlocal materials is enormous, extending over a bewilderingly large range of applications. To
probe deeper into dispersion relations and their solutions, the reader may consult several references on
plasma physics [1,3,74], optics of solids [2,76], condensed-matter physics [4,77], magnetohydrodynamics
[68,78], and many other applications in astrophysics [3, 79] and cosmology [80,81].

4. THE NONLOCAL ANTENNA SYSTEM RADIATION PATTERN IN
MOMENTUM SPACE

In mainstream antenna theory and the treatment of other emission processes, the conventional approach
to estimating far-field radiation consists of solving Maxwell’s equations (often in vacuum) to find the
electric and magnetic fields in spacetime, forming the Poynting vector, then computing the radiated
power by integrating the latter in space and time [82–84]. This approach, however, is extremely difficult
to apply in generic anisotropic media, and in the case when the material tensor is also nonlocal, it
is probably not possible at all to work exclusively in spacetime. In what follows, we propose an
alternative pathway toward building the essential components of a computationally viable theory of
antennas radiating in nonlocal domains. The key idea is that in the momentum space of Fourier
transformed fields it is much easier to work with spectral components since in the latter case they
acquire their distinctive pure tensor-algebraic form developed above; simultaneously, using Parseval
(power) theorems, one may relate the physical meaning of some (squared) quantities in one domain to
the other. Our goal then will be to evaluate power delivered to the far zone by estimating (in momentum
space) the energy leaving the current source in the near zone and use the Green’s function to relate the
two. This general idea appears to be due to Brillouin [64].

+ This conclusion was also reached – using different route – in the near-field engineering theory proposed in [10,45]. Also, see [44,65]
for similar conclusions in applications to dispersion management.
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We start by rewriting The nonlocal medium Green’s function (32) in the slightly different form

Gij(k, ω) =
CH
ij (k, ω)

G−1,H(k, ω)
. (39)

That is, only the hermitian part is included in the momentum space Green’s function. The motivation
is what we have already alluded to earlier: dissipation in nonlocal media is often treated as perturbation
added to the pure propagation scenario described by hermitian response functions [3, 68, 85]. It is
remarkable, though, that in spite of the fact that only the hermitian part was originally taken into
the Green’s function (39) as can be seen there in the medium’s dyadic GF in co-factor form, there
still exists an antihermitian component in this Green’s function that must be added in order to enforce
causality [3,68]. This surprising observation, which is not new but often overlooked in many accounts on
electromagnetic radiation, deserves special attention because – as will become clearer below – it lies at
the heart of the momentum space antenna theory being presented in this paper. For that reason, we will
revisit the proof in a slightly detailed form in order to better appreciate in depth the connection with the
fundamental theory of antennas embedded into nonlocal metamaterials. Let us begin by noting that the
Green’s function (39) possesses “temporal poles,” i.e., poles in the complex ω-plane, determined by the
solutions of the dispersion equation (36). This implies that Gij(k, ω) would become singular at those
values of ω and k satisfying the dispersion relation ω = ωl(k) by definition we have G−1,H(k, ωl(k)) = 0.
This presents a serious problem because usually in order to find the spatio-temporal fields, one needs
to invert the Fourier transform by computing (4). This then will lead to divergent integrals when the
dummy variables ω and k hit the special values satisfying the dispersion relation ω = ωl(k). Unless
a small perturbation in the pole location is introduced, which is usually attained by replacing ω by
ω + iε, where ε is a very small positive real number, no actual solution of the electromagnetic problem
is possible [5, 68,70,86]. More explicitly, we often enact the following formal transformation

ω → ω + i0, (40)

a notation adopted hereafter. The symbolic expression i0 indicates the presence of a formal perturbation
in the medium, i.e., small dissipation inserted by hand in order to push the pole slightly beyond the
real ω-axis [12,13,68]. It is clear then that around the lth mode, the determinant G−1 appearing in the
denominator of (39) may be approximated by

G−1(k, ω) ≈ ∂G−1(k, ω)

∂ω
[ω − ωl + i0]. (41)

Using the Plemelj formula [70,87]

1

ω + i0
= P 1

ω + i0
− iπδ(ω), (42)

where P is the principal Cauchy value operator and δ the Dirac delta function, the relations (39) and
(41) when summed over all radiation modes jointly imply the existence of the following antihermitian
component

GA
ij(k, ω) = −iπ

∑
l
ωl(k)Rlij(k)δ(ω − ωl(k)), (43)

where

Rlij(k) :=
CH
ij (k, ω)

ω∂G−1(k, ω)/∂ω

∣∣∣∣∣
ω=ωl(k)

(44)

is what we term the momentum-space radiation mode Green’s function. It captures the lth mode
contribution to the ijth component (i, j = 1, 2, 3) of the nonlocal medium Green’s function tensor
G(k, ω). It turns out that only the antihermitian part of this medium Green’s function as determined by
(43) actually contributes to the real radiated power of any antenna. On the other hand, the hermitian
part of G(k, ω) contributes only to the antenna near field.
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We next explicitly compute this radiation power pattern in momentum space. Unfortunately, the
available method commonly applied to antennas radiating in free space or nondispersive media depends
on the Poynting theorem interpreted as energy conservation relation [82, 83]. It is well known that
this direct view cannot be extended without further assumptions to generally temporally dispersive
media [69]. Worse still, in nonlocal (spatially dispersive) domains, the standard interpretation of the
Poynting theorem itself is not valid since power will flow along new directions emerging from higher-
order corrections [1,2,4,44,65]. Instead, we adopt here an alternative method due to Brillouin [64] and
often adopted in various settings [88]. The key idea is to estimate the energy transferred from the source
to the near field right at the source and equate this with the net (real) power delivered to the medium.
Since in low-loss media most of the delivered power (energy) will escape to the environment’s far zone,
we may then use this energy “balance” to estimate the antenna radiation pattern. To achieve this in
momentum space, we introduce a new radiation pattern intensity Ul(k), which is formally defined as

Ul(k) :=
Density of energy transferred from the source current Jant(r, t) into the lth radiation
mode’s field per the momentum-space differential volume element d3k/(2π)3.

(45)

Clearly, the units of this quantity will be J ·m3. Let the antenna current source Jant(r, t) be examined
within a standard time interval [−T/2, T/2]. Since radiation modes do not exchange energy with each
other, we can sum over all radiation intensity functions Ul(k) defined by (45) to obtain

−
∫ T/2

−T/2
dt

∫
Vant

d3rJant(r, t) ·E(r, t) =
∑
l

∫
R3

d3k

(2π)3
Ul(k). (46)

Here, Vant is the antenna (source) region (see Fig. 2). The equality (46) is a more general statement
of energy conservation since it does not require using the Poynting vector, the latter being inadequate
when nonlocality is present. Moreover, the same relation may serve as an implicit formal definition of
the modal momentum-space density function Ul(k). With the help of the standard Parseval (power)
theorem, the total radiated energy can be re-expressed in momentum space as

Erad := −
∫ T/2

−T/2
dt

∫
Vant

d3r Jant(r, t) ·E(r, t) = −
∫
R4

dωd3k

(2π)4
J∗ant(k, ω) ·E(k, ω). (47)

The momentum space integration in the RHS of (47) is generally performed over the entire ω-k-four-
dimensional space R4, but in practice it has to be terminated by an upper cuttoff frequency. Using (22)
and (31), (47) becomes

−
∫ T/2

−T/2
dt

∫
Vant

d3r Jant(r, t) ·E(r, t) =

∫
R4

dωd3k

(2π)4

iµ0c
2

ω
J∗ant(k, ω) ·G(k, ω) · Jant(k, ω). (48)

The integral appearing at the RHS of (48) is real (because energy in the LHS is real), so it can be written
as half its sum with the complex conjugate, which implies that only the antihermitian part of G(k, ω)
will contribute to the total integral. The latter, however, has already been computed and its expression
is given by (43), which upon substitution into (48), evaluating the trivial ω-integral involving the delta
function, and noticing that negative frequencies have identical contribution to positive frequencies, will
yield the following result

Erad =
1

ε0

∫
R3

d3k

(2π)3

∑
l

J∗ant[k, ωl(k)] ·Rl(k) · Jant[k, ωl(k)]. (49)

The dyadic function Rl(k) is defined as the 3-dimensional dyad with Cartesian components given by

Rlij(k) as per (44), i.e., we have Rl(k) :=
∑3

i,j=1R
l
ij(k)x̂ix̂j , where x̂i, i = 1, 2, 3, are three Cartesian

unit bases. This crucial tensor can be further expanded with the help of (B3) and (44), leading to

Rl(k) = Rl(k) êl(k) ê∗l (k), (50)
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with

Rl(k) :=
γl(k)

ω∂G−1(k, ω)/∂ω

∣∣∣∣
ω=ωl(k)

. (51)

For the definition of γl(k), see (B4). The momentum-space function Rl(k) is the most important
quantity in the theory of nonlocal antennas proposed in this paper. As will be seen later, all calculations
distinctive of this type of antennas rely on accurate estimation of Rl(k) for various material domains.
Example calculations will be given in Part II.

Finally, by comparing (49) with (46), the following expression for the lth mode radiation intensity
is derived:

Ul(k) =
1

ε0
J∗ant[k, ωl(k)] ·Rl(k) · J[k, ωl(k)]. (52)

Using (50), the radiation mode intensity formula (52) can be further simplified into

Ul(k) =
1

ε0
Rl(k) |ê∗l (k) · Jant[k, ωl(k)]|2 . (53)

The relation (52) is very general and fundamental. It expresses the amount of radiated energy within
a unit volume in momentum-space in terms of the momentum-space radiation mode (spectral) Green’s
function Rl(k). However, this formula is directly applicable to the case of nondegenerate waves like
longitudinal waves where for each l only one modal field êl(k) exists. In radiation theory in general,
and antenna theory in particular, transverse waves are ubiquitous. These waves are degenerate since for
each mode index (order) l, there exist two modal fields ê1

l (k) and ê2
l (k) that must be taken into account

satisfying ê1
l (k) · ê2

l (k) = 0, while both vectors are orthogonal to k̂. The total energy radiated by such
degenerate modes must then include an additional summation over the multiplicity (polarization) index
s = 1, 2. The expanded tensor (50) can then be modified to become

Rls(k) = Rl(k) êls(k) ê∗ls(k), (54)

while the radiation energy formula (49) acquires the form

Erad =

∫
R3

d3k

(2π)3

∑
l

∑
s

Uls(k)︸ ︷︷ ︸
Ul(k)

. (55)

Here, the modified momentum-space modal radiation density function Uls(k) is defined by

Uls(k) := J∗ant[k, ωl(k)] ·Rls(k) · Jant[k, ωl(k)]. (56)

It is apparent from (56) that the following summation needs to be evaluated∑
s

Rls(k) = Rl(k)
∑
s

êls(k) ê∗ls(k). (57)

Using (B10), this can be readily computed as follows: If we define Ul(k) :=
∑

s Uls(k), then

Ul(k) =
1

ε0
Rl(k) J∗ant[k, ωl(k)] · (I− k̂k̂) · Jant[k, ωl(k)]. (58)

Noting that the transverse component of the current has an amplitude k̂ × J, the relation (58) can be
put in the alternative form

Ul(k) =
1

ε0
Rl(k) |k̂ × Jant[k, ωl(k)]|2. (59)



16 Mikki

The two main formulas (52) and (58) will be used in Part II in order to estimate the radiation pattern
of antennas embedded into example isotropic nonlocal metamaterials. The idea is to re-write the
wavevector k as k = kk̂ then make use of the dispersion relation ω = ω(k) in order to replace k by ω

and then evaluate the radiation energy density as function of k̂. Since the latter is an angular function
of θ and ϕ, we may then plot Ul(k, k̂) as function of angles around the source for a given k, where k

is obtained from both the desired frequency ω and the specific values of k̂ by solving the dispersion
relation ω = ωl(k, k̂) for k and then using the fundamental formulas (52) and (58).

5. SUMMARY, DISCUSSION OF THE RESULTS, AND TRANSITION TO PART II

The ultimate goal of the the momentum-space theory derived above is to provide a practical path
toward the estimation of the antenna current’s angular energy radiation pattern without first solving
for the spatio-temporal fields themselves by inverting the spectral domain GFs, a difficult and hard to
generalize task. The radiation density function Ul(k, k̂) discussed at the end of Sec. 4 is the key quantity,
but it is not the final form we will eventually work with in Part II. Instead, a more convenient form
involves the slightly different function Ul(ω, k̂), where ω is the radiator’s frequency. Since the technical
details will be provided in details in Part II, we summarize here the fundamental main features in the
computational approach developed in this paper as follows:

(i) Everything starts from knowledge of the dispersion relations whether in the form ω = ωl(k) or
kl = kl(ω).

(ii) From the proper dispersion relations, the calculations of the source radiation density pattern in the
momentum space representation rests completely on evaluating the fundamental scalar functions
Rl(k).

(iii) The previous procedure is conducted for the lth mode. The total radiation energy density will
be the direct sum of the same calculations of all modes (superposition applies to modal energy
densities). This is a direct consequence of the way in which the momentum space radiation density
function Ul(k) was constructed.

(iv) Using the angular form

k̂ = k̂(Ω) = x̂ cosϕ sin θ + ŷ cosϕ sin θ + ẑ cos θ, Ω := (θ, ϕ). (60)

the radiation density function Ul(k) can be expressed as an angular radiation density function
Ul(k,Ω).

(v) From the dispersion relation, enact the transformation

Ul(k,Ω)
k=kk̂, ω=ωl(k)−−−−−−−−−−→ Ul(ω,Ω), (61)

which is based on the dispersion relations of the lth mode. Here, ω is the frequency of the external
source energizing the radiating antenna system.

The transformation (61) will be studied in details in Part II for isotropic nonlocal MTMs but will also
be generalized to arbitrary domains in the Appendix of [63].

Like every general theory developed with a specific formalism or mathematical/conceptual
apparatus in mind, the proposed momentum space theory offers several advantages but also faces some
difficulties. For the sake of completeness, we give a brief summary of these issues here. The advantages
of the proposed theory include:

(i) The theory leads to a straightforward computational formalism that requires only knowledge of the
dielectric tensor function ¯̄ε(ω,k), the dispersion relations (36), and the modal fields êl(k) (these
can be obtained using the recipes of Appendix B.

(ii) Once the above data are found, the radiation pattern can be computed in a quasi-analytical fashion,
hence very efficiently.
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(iii) There is no need to perform Sommerfeld-type spectral integrals to invert the Green’s functions of
nonlocal domains.

(iv) The theory is completely general and works with both isotropic and anisotropic media with the
same general mathematical expressions.

(v) The theory, being developed in momentum space, makes it quite natural and straightforward
to adapt to other settings in contemporary applied physics and condensed-matter physics. For
example, it is straightforward to generalize the present theory to account for fluctuation phenomena
using the methods of [74]. Moreover, the momentum space formalism provides a direct path toward
quantization of the theory [4, 6, 67].

On the other hand, some of the open issues still faced by the proposed theory include the following
current and future points of potential further developments, which we provide only in summary form
while anticipating forthcoming work:

(i) The theory, while very general, does not yet apply to inhomogeneous media.

(ii) It is tedious to perform all the required analytical computations when the number of modes excited
by the current source within the nonlocal MTM is large.

(iii) Building concrete examples based on the general theory of this paper requires extensive analytical
calculations. For example, Part II is entirely devoted to few examples with only one or two modes
excited simultaneously.

(iv) The theory requires knowledge of the dielectric tensor ¯̄ε(ω,k) and dispersion relations in some
analytical form. If these information are only available numerically, for instance via measurement,
then some substantial additional work might be needed to evaluate the radiation pattern based on
our exact formulas. However, curve fitting and analytical approximation tool-kits can be used to
replace the numerical data by a proxy analytical form that can be used to compute the needed
fundamental radiation functions Ul(ω,Ω).

(v) The theory does not give the fields in the far zone, only the energy/power associated with them,
which is often enough for majority of antenna applications.

(vi) The theory cannot give the near field produced by the source, only the net power escaping into the
far zone.

(vii) The theory requires an array of mathematical methods not usually available to engineers and applied
physicists working on device system developments. Some of these methods include the language
of tensor calculus, the 4-dimensional Fourier analysis methods, and dyadic Green’s functions of
nonlocal domains.

Part II will be focused on explicating the points of strength of the proposed theory, especially in light
of concrete examples involving isotropic nonlocal MTMs. There, the derivation of Ul(ω,Ω) for specific
nonlocal domains will be illustrated with various examples and the potential for engineering applications
will be highlighted. For the ongoing need to overcome some of the expected difficulties mentioned above,
the author believes such open problem are quite natural and expected in any new and emerging research
field and hope they will be tackled soon in future publications.

The theory of electromagnetic radiation in nonlocal domains has been designed and developed with
the expectation that it will help stimulate the research & development of futuristic radiating systems
exhibiting unusual or nonclassical behaviour. Future antenna systems can be defined as novel antenna
technologies that are currently actively being developed or predicted to play a major role in the near
or far futures. Examples include plasma and quantum antennas, biological and molecular transmitters,
and intelligent electromagnetic agents, just to mention few. The key feature in such systems is not
necessarily that they serve a specific role in an existing applications, but instead what distinguish
such future generation of systems is their ability to exhibit a new and unique radiation properties
unseen in conventional antennas. The author believes that nonlocal antenna systems as an example of
future antennas present one of the most promising and exciting applications of fundamental theory to
technology. In Part II, we continue to explore how these future systems perform in terms of standard
measures like bandwidth, directivity, and isotropicity, in addition to new ideas, meanwhile pointing out
their potential deployment for further development especially in areas like wireless communications and
nanotechnology.
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Acronym Meaning

EM Electromagnetics/Electromagnetic

MTM Metamaterial

NL-MTM Nonlocal metamaterial

NR-NL-MTM Nonresonant nonlocal metamaterial

L Longtitdunal

T Transverse

GF Green’s Function

NL-AS Nonlocal antenna system

Table A1: List of abbreviations used in this paper (Parts I and II).

6. CONCLUSION

We have provided a complete and rigorous derivation of an equivalent quantity that gives the amount
of energy radiated by an antenna embedded into a generic nonlocal metamaterial per unit Hertz per
unit solid angle. The method is based on carrying out all calculations in frequency-momentum space
instead of the conventional approach in spacetime. Since the Poynting vector in nonlocal media fails to
describe the direction of power flow, we computed the energy injected directly from the antenna current
into the near field in order to estimate the radiation energy intensity per unit frequency per unit solid
angle. It was found that the total radiation pattern is the sum of radiation functions each controlled
by the corresponding longitudinal and/or transverse mode that the antenna launch into the nonlocal
metamaterial. The derived expression can be evaluated analytically if the dispersion relation and hence
the modes of the nonlocal medium are known.

APPENDIX A. LIST OF ABBREVIATIONS

In Table A1, we list all abbreviations used in this paper. In general, we tried to avoid using such
acronyms as much as possible.

APPENDIX B. AN ALGORITHM FOR COMPUTING POLARIZATION IN
NONLOCAL MEDIA

A rather direct routine exists for the computation of the polarization vectors corresponding to a given
mode provided the mode’s dispersion relation ωl(k) is available. We start from (33), which can be
re-adapted into the component form

3∑
n=1

GH
in(k, ω)Cnj(k, ω) = δijG

−1(k, ω). (B1)

For a given mode, G−1 = 0 and hence we have
∑

nGinCnj = 0. Therefore, every vector of the

form [ C1j C2j C3j ]
T

satisfies the homogeneous wave equation (35) for each j, implying that Cij is
proportional to the mode polarization form eli defined by (37), where i = 1, 2, 3, enumerates the three
cartesian components of êl. However, note that from its defining relation (B1), the co-factor matrix
Cij is hermitian because we operate only with the hermitian part of the propagator (Green’s function)

G. Consequently, Cnj is also proportional to e∗lj , j = 1, 2, 3. Combining these two proportionality
conditions, we write

Cij(k, ω) = γeli(k)e∗lj(k) (B2)

for some constant γ. To find this constant, we take the trace of (B2) and use (38), leading to

C(k, ωl(k)) = γl(k) êl(k) ê∗l (k), (B3)
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where
γl(k) := tr[C(k, ωl(k))]. (B4)

This decomposition of the co-factor matrix (dyad) into modal polarization factors is very general and is
often useful in calculations. Note further that the following important symmetry relation also applies

ωl(−k) = −ωl(k), (B5)

which links the forward and backward wave solutions of the wave equation. Using the reality and
hermitian conditions, this leads to

êl(−k) = ê∗l (k). (B6)

Moreover, the expansion (B3) together with (B6) jointly imply

C(−k,−ω) = C
T

(k, ω). (B7)

Assuming that the dispersion relation is available, we may now summarize the algorithm needed to
compute polarization in nonlocal domains as follow:

(i) Find the co-actor matrix Cij(k, ω) using the standard inversion approach in matrix analysis.

(ii) Substitute the dispersion relation ωl(k) into the co-factor matrix elements Cij(k, ω) in order to
obtain the k-functions Cij(k, ωl(k)).

(iii) Select any column Cij(k, ωl(k)). Normalize this column using the relation (37). This will serve as
a possible modal field solution.

In this way, the normalized êl(k) of the mode under consideration can be explicitly computed starting
from the material tensor function ε(k, ω), but only if the dispersion relation ω = ωl(k) of the mode
under consideration is available. Usually it is this dispersion law that is more expensive to compute in
the analysis of nonlocal materials.

It is instructive to add few words about energy exchange between different modes in nonlocal
domains since this behaviour is less intuitive than normal dispersion. Consider two different modes
l1 and l2 with dispersion relations ω = ωl1(k) and ω = ωl2(k), where dissipation is neglected. The
corresponding modal field distributions are captured by the vectors êl1(k) and êl2(k). By direct
calculation of the energy transferred from one the fields of one mode to another, it can be shown
that a nonzero such energy exchange may occur if and only if the following strict condition is satisfied

ê∗l2(k) ·
[
εH(k, ω)− I

]
· êl1(k) = 0. (B8)

In other words, in momentum space, geometrical orthogonality ê∗l2(k) · êl1(k) = 0 is not equivalent to
natural mode orthogonality.

We also add a useful identity enjoyed by modal polarization vectors of degenerate waves like
transverse modes with degeneracy index s = 1, 2. By its construction, the vectors êl1, êl2, and k̂
form an orthogonal basis set for R3. Therefore, we have by the resolution of identity (completeness)
relation

êl1(k) ê∗l1(k) + êl2(k) ê∗l2(k) + k̂k̂ = I (B9)

which is the completeness relation for the transverse modal fields. Summing over the two degenerate
modes, we find ∑

s

êls(k) ê∗ls(k) = I− k̂k̂, (B10)

another version of the resolution of identity for modal fields. The relation (B10) is very useful when
attempting to estimate the total radiation power/energy without needing to account for the details of
polarization, which is often the case in scattering and radiation in random media.
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APPENDIX C. EXPLICIT GENERIC SPATIAL DISPERSION DOMAIN TENSOR
FORMULAS AND SOME OF THEIR PROPERTIES

(i) The reality condition requires that

G
−1

(k, ω) =
[
G
−1

(−k∗,−ω∗)
]∗
, (C1)

where we consider the most general case of dissipative medium in which both the spatial and
temporal frequencies k and ω are allowed to become complex.

(ii) The fundamental quantity G−1, the converse of the determinant of the forward Green’s function
dyad, can be explicitly computed in terms of the material tensor ε(k, ω). The result is given by

G−1 = n4 k̂ · ε(k, ω) · k̂ − n2
(
k̂ · ε(k, ω) · k̂ tr

[
ε(k, ω)

]
− k̂ · ε2

(k, ω) · k̂ + |ε(k, ω)|
)
, (C2)

where tr
[
ε(k, ω)

]
and |ε(k, ω)| are the matrix trace and determinant operations applied to the

material tensor ε(k, ω), while

n2 :=
k2c2

ω2
. (C3)

(iii) The tensor expression for the co-factor matrix is considerably more complicated but can be put in
the form

C(k, ω) = n4 k̂k̂ − n2
{
k̂k̂ tr

[
ε(k, ω)

]
+ Ik̂ · ε(k, ω) · k̂ − k̂ k̂ · ε(k, ω)− k̂ ε(k, ω) · k̂

}
+

1

2
I
{(

tr
[
ε(k, ω)

])2 − tr
[
ε

2
(k, ω)

]}
+ ε

2
(k, ω)− tr

[
ε(k, ω)

]
ε(k, ω).

(C4)
It is worth reminding the reader that when G−1 = 0, the matrix representation of the tensor C, i.e,
the array Cij , is a rank-one matrix, while G−1

ij has rank two. The formal proof of the above relations

(C2) and (C4) can be obtained using the Cayley-Hamilton’s theorem, which states that a matrix
satisfies its own characteristic equation. The details are straightforward but the computations are
lengthy and will hence be omitted. Some of the texts that discuss these calculations include [2, 4].

(iv) The determinant of C is clearly given by

det [C(k, ω)] = G−2(k, ω). (C5)

(v) A very general formula for evaluating the fundamental Rl(k) alternative to (51) can be derived
using (C2) and (C4). The result is

Rl(k) =
ω

∂
∂ω

[
ω2 ê∗l (k) · εH

(k, ω) · êl(k)
]
∣∣∣∣∣∣
ω=ωl(k)

(C6)

This alternative form can be very useful to either perform all calculations in practical settings
or to double check the correctness of results obtained by other means and will be used in Part
II. Its usefulness resides in the fact that only the dielectric function is needed and the latter is
often available from previous analysis or measurement. We provide only a brief sketch of the
proof. Taking the hermitian of (33) then the differential and using some of the tensorial (algebraic)
properties of the co-factor matrices, the following relation can be derived

d
[
G−1,H(k, ω)

]
=

3∑
ij=1

CH
ij (k, ω)d

[
G−1,H(k, ω)

]
(C7)
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Combining the last equation with (B3), the main expression of Rl(k) given by (51) can be put in
the alternative shape

Rl(k) =
1

ê∗l (k) · ∂∂ω [ωG−1,H(k, ω)] · êl(k)

∣∣∣∣∣
ω=ωl(k)

. (C8)

The dyadic GF tensorial form in momentum space (30) can then be exploited in order to show that

ê∗l (k) · ∂
∂ω

[
ωG−1,H(k, ω)

]
· êl(k) =

1

ω

∂

∂ω

[
ω2 ê∗l (k) · εH

(k, ω) · êl(k)
]
, (C9)

after which (C6) readily follows.
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