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Abstract

We propose and develop comprehensive foundations for the analysis of nonlocal radiating systems using a special momentum-

space approach. Part II focuses on building some basic examples and applications of the theory explicated in Part I.
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Nonlocal Antenna Theory – Part II

Said Mikki*

Abstract—We deploy the general momentum space theory developed in Part I in order to explore
nonlocal radiating systems utilizing isotropic spatially-dispersive metamaterials. The frequency-
dependent angular radiation power density is derived for both transverse and longitudinal external
sources, providing detailed expressions for some special but important cases like time-harmonic- and
rectangular-pulse-excited small dipoles embedded into such isotropic metamaterial domains. The
fundamental properties of dispersion and radiation functions for some of these domains are developed
in examples illustrating the key features in nonlocal radiation, including differences in bandwidth,
directivity, virtual array effects, and others. In particular, we show that by a proper combination of
transverse and longitudinal modes, it is possible to attain perfect isotropic radiators in domains excited
by small sinusoidal dipoles. The directivity of a nonlocal small antenna is also shown to increase by
possibly four times its value in conventional local domains if certain design conditions are met.

1. INTRODUCTION

Nonlocal metamaterials (NL-MTMs) are often defined as engineered material domains exhibiting
controlled nonlocal behaviour serving a preassigned function [1–4]. Examples of NL-MTMs include
engineered plasma domains, nano-structured thin films, and composite arrays of nanotubes [5–14].
Most of the research conducted on the impact of nonlocal domains has focused on source-free wave
propagation, especially dispersion analysis. In recent years, the subject of radiation and emission in
nonlocal environments started attracting attention, leading to some basic investigations, e.g., see [15–21].
Much of this research was conducted in the optical domains and is usually tied up with special geometries
and material properties. The goal of this paper is to provide a more source-oriented perspective where
the features of the excitation signal and how they interact with the nonlocal antenna system are explicitly
formalized and investigated within the framework of a concrete setting, the special but important case
of generic isotropic nonlocal domains. Here, we demonstrate how the general momentum-space theory
of Part I [22] can be deployed to help understanding the basic radiation properties of elementary sources
embedded into such nonlocal metamaterials. Some general issues related to the overall scope of this
work and the design of metamaterials for radiating nonlocal systems had already been discussed in the
introductory sections of Part I and the reader is referred to that material for further information. In
the remaining part of this Introduction, we focus on providing a general overview of the content of the
present paper.

We start with Sec. 2, which is dedicated to presenting the main rudimentary facts (supported by
Appendix) about the main genre of nonlocal metamaterials considered in Part II, namely the generic
isotropic medium whose essential features pertinent to radiation theory are briefly sketched out in Sec.
2.1. After that, we further specialize the general isotropic case in Sec. 2.2 to concentrate for the rest
of this paper on the special but substantial example of non-resonant isotropic nonlocal metamaterials
(NR-NL-MTM). In Sec. 3, we start investigating the first concrete antenna type in this paper, a point
source, dipole-like radiator embedded into the NR-NL-MTM described in the previous section. To do so,
we first need to slightly modify the previous theory to deal with continuous sources, which necessitates
the introduction of the momentum space power spectral radiation density function by applying a careful
limiting process when the radiation energy test interval T goes to infinity. Starting from Sec. 4, we focus

1 Correspondence can be addressed to the author at the address said.m.mikki@gmail.com.
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on concrete antenna sources launching longitudinal (L) waves and explore the dispersion data of such
radiating systems and estimate the corresponding fundamental momentum-space radiation functions.
A specific temporal dispersion profile (generic Drude model) is assumed due to its popularity and wide
applicability and the main features of nonlocality consequent on this choice are investigated. The results
of the previous sections are then combined in Sec. 5 to disclose one of the most outstanding features
of nonlocal radiating antenna systems, the phenomenon of virtual arrays where careful manipulation
of the processes of launching multiple T and L modes is found to lead to the presence of an array-
factor-like radiation pattern even when only a single physical source is used. The general expressions
for this system are derived and some numerical examples are given. The directivity of a combined L-T
nonlocal antenna system excited by a small dipole is shown to vary with frequency and mode excitation
type, with the possibility of increasing directivity from 1.5 in classical (local) antennas to values as high
as 6 (i.e., four-fold increase due to the use of nonlocal MTM domains.) Another remarkable feature
of nonlocal radiating systems is the possibility to synthesize a perfectly isotropic radiation pattern,
a feature unique to nonlocal MTM and is shown to depend crucially on the excitation of L modes.
We provide an engineering application case study in Sec. 6, where exact MTM design equations were
derived for the case of point (dipole) source excitation energized by a sinusoidal signal. We also point
out possible generalization to implement approximation of isotropic radiators over a desired frequency
range for wideband applications like time-dependent arrays, UWB systems, and nonsinusoidal antennas.
Finally, we end with conclusions and comments on future work.

2. THE GENERAL THEORY OF ISOTROPIC NONLOCAL METAMATERIALS

2.1. Main Radiation Formulas in Isotropic Nonlocal Metamaterials

One of the simplest – yet still demanding and interesting – nonlocal media is the special case of
isotropic, homogeneous, spatially-dispersive, but optically inactive domains [23]. In this case, very
general principles force the generic expression of the material response tensor to acquire the concrete
form [24–26]:

ε(k, ω) = εT(k, ω)(Ī− k̂k̂) + εL(k, ω)k̂k̂, (1)

where k := |k|, k̂ := k/k, and k is the wavevector (spatial-frequency) of the field. The first term in the
RHS of (1) represents the transverse parts of the response function, while the second is the longitudinal
component, with behaviour captured by the generic functions εT(k, ω) and εL(k, ω), respectively. The

tensorial forms involving the dyads k̂k̂, however, are imposed by the formal requirement of the need to
satisfy the Onsager symmetry relations in the absence of external magnetic fields [26]. In Appendix A,
we provided detailed further information about several prominent quantities expected to play a key role
in the general radiation theory of nonlocal materials. In particular, in order to estimate the antenna
radiation pattern using the general formulas [22]

Ul(k) =
1

ε0
J∗ant[k, ωl(k)]·Rl(k)·J[k, ωl(k)], Ul(k) =

1

ε0
Rl(k) J∗ant[k, ωl(k)]·(I− k̂k̂)·Jant[k, ωl(k)], (2)

we need to evaluate the fundamental function Rl(k) for several exemplary cases. This is in fact already
available through the formula (A10) derived in Appendix A. It is interesting however to note that one
may also utilize the alternative general expression [22]

Rl(k) =
ω

∂
∂ω

[
ω2 ê∗l (k) · εH

(k, ω) · êl(k)
]
∣∣∣∣∣∣
ω=ωl(k)

(3)

after specializing the material tensor by means of (1). Both computational methods will lead to the
same answers. In either case, what is really at stake is to know the dispersion relations, at least for the
use of (A10), and both the dispersion relation and the modal polarization for formulas like (3).



Mikki 3

The dispersion relation is given by substituting (A4) into the general equation G−1,H(k, ω) = 0
derived in [22], leading to

εL(k, ω)
[
εT(k, ω)− n2

]2
= 0, (4)

which is readily satisfied provided either the longitudinal (L) or the transverse (T) waves are excited.
In details, for the L modes we denote these dispersion data by

εL(k, ω) = 0 ⇒ L modes : ω = ωL
l (k), êl(k) = k̂, (5)

where the modal fields are obviously polarized along the wavevector k. Note that such modes do not
exist in domains like free space, while if they exist in local temporally dispersive media, e.g., cold
plasma waves, they don’t effectively couple energy into the radiation zone because their group velocity
without spatial dispersion is zero [23]. On the other hand, for the T waves, two degenerate modal fields
êls(k), s = 1, 2, exist and are both contained in the plane perpendicular to k. Their dispersion relations
are clearly

εT(k, ω)− n2 = 0 ⇒ T modes : ω = ωT
l (k), êls(k) · k̂ = 0, ê∗ls1(k) · êls2(k) = δs1s2 , s = 1, 2. (6)

Such ls-modes are analogous to classical (local) antenna radiation fields but their behaviour and
properties can be very different due to the peculiarity of nonlocal domains as will be seen below in
some selected examples.

We may now directly calculate the radiation spectral structure functions for both modes. For L
waves, use of (A10) and (5) gives

RL
l (k) =

1

ω ∂ε
L(k,ω)
∂ω

∣∣∣∣∣
ω=ωL

l (k)

, (7)

where the L mode dispersion relation εL
(
k, ωL

l (k)
)

= 0 was used. A similar procedure for the case of T
waves yields

RT
l (k) =

1

ω ∂
∂ω [εT(k, ω)− n2(k, ω)]

∣∣∣∣∣
ω=ωT

l (k)

, (8)

after the use of εT
(
k, ωT

l (k)
)
− n2(k, ωT

l (k)) = 0, the dispersion relation of T modes. It is interesting
to note that the two Rl(k) functions share the same form for both L and T waves even though the
underlying dispersion data are quite different. We also notice the complete decoupling between the two
types of waves. In general, such neat separation of waves into uncoupled T and L modes is not possible
in arbitrary anisotropic domains [26]. Precisely the same formulas (7) and (8) can be obtained if we
start with (3), providing self-consistency of our calculations but the details are omitted.

2.2. Nonresonant Isotropic Nonlocal Metamaterials

For the remainder of this paper, a series of elementary concrete examples will be given in order to
illustrate some of the basic features of nonlocal antennas. Let us start with a class of nonlocal
metamaterials called nonresonant nonlocal metamaterial (NR-NL-MTM) in which the material dielectric
functions can be expanded in Taylor series as

εL(k, ω) =

N∑
i=0

ai(ω)k2i, εT(k, ω) =

N∑
i=0

bi(ω)k2i, (9)

where N is some integer terminating the series expansion. Here, the L and T dielectric functions need
not share the same upper bound on the number of terms but we assume this for simplicity. The form
(9) often arises in practice, especially for media with no excitation of strong resonant modes like surface
waves [23,25,27]. Media that may exhibit such behaviour include homogenized arrays with strong near-
field mutual coupling between the unit cells [28], materials with weak spatial dispersion [23], and some
plasma materials at certain frequency/phase velocity range [29,30], and numerous others.
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Let us further fix N = 1. In this case, the NR-NL-MTM response model (9) reduces to

εL(k, ω) = a0(ω) + a1(ω)k2, εT(k, ω) = b0(ω) + b1(ω)k2. (10)

The L mode dispersion relation (5) then becomes εL(k, ω) = a0(ω) + a1(ω)k2 = 0, which can be readily
solved to give

k =

[
−a0(ω)

a1(ω)

]1/2

. (11)

Note that we assume a0(ω) > 0, a1(ω) < 0, as is expected from the basic underlying physics [23,24,31].
Moreover, we also assume the same for the transverse response function, i.e., b1(ω) < 0, b0(ω) < 0,
which is the case for the same reasons as the L wave response. The negative root was discarded in (11)
because we already expect from symmetry that for every k-wave, the wave associated with −k is also a
solution but not of interest here since we are focusing on radiation away from the source/antenna (the
same is done below for T waves.) The T mode dispersion relation (6) gives b0(ω) + b1(ω)k2 − n2 = 0,
which after using n2 = c2k2/ω2 simplifies to

ω2b0(ω) +
(
ω2b1(ω)− c2

)
k2 = 0. (12)

The positive root solution of this equation is

k =

[
ω2b0(ω)

(c2 − ω2b1(ω))

]1/2

, (13)

which constitutes the T mode dispersion relation for N = 1 (again the negative root is discarded).
Using the alternative form of the dispersion relation written in terms of the refraction index (B1), the
T wave dispersion law can also be restated by

n2
T(ω) =

b0(ω)

c2 − ω2b1(ω)
, (14)

where nT is function only of ω but is independent of k̂. When there is no spatial dispersion, b1 = 0 and
(14) reduces to the familiar n =

√
ε law in local homogeneous and isotropic domains. Fig. 1 illustrates

the T wave dispersion data in the two forms, the index of refraction function in Fig. 1(a), and the
direct k = k(ω) function in Fig. 1(b). We study the T wave propagation characteristics within a given
frequency band with center frequency ωc, which could serve as the carrier frequency in an analog or
digital communication system. The strength of spatial dispersion is varied according to the normalized
parameter ζ := −ω2

c b1/c
2, with no spatial dispersion when ζ = 0. As can be seen from both figures, as

frequency increases, the propagation characteristics strongly deviates from the local antenna scenario as
ζ increases. In particular, the frequency dependent index of refraction nT(ω) appears to asymptotically
approach zero when spatial dispersion is very strong. This suggests that nonlocal T wave antennas may
experience reduced radiation bandwidth under conditions of strong nonlocality, an observation that will
be confirmed by further results below.

To estimate the nonlocal antenna radiation pattern, we need to evaluate the fundamental Rl(k)
function. Using (7) with the L mode dispersion relation (11) and (10), straightforward calculations give

RL
l (k) =

1

ω [a′0(ω) + a′1(ω)k2]

∣∣∣∣
ω=ωL

l (k)

, (15)

where ωL
l (k) can be obtained by inverting (11) and the prime indicates differentiation. For the T modes,

using (B1) in (8), the following expression is obtained for the T wave case:

RT
l (k) =

1

ω ∂
∂ωε

T(k, ω) + 2n2(k, ω)

∣∣∣∣∣
ω=ωT

l (k)

=
1

2n(k, ω) ∂
∂ω [ωn(k, ω)]

∣∣∣∣∣
ω=ωT

l (k)

, (16)
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(a) (b)

Figure 1: Dispersion analysis results for the nonresonant nonlocal metamaterial (NR-NL-MTM) whose
model is given by (9) with case N = 1. We also further assume here negligible T wave response temporal
dispersion (b0 = 1, ∂b1(ω)/∂ω = 0). (a) The transverse refraction index nT as function of frequency. (b)
The transverse (T wave) mode dispersion relation. Here, ζ := −ω2

c b1/c
2, where ωc := (ωmax − ωmin)/2

is the center frequency in the frequency band [ωmin, ωmax].

where ωT
l (k) is found by inverting (13). With the help of (10), expression (16) can be put into the

following general form

RT
l (k) =

1

ωb′0(ω) + ωb′1(ω)k2 + 2c2b0(ω)
c2−ω2b1(ω)

∣∣∣∣∣∣
ω=ωT

l (k)

. (17)

The expressions (15) and (17) can handle arbitrary temporal dispersion profiles for antennas radiating
into isotropic nonlocal media of class N = 1 NR-NL-MTM. To gain more insight into the basic
behaviour of such antennas, we will focus on the special but important case of negligible temporal
dispersion. Indeed, Even though nonlocal metamaterials are expected to exhibit both spatial and
temporal dispersion behaviour, in certain frequency bands and wavenumber ranges, these two types
of dispersion can be treated as independent phenomena [23, 24]. Therefore, for simplicity let us
further assume that no temporal dispersion exists in the transverse dielectric response case, which
is mathematically expressed by

b0(ω) = 1, b′1(ω) = 0. (18)

That is, the coefficients of the power series expansion (9) are not dependent on frequency. For the
special case (18), the relation (17) may be further reduced into

RT(k) =
1

2n2
T

∣∣∣∣
ω=ωT(k)

=
c2 − ω2

T(k)b1
2c2

, (19)

where for simplicity we removed the modal index l since only one T wave exists for N = 1. It should
be remembered that since b1 is negative the ratio RT(k) is always positive and in fact less than one.
Similarly, one can show that RL(k) is between 0 and 1. Such inequalities follow from fairly general
energy relations in dispersive electromagnetic media imposed by thermodynamic considerations and are
valid also for anisotropic MTMs, e.g., see [24,31]. In Sec. 3, the formula (19) will be exploited to explore
various properties and characteristics of basic sources embedded into such class N = 1 NR-NL-MTM.

3. TRANSVERSE WAVE NONLOCAL ANTENNA SYSTEMS

We are ready now to tackle computationally our first elementary radiating antenna system: the
fundamental infinitesimal dipole antenna radiating at single frequency. This is nothing but a very
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short thin wire antenna concentrated at a position (say the origin) with orientation α̂s and frequency
ωs. In spite of its extreme simplicity, this source has received considerable attention in classical antenna
theory, usually under the rubric of Hertizan dipole [32], or electrically small antennas [33]. Moreover,
it can be shown that any current that is not electrically small can be expanded into an optimized
infinitesimal dipole model comprised of only few number of such infinitesimal sources [34–36]. For that
reason, we propose that understanding the basic behaviour of a T wave nonlocal antenna should start
with focused investigation of such fundamental infinitesimal-dipole-based nonlocal antenna systems.
Extension to L wave type and arrays will be given in Secs. 4 and 5, respectively.

The expression of the infinitesimal dipole sinusoidal antenna current in spacetime is given by

Jant(r, t) = α̂sJsδ(r− rs)e
−iωst, Jant(k, ω) = α̂se

ik·rs2πJsδ(ω − ωs), (20)

where rs is the location of the source and the frequency-dependent complex-valued quantity Js = Js(ωs)
its strength. In order to utilize the radiation energy density expression [22]

Ul(k) =
1

ε0
Rl(k) |k̂ × Jant[k, ωl(k)]|2, (21)

we evidently need to square a delta function because of (20). This can be achieved with the help of the
generalized function identity [37]

[2πδ(ω − ωs)]2 = T2πδ(ω − ωs), (22)

where T is the duration of the excitation and the limit T →∞ is implicit here. The spherical coordinates
form of k̂ is given by

k̂ = k̂(Ω) = x̂ cosϕ sin θ + ŷ cosϕ sin θ + ẑ cos θ, (23)

where Ω := (θ, ϕ) and dk̂ = dΩ. With the help of (22) after substituting (20) into (21), making use of
(19) and (23), we arrive at

PT(k, k̂) =
c2 − ω2

T(k)b1
2c2ε0

|(x̂ cosϕ sin θ + ŷ cosϕ sin θ + ẑ cos θ)× α̂s|2 2π|Js|2δ(ωT,k − ωs), (24)

where the momentum-space power spectral density is defined by

P l(k) := lim
T→∞

Ul(k)

T
. (25)

The expression (24) gives the radiated power per unit momentum-space volume d3k/(2π)3 for transverse
(T) waves emitted by a point source oriented along α̂s with source tuned to frequency ωs. The angles

θ and ϕ are those associated with observation in momentum space, hence their identification with k̂.
For example, the total power radiated in the angular sector Ωr 3 k̂ and within the wavenumber range
k1 < k < k2 is given by

P rad(k1 < k < k2, k̂ ∈ Ωr) =

∫ k2

k1

dk

∫
Ωr

dΩ.PT(k, k̂). (26)

Physically, a radiation function of the form P (k, k̂) measures the radiated power density per unit solid
angle per unit wavenumber, with units of Watt per solid angle per 1/m. The wavenumber k can be
considered as a measure of the inverse of the characteristic wavelength of the field’s spatial variation, so
for small k the field possesses very large λ-components, while short-wavelength components correspond
to k →∞ [24,25]. However, in controlled radiation theory we rarely have that great flexibility in regard
to manipulating the production of the source’s wavelength components. Instead, what is typically
available to the scientist and engineer is the frequency of the externally applied source or natural
process pumping energy into the nonlocal material/metamaterial. Now the key idea of this paper is
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that radiated energy can be computed in both momentum space and spacetime. Note that the delta
function in (24) forces only one T mode to be excited, that in which k satisfies the condition ω(k) = ωs.
This corresponds to the familiar condition in local radiation theory where all emitted waves must satisfy
k = ωs/c; however, due to the increased number and complexity of modes associated with radiation
into nonlocal media, the antenna radiation pattern is expected to be significantly altered qualitatively
and quantitatively as will be discussed in Sec. 5.

What is needed next is a general expression for the nonlocal antenna radiation pattern expressed as
function of angles and frequency instead of angles and k, i.e., a function of the form Ul(ω, k̂) or Pl(k̂;ω)
in line of the proposal given toward the end of Part I. We provide here a simple method to derive
such frequency-dependent radiation pattern valid for the case of generic isotropic nonlocal domains.
The most natural method is to equate energy in both representations, i.e., Ul(ω, k̂) is defined by the
equality: ∫

d3k

(2π)3
Ul(k) =

∫
dω

∫
dΩ Ul(ω, k̂). (27)

Note that in this paper we interchange k̂ and Ω whenever convenient, see (23). To do so, the dispersion
relation ωl(k) will be used, but in the more appropriate form

kl(ω) = kl(ω)k̂ (28)

valid only if the index of refraction nl(ω, k̂) defined by (B1) is independent of k̂, which is the case in
isotropic nonlocal media (The generalization to arbitrary media is given in Appendix B). The function
k = kl(ω) is obtained by inverting the dispersion relation ω = ωl(k). Note that by construction there
is only one mode captured by the dispersion relation ωl(k) so this function is injective (one-to-one),
and hence invertible with one k-root for the equation ωl(k) − ω = 0, which we denote by kl. Now, in
spherical coordinates, the volume element in the momentum (spatio-spectral) space k may be written
as d3k = dk k2dΩ, while dk = (dkl/dω)dω. Therefore, the LHS of (27) may be expanded as∫

d3k

(2π)3
Ul(k) =

∫
dωk2 dkl(ω)

dω

∫
dΩUl[kl(ω), k̂]. (29)

Comparing (29) with (27), it is possible to deduce that

Ul(ω, k̂) =
k2
l (ω)

(2π)3

dkl(ω)

dω
Ul[kl(ω), k̂]. (30)

Physically, the quantity (30) represents the radiation energy density, or energy per unit solid angle per
unit radian frequency (Watt per starad per rad/s). The total energy radiated within a frequency band
[ω1, ω2] and angular sector Ωr is given by

U rad(ω1 < ω < ω2, k̂ ∈ Ωr) =

∫ ω2

ω1

dω

∫
Ωr

dΩUl(ω, k̂). (31)

On another hand, it is quite straightforward to compute the radiation pattern in terms of power instead
of energy. Using (30) in (25), the observable radiation power pattern of the nonlocal point source can
be put in the form

PT(θ, ϕ;ω) =
ω2

16π3ε0c2
√
c2 − ω2b1

|(x̂ cosϕ sin θ + ŷ cosϕ sin θ + ẑ cos θ)× α̂s|2 2π|Js|2δ(ω − ωs),

(32)
where ωs is the externally supplied (antenna) source frequency and the T wave dispersion relation
(13) was utilized. The relation (32) constitutes the T wave antenna (angular) radiation power density
(radiation pattern for short), i.e., the amount of power radiated by the T mode in the direction (θ, ϕ) per
unit frequency when a sinusoidal point source with frequency ωs and orientation α̂s excites an isotropic
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nonresonant nonlocal metamaterial with N = 1. In particular, the total radiated power in the solid
angular sector Ωr := {θ1 < θ < θ2, ϕ1 < ϕ < ϕ2} can be computed by means of the formula

P rad(Ωr) =

∫ ∞
0

dω

∫
Ωr

dΩ PT(θ, ϕ;ω) =

∫ ∞
0

dω

∫ θ2

θ1

∫ ϕ2

ϕ1

dθdϕ sin θ PT(θ, ϕ;ω). (33)

The proof of (33) follows directly from the manner in which Ul was constructed via relations of the
form (29).

Moving further, the sinusoidal radiator directivity is defined as the ratio of the maximum radiated
power density divided by the isotropic power density (the power density corresponding to ideal isotropic
radiator.) Quantitatively, this is given by [33]

D(ω) :=
maxθ,ϕ P (θ, ϕ;ω)

P rad(4π;ω)/2π
, (34)

where P rad(4π;ωs) is the radiated power on the entire infinite sphere. To give a concrete example, let
us assume that the point antenna is located at the origin and oriented along the z-direction. In this
case, |k̂ × α̂s| = |k̂ × ẑ| = | sin θ|. From (32) and (33), it follows that

P rad(4π;ω) =
|Js|2ω2

8π2ε0c2
√
c2 − ω2b1

∫ 2π

0
dϕ

∫ π

0
dθ sin3 θ =

|Js|2ω2

3πε0c2
√
c2 − ω2b1

, (35)

where
∫ π

0 dθ sin3 θ = 4/3 was used. On the other hand,

max
θ,ϕ

PT(θ, ϕ;ω) =
|Js|2ω2

8π2ε0c2
√
c2 − ω2b1

max
θ,ϕ
| sin3 θ| = |Js|2ω2

8π2ε0c2
√
c2 − ω2b1

. (36)

Therefore, from (34), the T wave nonlocal antenna has directivity DT = 1.5, which is the same as
its value for local infinitesimal antennas. Therefore, sinusoidal T wave antennas of modes described
by dispersion relation (13) exhibit the same directive properties as conventional free-space antenna.
Note, however, that this does not imply that directivity is the same in all other cases. The nonlocal
antenna remains fundamentally different from conventional free-space antennas in many respects. The
first element among these distinctions is the existence of multiple modes in nonlocal radiators, e.g.,
both T and L waves, which inherently changes the radiation pattern, leading to what was described
previously as “intrinsic material array effect” emerging from the fact that several modes may act like
array antenna even though only a single physical radiator exists [2, 3, 38–41]. Some of these directive
emission differences marking nonlocal and local antenna systems are elaborated in general and for few
examples in Sec. 5. In Fig. 2, we illustrate one of those curious divergences in behaviour between local
and nonlocal radiators. Fig. 2(a) shows the radiated total power (power radiated by all polarization
components in all directions) computed by means of the expression (32) over a frequency band. The
case with ζ = 0 corresponds to zero spatial dispersion, i.e., local antennas (free-space radiators.) On
the other hand, the cases ζ = 0.1, 0.5, 1, model class N = 1 non-resonant spatial dispersion in isotropic
metamaterials with increasing strength, respectively. It is clear that the celebrated 1/λ2 power law in
electromagnetic transmission is no longer satisfied at large frequencies in the case of this nonlocal T
wave antenna system. Indeed, the local antenna possesses a ω2 frequency law, while spatially dispersive
media with the T wave mode of the class N = 1 exhibits a linear ω frequency law or 1/λ variation
for high frequency. This implies that electromagnetic waves radiated by this type of nonlocal T modes
would experience greater decay of their high-frequency components, leading to smaller transmission
bandwidth compared with local antennas in case of wireless communication applications. This striking
behaviour can also be noticed in Fig. 2(b) where we plot the angular radiation pattern of a point source
parallel to the z-direction, so θ measures directly the angle with the z-axis. It can be seen that with
significant spatial dispersion (ζ = 1), the peak radiated power level of the T wave nonlocal antenna
class N = 1 drops like 1/f with increasing frequency relative to the peak level attained by the local
antenna at the same frequency range.

It is interesting to note that the theory developed in this paper is not exclusively restricted to
sinusoidal sources of the form (20). In fact, the momentum space approach is general and can handle
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(a) (b)

Figure 2: T wave radiated power density pattern results for a sinusoidal radiators embedded into
nonresonant nonlocal metamaterial (NL-MTM) given in (9) with case N = 1. We also further assume
here negligible temporal dispersion (b0 = 1, ∂b1(ω)/∂ω = 0). The normalized radiated power is defined
as Prad/(3πε0c

3w2
c )
−1. (a) The radiated power as function of frequency computed using (32). Here,

ζ := −ω2
c b1/c

2, where ωc := (ωmax−ωmin)/2 is the center frequency in the frequency band [ωmin, ωmax].
(b) Total power radiated by a point source oriented along the z-direction. All results for the nonlocal
(NL) antennas are computed for the case of ζ = 1. The local antenna (L) case is clearly ζ = 0. while
all other cases refer to nonlocal (NL) antennas. (The L used in this figure should not be confused with
longitudinal waves used everywhere else in this paper.)

arbitrary radiators in both space and time. To give a flavour of this possible expansion of the method,
we stay within the relatively simple confines of the class N = 1 nonresonant nonlocal metamaterial
we have been exploring so far but now assume that the radiating source is excited by a rectangular
pulse rect(t/T ), where T is the total pulse duration. Such pulses are essential in studying and designing
modern digital communications. For example, digital data streams can be modeled as a series of shifted
rectangular pulses [42], see Fig. 3. The antenna current distribution in this case can be expressed in
the spacetime and momentum space via the relations

Jant(r, t) = α̂sJsδ(r− rs) rect(t/T ), Jant(k, ω) = α̂sJsT eik·rssinc

(
ωT

2

)
, (37)

where α̂s, Js, and T are the source parameters and sinc(x) := sin (πx)/πx is the sinc function.
Substituting (21), (37), and (19) into (30), the radiation energy density Ul(Ω;ω) can be obtained,
and after taking the limit (25) we arrive at the momentum space radiation energy density

UT(θ, ϕ;ω) =
J2
sT

2ω2|sinc(ωT/2)|2

16π3ε0c2
√
c2 − ω2b1

|(x̂ cosϕ sin θ + ŷ cosϕ sin θ + ẑ cos θ)× α̂s|2, (38)

where the dispersion relation (13) was used. Similar to the calculation in (35), the total energy radiated
by a dipole with rectangular pulse excitation can be obtained and is found to be given by

U rad(ω) =
|Js|2T 2ω2|sinc(ωT/2)|2

6π2ε0c2
√
c2 − ω2b1

. (39)

This is the positive (single-sided) power spectral density. To obtain the total energy radiated by the
rectangular pulse, we integrate over all frequencies:

Erad = 2

∫ ∞
0

dωP rad(ω) =

∫ ∞
0

dω
|Js|2T 2ω2|sinc(ωT/2)|2

3π2ε0c2
√
c2 − ω2b1

. (40)

Fig. 4 shows some results based on the expressions (38) and (3) for a dipole (infinitesimal) source



10 Mikki

T t

rect(t/T )

t

Digital Data Streamd(t)

3T

2T −T
2

T
2

Figure 3: Rectangular pulses carry information in a digital communications link, e.g., a digital data
stream signal d(t) (left). A typical rectangular pulse is shown (right) and is used to excite a point dipole
source embedded into a nonlocal metamaterials to explore the impact of such engineered domains on
electromagnetic radiation for potential deployment in wireless communications.

oriented along the z-direction. We apply a rectangular pulse with width T = γ2π/ωc, where ωc is the
center frequency of the study’s spectral band. The degree of spatial dispersion is measured as before
using the parameter ζ with the local antenna corresponding to ζ = 0. In Fig. 4(a), the radiation energy
function for a dipole’s rectangular pulse excitation width of T = 2π/ωc is plotted against frequency for
the case of local MTM (ζ = 0) and three scenarios of successive cases of nonlocal antennas experiencing
increase in spatial dispersion (ζ = 0.1, 0.5, 1). As we can see, the local antenna case exhibits very strong
second resonance peak at 150 GHz following the main resonance at 50 GHz. However, for nonlocal
antennas, the second resonance is significantly attenuated in comparison with the free-space antenna.
This is consistent with the results we saw previously in Fig. 2(b) where it was noticed that the nonlocal
T wave antenna’s radiation density of single mode suffers a weaker growth with frequency compared
with local antennas. Here, the actual computation of the antenna’s radiation energy in Fig. 4(a)
clearly confirms the reduction in radiation bandwidth suspected in Fig. 1 with the analysis there of
the corresponding basic modal dispersion law. On the other hand, Fig. 4(b) illustrates the impact
of the excitation window pulse duration on the radiation density. The energizing pulse width T is
varied according to 2πγ/ωc with γ = 0 assuming successively the increasing values 0.25, 0.5, 0.75, 1.0
(these results are obtained for nonlocal MTM ζ = 1.) As expected, when the pulse width increases, less
frequency components become available to excite transverse modes and the overall excitation approaches
a DC or constant signal when T →∞, which explains why radiation dampens with increasing T. We also
add that the decay of the energy spectral density Urad(ω) shown in Fig. 4(b) is very weak, making the
convergence of the total energy integral (3) slow. This is expected since the rectangular pulse excitation
shown in Fig. 3 and implemented in the source function (37) is impractical because it assumes zero
rise and fall times. In other words, this excitation current fails even to possess a first-order derivative,
which explains the slow decay of the energy spectral density. However, this represents no problem in
principle for our comparative study with nonlocal radiators since both the local and nonlocal antennas
are utilizing the same time pulse excitation form. In practice, we replace the ideal rectangular pulse by
smooth pulses, e.g., Gaussian pulses [41], and those are known to have Fourier spectra with very rapid
frequency decay, e.g., see [43].

4. LONGITUDINAL WAVE NONLOCAL ANTENNA SYSTEMS

Longitudinal (L) waves represent the second major type of electromagnetic waves that can be excited
by sources embedded into nonlocal domains. The corresponding radiating structures will be dubbed
L wave nonlocal antenna. We have already derived in Sec. 2.2 the dispersion relation of these waves
when launched in isotropic media, namely the general equation (5), and the special case of class N = 1
non-resonant type metamaterial (11). Our goal in the remaining part of this paper is to investigate
when such waves can be excited and how the combined T wave response developed in Sec. 3 and L wave
radiation (to be developed shortly in this section) can be joined together (the L-T array effect to be
discussed in Sec. 5). Let us begin by first pointing out a peculiar fact about longitudinal waves. Since

for L modes the wave is polarized along the direction of propagation, we have ê∗l (k) = k̂, and therefore
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(a) (b)

Figure 4: T wave Radiated energy results for a pulsed-excited point source oriented along the z-direction
embedded into the nonresonant nonlocal metamaterial (NR-NL-MTM) given in (9) with case N = 1
and negligible temporal dispersion (b0 = 1, ∂b1(ω)/∂ω = 0)). The antenna is excited by a rectangular
pulse with duration T as in Fig. 3. The normalized radiated energy is Urad/(J

2
sT

2/3πε0c
3w2

c )
−1 where

ωc := (ωmax−ωmin)/2 is the center frequency in the frequency band [ωmin, ωmax]. (a) Radiated energy as
function of frequency for ζ = −ω2

c b1/c
2 and T = 2π/wc. (b) Study of the impact of the excitation pulse

width T = γ2π/ωc on the T wave nonlocal antenna’s radiated energy with T wave spatial dispersion
strength parameter ζ = 1.

the L wave momentum-space radiation energy density derived in Part I can be put in the form

Ul(k) =
1

ε0
Rl(k)|k̂ · Jant[k, ωl(k)]|2. (41)

Writing the equation of continuity in the spatio-temporal domain then converting it to the momentum
space, we obtain, respectively

∂ρant(r, t)

∂t
+∇ · Jant(r, t) = 0, k · Jant(k, ω) = ωρant(k, ω), (42)

where ρant is the electric charge density of electrical source source corresponding to the externally
applied current distribution Jant. Substituting (42) into (41), the following general form is obtained

Ul(k) =
Rl(k)ω2

l (k)

k2ε0
|ρant(k, ω)|2. (43)

The expression (43) is as good as the original form (41). However, in some problems like microscopic
emission processes and certain applications in nanotechnology, it might be easier physically to express
the radiating source as a charge density rather than as an antenna current distribution, and in the latter
case the relation (43) is clearly more appropriate to work with. Nevertheless, in antenna applications
and macroscopic electromagnetics, the formula (41) expressing radiation in terms of surface or volume
current distributions is preferred because the geometrical shape of the antenna can often be invoked to
restrict the mathematical form of the current. For example, in one dimensional antennas like wires or
loops, the direction of current flow is fixed once and for all by the geometry. In cases like these and
numerous others, the evaluation of the radiation energy density Ul(k) is expected to be considerably
easier using (41) than (43).

One observation that immediately comes out after examining the L modes radiation formula when
expressed in the alternative form (43) is that such waves can radiate only if the mode frequency ωl(k) is
nonzero. While this might be expected, note that from the L mode dispersion relation (5) the dielectric
function εL(k, ω) must depend on frequency. Otherwise, the equation εL(k, ω) = 0 will not yield any
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specific value for ω for a given input k. This is clearer from the special case (11), where it is evident that
no actual dispersion relation in the form ω = ωl(k) might obtain if the condition (∂/∂ω)εL 6= 0 is not
satisfied. Therefore, the following conclusions is inevitable: In contrast to T wave nonlocal radiators,
effective L wave radiation would not be possible if the L dielectric function εL is independent of frequency
ω. In other words, unlike T wave sources discussed in Sec. 3, temporal dispersion is fundamental in
order to excite L waves in nonlocal domains. Therefore, in all the coming calculations we will need to
assume some concrete temporal dispersion model for the coefficients ai(ω) appearing in (9). However, it
is important to remember that longitudinal and transverse response functions are independent physical
processes in general [23, 25]. That is, while in some problems they may get entangled with each other,
fundamentally speaking the dielectric functions εL and εT can be treated as two distinct functions.
The material designer may then try to optimize the performance of some applications by independently
controlling the various internal parameters associated with each response function type, i.e., the array
functions ai(ω) and bi(ω).

To evaluate the L wave radiation density function, it is to be noted first that the density expression
(30) is still valid for L waves and hence when combined with (41) would give

UL(ω, k̂) =
k2

L(ω)

ε0(2π)3

dkL(ω)

dω
RL(ω)|k̂ · Jant[kL(ω), k̂]|2 (44)

as the radiation energy pattern for the L wave antenna. Here, RL(ω) := R[kL(ω)]. Note that we
specify the L mode dispersion law by the subscript/superscript and suppress the modal index since the
N = 1 class has only one mode but the same formula is valid for other L modes in higher-order classes.
Substituting the L mode dispersion relation (11) into (15) gives

RL(ω) =
1

ω
[
a′0(ω) + a′1(ω) a0(ω)

−a1(ω)

] =
a1(ω)/ω

a′0(ω)a1(ω)− a′1(ω)a0(ω)
. (45)

Furthermore, from (7) we have

dkL(ω)

dω
=

1

kL

d

dω

[
a0(ω)

−a1(ω)

]
=
−1

2kL

a′0(ω)a1(ω)− a′1(ω)a0(ω)

a2
1(ω)

. (46)

Consequently, (44) evaluates to

UL(k̂;ω) =
−nL(ω)

2ε0c(2π)3a1(ω)
|k̂ · Jant[kL(ω), k̂]|2, (47)

where the L wave index of refraction nL is given by

nL(ω) :=
kL(ω)c

ω
=
c

ω

√
a0(ω)

−a1(ω)
(48)

It is not possible to proceed further without specifying the functional forms of a0(ω) and a1(ω). As
stated earlier, these are some of the main MTM design parameters available for the material engineer.
For maximum clarity and concreteness, let us assume that this design data is given in the following
form

a0(ω) = 1−
ω2
p

ω2
, −a1(ω) =

g2

ω2
(49)

That is, the host domain dielectric response function a0(ω) is assumed to follow the classical Drude
model with Plasma frequency ωp. The parameter g is assumed to be a positive real number. Its value,
together with ωp, may be determined by the material’s physics and design. The dispersion relation of
the L wave (11) now takes the form

k2
L(ω) =

1

g2

(
ω2 − ω2

p

)
, ω2

L(k) = ω2
p + g2k2. (50)
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It is interesting to observe that the choice g =
√

3Ve, where Ve is the thermal electron velocity in a
hot plasma, results in the famous dispersion relation of Langmuir waves [23, 29]. Here, the thermal

velocity is equal to
√
kBTe/me, where Te and me are the temperature of the electron gas and the

electron mass, respectively, while kB is Boltzmann constant. While the underlying physical realization
of nonlocal metamaterials need not be restricted to plasma structures, we mention in passing that the
Langmuir-type dispersion relations obtained with the choice g =

√
3Ve are often considered accurate

when the phase velocity vp = ω/k is large compared with the thermal velocities of all species in the
thermal plasma. In general, the L mode index of refraction (48) under the special case (50) reduces
into

nL(ω) =
c

ωg

√
ω2 − ω2

p =
c

g

√
1−

ω2
p

ω2
=
c

g
a0(ω). (51)

Note that for very large frequencies ω � ωp, nL(ω) ∼ c/g, i.e., the index of refraction eventually
converges to constant level with increasing frequency, a behaviour very different from the T wave index
of refraction nT(ω) studied earlier, where in the latter case nT(ω)→ 0 as ω →∞ for the case of nonlocal
media, see Fig. 2(a).

We many now proceed to compute the L wave antenna radiation pattern. Using (49) and (51) in
(47) leads to

UL(k̂;ω) =
ω
√
ω2 − ω2

p

2ε0(2π)3g3
|k̂ · Jant[kL(ω), k̂]|2. (52)

This is the general L wave radiation formula in our special MTM case. For a sinusoidal antenna with
radiating current (20), the radiation power density can be obtained by a procedure identical to the one
employed to find (32). The result is

PL(θ, ϕ;ω) =
ω
√
ω2 − ω2

p

16ε0π3g3
|(x̂ cosϕ sin θ + ŷ cosϕ sin θ + ẑ cos θ) · α̂s|2 2πJ2

s δ(ω − ωs). (53)

It is interesting to compare this form of the L mode radiation power density with the corresponding
formula for T waves, i.e., equation (32). Both seem to share several structural features, e.g., similar ω2

law for large frequencies. Also, since g has the unit of velocity, the appearance of factors containing g3 in
the denominator of the multiplicative fraction of (53) makes the latter very symmetrical in comparison
with (32) where g is played there by c. In fact, when we consider the L-T combined response of nonlocal
antenna systems in Secs. 5 and 6, it will be found that the ratio between these two characteristic L and
T type speeds, namely g/c, will play a fundamental role. Finally, we add another notable difference
between T and L waves. It turns out that the momentum space radiation function RL(k) has a fixed
value

RL(k) =
1

2
(54)

for L waves. On another hand, the corresponding relation for T waves (19) is very different, exhibiting
a strong function of k. The equation (54) can be proved by plugging the choice (49) into (45) and
performing some additional but straightforward manipulations which are omitted here for brevity.

5. VIRTUAL ARRAYS IN NONLOCAL ANTENNA SYSTEMS

As will be shown below, it turns out that the key to understanding one of the most outstanding features
of nonlocal antennas is the existence of multiple modes, transverse and longitudinal, that could be
excited simultaneously, leading to novel and unexpected radiation characteristics of external sources
embedded into nonlocal domains. To see this, we continue working with the nonresonant nonlocal

Usually ionic species are much slower than electrons due to the small electron/nucleus mass ratio provided the various ion gases
temperatures are not very large.
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metamaterial model given in (9). The L mode dispersion relation for arbitrary N is obtained from (5)
and it assumes the form

N∑
i=0

ai(ω)k2i = 0, (55)

which is a polynomial equation in k2 of order N with frequency-dependent coefficients bi(ω). Note that
these coefficients are real since by construction the dispersion relation is applied to the hermitian part
of the response function [22]. However, even with real coefficients, the polynomial equation (55) have
N generally complex roots kL,l, l = 1, 2, ..., N. We are interested only in modes propagating away from
the source carrying effective energy to the far zone, so roots with non-negligible imaginary part are
discarded and only those solutions of (55) consisting mainly of real wavenumber k are admitted. Let
the number of these by NL ≤ N . Similarly, the T wave dispersion relation (6) together with (9) results
in the following general polynomial equation in k

b0(ω) +

[
b1(ω)− c2

ω2

]
k2 +

N∑
i=2

bi(ω)k2i = 0, (56)

which is also an N -order polynomial equation in k2, leading to N generally complex roots kT,l, l =
1, 2, ..., N . Again, we only admit those roots with positive real part and negligibly small imaginary
part. Let us denoted their number by NT ≤ N. In sum, a total of NT +NL distinct L and T modes may
be excited by a nonlocal antenna compatible with a given source excitation frequency ω. Not all waves
must be present at the same time and it is expected that a great care must be exhibited to ensure that
all modes are actually launched by the externally-introduced current Jant. In case this situation can be
achieved, the total antenna radiation density pattern may be written in the following quite general form

U(ω, k̂) = UT(ω, k̂) + UL(ω, k̂), (57)

where

UT(ω, k̂) :=

NT∑
l=1

UT
l (ω, k̂) =

NT∑
l=1

k2
T,l(ω)

ε0(2π)3

dkT,l(ω)

dω
RT,l(ω)|k̂ × Jant[kT,l(ω), k̂]|2, (58)

UL(ω, k̂) :=

NL∑
l=1

UL
l (ω, k̂) =

NL∑
l=1

k2
L,l(ω)

ε0(2π)3

dkL,l(ω)

dω
RL,l(ω)|k̂ · Jant[kL,l(ω), k̂]|2. (59)

where
RT,l(ω) := RT

l [kT,l(ω)], RL,l(ω) := RL
l [kL,l(ω)]. (60)

That is, the radiation pattern will consist of two major parts, one generated by all T modes and
is given by UT(ω, k̂), while the L wave contribution is captured by the term UL(ω, k̂). The data
needed to compute the radiation pattern in its most general form are summarized in Table 1. Note
that the momentum-space radiation functions RL

l (k) and RT
l (k) can be evaluated via (7) and (8),

respectively, and that involves only knowledge of both the dielectric functions εL(ω, k) and εT(ω, k) and
the corresponding dispersion laws. From the computational viewpoint, if the dispersion profiles of the
modes are available, the only potential difficulty in computing the total radiation pattern would stem
from the need to estimate the derivatives dkl/dω for every mode. In addition, as can be seen from (7) and
(8), the calculations of RL

l (k) and RT
l (k) themselves require estimating derivatives of the form ∂ε/∂ω.

In this paper, since all the examples given involve analytical approximation of the dispersion law, this
does not present a problem. However, in future work, dispersion analysis of more complicated materials
will involve working mainly with numerical data. In that case more careful methods to estimate the
group velocity (the converse of the above derivative) might be required since numerical differentiation
is not a stable computational method.

In order to better understand the key formulas (58) and (59), let us evaluate them for the special
but fundamental case of a point source with sinusoidal excitation as described in (20). The relevant
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Data Description
Jant(ω,k) Momentum-space source current distribution

k = kT,l(ω), l = 1, ..., NT NT dispersion functions for the T modes
k = kL,l(ω), l = 1, ..., NL NL dispersion functions for the L modes

εT(ω, k) T wave dielectric function

εL(ω, k) L wave dielectric function

Table 1: Data needed to compute the radiation pattern of a generic antenna embedded into an isotropic
nonlocal metamaterials with NT and NL T and L modes, respectively, radiating into the far zone.

quantities in this case are the radiation power density obtained by means of (25) and are given by

PT(ω; θ, ϕ) =

NT∑
l=1

k2
T,l(ω)RT,l(ω)

ε0(2π)3

dkT,l(ω)

dω
|(x̂ cosϕ sin θ + ŷ cosϕ sin θ + ẑ cos θ)× α̂s|2 2πJ2

s δ(ω − ωs)

(61)
for the radiation component mediated by T all excited transverse waves, while the corresponding
contribution due to longitudinal waves is collected in

PL(ω; θ, ϕ) =

NL∑
l=1

k2
L,l(ω)RL,l(ω)

ε0(2π)3

dkL,l(ω)

dω
|(x̂ cosϕ sin θ + ŷ cosϕ sin θ + ẑ cos θ) · α̂s|2 2πJ2

s δ(ω − ωs).

(62)
We may now illustrate more directly the virtual array effect alluded to above which is unique to radiation
phenomena in nonlocal metamaterials. If one selects the orientation of the radiating dipole to coincide
with ẑ, then the radiation spectral power densities (61) and (62) after integration over all frequencies
ω will result in

PT
rad(ωs; θ, ϕ) =

J2
s

4ε0π2

NT∑
l=1

dkT,l(ω)

dω

∣∣∣∣
ω=ωs

k2
T,l(ωs)RT,l(ω) sin2 θ, (63)

PL
rad(ωs; θ, ϕ) =

J2
s

4ε0π2

NL∑
l=1

dkL,l(ω)

dω

∣∣∣∣
ω=ωs

k2
L,l(ωs)RL,l(ω) cos2 θ. (64)

The expressions (63) and (64) provide radiation patterns complementary to each other. We first note
that for each T and L radiation law type, the angular pattern function, while possessing a temporal
frequency ω dependence, is essentially the same, namely that associated with the classic dipole sin2 θ
law in the case of T waves, and the cos2 θ for power law carried by L modes. On the other hand, if
we combine the T and L wave radiation patterns (63) and (64) according to (57), this would result in
different phenomena more akin to the array factor in conventional (local) antenna theory. Indeed, in
this case the total radiated power pattern

Prad(ωs; θ, ϕ) = PT
rad(ωs; θ, ϕ) + PL

rad(ωs; θ, ϕ) (65)

can be put in the form

Prad(ω; θ, ϕ) =
J2
sAL(ω)

4ε0π2

[
cos2 θ +A(ω) sin2 θ

]
, (66)

where

AL(ω) :=
J2
s

4ε0π2

NL∑
l=1

dkL,l(ω)

dω
k2

L,l(ω)RL,l(ω), AT(ω) :=
J2
s

4ε0π2

NT∑
l=1

dkT,l(ω)

dω
k2

T,l(ω)RT,l(ω), (67)

This, however, is valid for the present special case, and it depends on the radiation source, so the conclusion is not general enough
to cover arbitrary nonsinusoidal antennas.
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(a) (b)

Figure 5: Radiation pattern for a short dipole source oriented along the z-direction and embedded into
the isotropic nonresonant nonlocal metamaterial (NR-NL-MTM) described by (9) with class N = 1
and negligible T-wave temporal dispersion (b0 = 1, ∂b1(ω)/∂ω = 0)). The antenna is excited by the
sinusoidal point source with frequency ω = 1.1ωp where ωp is the plasma frequency for the Drude model
of a0(ω) given by (49). Only a single L and T modes each are excited here. (a) A = 0.6 (b) A = 0.9.

represent the L and T wave complex power pattern amplitudes, respectively, while their all-important
T-L power ratio is defined by

A(ω) :=
AT(ω)

AL(ω)
=

∑NT
l=1

dkT,l(ω)
dω k2

T,l(ω)RT,l(ω)∑NL
l=1

dkL,l(ω)
dω k2

L,l(ω)RL,l(ω)
. (68)

Note that to simplify notation, we replaced ωs by ω in (66), (67), (68). The frequency-dependent
factors AT(ω) and AL(ω) represent the degree of excitation (amplitude and phase) of the transverse-
and longitudinal-mediated radiation as can be inferred from (63) and (64), respectively. They do not
affect the angular radiation pattern of these types of radiation if each was radiated individually. On the
other hand, while the common factor AL(ω) in (66) still does not affect the angular radiation pattern
– exactly as it was in the individual T and L mode pattern expressions (63) and (64) – the situation is
completely different when we examine the combined T-L pattern . In the latter, it is apparent that the
actual radiation angular function does depend on the source frequency ω through the complex function
A(ω). When A = 0, we recover the pure L mode radiation pattern, while in the other extreme case
of A = ∞ the entire radiation is transverse. Remarkably, in the special case of A = 1, we obtain
essentially an isotropic radiation pattern though the antenna is oriented along a particular direction
(the z-direction in this case.) For values other than 0 and 1, A(ω) acts like a variable factor shaping
the actually attained radiation pattern. As a matter of fact, A(ω) plays a role similar to array factor
in conventional antenna theory. The main difference though is that in traditional array theory, the
radiated fields are always transverse and the array factor has a simple algebraic form. In nonlocal
antenna, however, the T-L mode array factor (68) possesses a complicated form ultimately dependent
on the material response functions and the dispersion relations. Moreover, in nonlocal antennas the
radiated fields are both longitudinal and transverse. In the case represented by (66), it appears that for
sinusoidal point sources the shaping effect due to the nonlocal domain is essentially due to the presence
of longitudinal modes.† In Fig. 5, the radiation pattern for two T-L combined array case are shown
where two scenarios are illustrated, one in which the T-L power ratio is A = 0.6 – Fig. 5(a) – and the

† This, however, needs not be the case in other, more complex nonlocal antenna systems whose investigation is outside the scope of
the present paper. For example, the author expects that complex current sources supporting only T or L waves may deviate from
the small dipole type radiation law of T or L waves, respectively, depending on how complex is the spatial distribution of the current
throughout the antenna surface. Such more complex radiators include patch-like antennas and will be explored somewhere else.
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other is when A = 0.9 – Fig. 5(b). The orientation of the dipole is also shown in the figure. It is evident
that dipoles can radiate power along the length of the source, in direct contrast to local (conventional)
antennas and this happens because of the excitation of L waves. Moreover, in the case of nearly equal
L and T wave radiation power, the overall radiation pattern approaches a perfectly isotropic radiator
form as is seen in Fig. 5(b). The exact case of perfect isotopic radiation occurs when A = 1, which will
be discussed in details in Sec. 6.

To illustrate the dependence on specific material parameters and frequency, we give few basic
examples based on the N = 1 class of isotropic nonresonant nonlocal metamaterial discussed above.
From the dispersion relations of the NT = NL = 1 T and L modes (11) and (13), we readily compute

AL(ω) =
ω
√
ω2 − ω2

p

8π2ε0g3
, AT(ω) =

ω2

8π2ε0c2
√
c2 − ω2b1

, A(ω) =
(g/c)3√

(1− ω2b1/c2)
(
1− ω2

p/ω
2
) . (69)

Fig. 6(a) and Fig. 6(b) illustrate the variations of A(ω) with frequency for several degrees of nonlocality
in the T wave response as measured by the normalized parameter ζ. We first observe that as we change
ζ from no transverse spatial dispersion (ζ = 0) to stronger transverse nonlocality characterized by larger
positive values, the change in the shape of the ratio of power divided between the T and L waves, i.e.,
the array factor A(ω), is not very significant. In general, the overall trend observed is strong decline
in the T-L power ratio as the operating frequency moves away from the plasma frequency ωp. This
indicates that in this category of nonlocal antenna systems utilizing the N = 1-class NR-NL-MTM,
power tends to concentrate in the longitudinal wave radiation component with all MTMs behaving as

lim
ω→∞

A(ω) =

{
g3

c3
, b1 = 0,

0, b1 6= 0.
(70)

In other words, for this class of NR-NL-MTM, the cube of the velocity ratio g/c presents the minimum
T-L power ratio at very large frequencies, providing a level at which the relative T and L waves’
contribution to the total far-field radiation tend to stabilize. As we have seen before, g has the units
of speed. If the NL-MTM is to be implemented using plasma domains, then g is likely to reflect the
thermal velocity of the charged particles composing the plasma medium, e.g., electrons. In general, we
prefer to keep the discussion at a more abstract and generic level in this paper where the goal is to
understand the basic physics and design principles of nonlocal radiating systems. No concrete plasma
model will be invoked in what follows, but we classify the range of possible values of the g-parameter
to three distinctive cases: (i) Nonrelativistic regime (g � c), (ii) superluminal regime (g > c), and
(iii) relativistic regime (all remaining values of g). From (70) we can see that in the nonrelativistic
regime, the T-L power ratio is small even when ζ is large (strong T wave response), implying that the
L wave contribution to the far field will tend to dominate even when the T wave response is significant.
Moreover, at higher frequencies the T-L ratio becomes even considerably smaller since (g/c)3 is much
small than g/c � 1. This case is illustrated in Fig. 6(a). On the other hand, Fig. 6(b) shows that
for larger g/c, the T-L power ratio A becomes significantly larger at all frequencies. This suggests that
NL-MTMs designed to operate in the relativistic regime exhibit larger contribution of T waves to the far
zone. Finally, in the superluminal regimes, calculations show that the T-L ratio could become greater
than unity at all frequencies. For g → c but still g < c, A(ω) may become greater than unity in the
lower edge of the frequency range ω > ωp.

Finally, let us estimate the directivity of the nonlocal antenna system exhibiting virtual array effects
by focusing on the radiation power pattern (66) with the data (69). From the definition of directivity
(34)

D(ω) :=
maxθ,ϕ P rad(θ, ϕ;ω)

P rad(4π;ω)/4π
= 4π

maxθ,ϕ [cos θ +A(ω) sin θ]∫ 2π
0 dϕ

∫ π
0 dθ sin θ

[
cos2 θ +A(ω) sin2 θ

] . (71)

Using
∫ π

0 dθ sin3 θ = 4/3 and
∫ π

0 dθ sin θ cos2 θ = 2/3, this evaluates into

D(ω) =
maxθ,ϕ {+ [A(ω)− ] sin θ}

1/3 + 2/3A(ω)
=


3A(ω)

1+2A(ω) , A(ω) ≥ ,
6−3A(ω)
1+2A(ω) , A(ω) < .

(72)
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(a) (b)

Figure 6: Virtual array effects in the radiation by a point source oriented along the z-direction embedded
into class N = 1 isotropic nonresonant nonlocal metamaterial (NR-NL-MTM) given in (9) and negligible
T wave temporal dispersion (b0 = 1, ∂b1(ω)/∂ω = 0)). The antenna is excited by the sinusoidal point
source with frequency ω while ωp is the plasma frequency for the Drude model a0 = 1 − ω2

p/ω
2 and

a1 = −g2/ω2. (a) Variation of A(ω) with frequency for g/c = 0.1. (b) Variation of A(ω) with frequency
for g/c = 0.5.

Figure 7: Directiviy of a nonlocal antenna system with single T and L modes vs. the T/L power ratio
A.

Evidently, this is very different from the classic dipole directivity of D = 3/2. In fact, the later is
obtained only when A→∞ since this is the case when AL = 0, i.e., the L wave does not exist. On the
other hand, the maximum directivity that can be attained by this system is D = 6 and occurs when
A = 0, i.e., when the entire radiation is due to L waves. For other intermediate case, the directivity
can assume the range of values depicted in Fig. 7. In the range 0 ≤ Al1, L waves dominate the
composition of the radiated fields, while at A = 1 the critical transition from L-mode-dominated to
T-mode-dominated composition occurs. As A increases, the radiation field tends to become essentially
transverse. Therefore, the use of nonlocal MTMs can lead to significant increase in the directivity of an
infinitesimal dipole antenna from 1.5 to 6, i.e., four times the classical antenna directivity.
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6. ENGINEERING APPLICATIONS: SHAPING THE RADIATION PATTERN TO
PRODUCE ISOTROPIC ANTENNA SYSTEMS

We give a quick application of radiation theory in nonlocal domains. The main idea is to demonstrate
theoretically how the design of a suitable nonlocal metamaterial may lead to the construction of future
radiating antenna system exhibiting isotropic radiation pattern. For simplicity, we continue to focus
on the special but fundamental case of infinitesimal dipole source with time-harmonic excitation. The
nonlocal T-L array factor (68) can be put in the form

A(ω) = F
[
ω, εT(k, ω), εL(k, ω), NT, NL

]
(73)

in order to emphasize the design parameters available to the engineer, where F is the generic functional
form of the dependence on such parameters. The data that must be found to design the system are
encoded in the T and L dielectric response functions εT(k, ω), εL(k, ω). These in turns determine the
dispersion law data kT(ω), kL(ω). The numbers of T and L modes NT, NL must also be determined
by the designer. If the desired radiation pattern is required to be isotropic, then from (66) we easily
deduce that a sufficient condition for this to happen is given by the equation A(ω) = 1, or in details

NT∑
l=1

dkT,l(ω)

dω
k2

T,l(ω)RT,l(ω) =

NL∑
l=1

dkL,l(ω)

dω
k2

L,l(ω)RL,l(ω). (74)

From the form (73), the unknowns to be estimated in this case are εT(k, ω), εL(k, ω) for a given frequency
ω and numbers of modes NT, NL. The relation (74) is the general design equation for sinusoidal isotropic
nonlocal antenna systems utilizing an isotropic metamaterial.

We give an example illustrating the design process by specializing for the class N = 1 NR-NL-MTM.
Making use of (67), the isotropic radiator design equation (74) reduces to

g = c

[(
1− ω2b1

c2

)(
1−

ω2
p

ω2

)]1/6

. (75)

The relation (75) represents the main design equation for isotropic nonlocal antenna systems using class
N = 1 NL-MTM. It spells out the exact connection between the class N = 1 NR-NL-MTM design
parameters b1 and g on one hand, and the operating frequency on another. Design curves are given
in Fig. 8(a) and Fig. 8(b). In Fig. 8(a), the velocity ratio g/c is plotted across frequency for several
possible values of ζ, allowing us to assess the impact of the T wave degree of nonlocality measured by ζ
on the ability to attain perfectly isotropic radiators. The results suggest that for local T wave response
(ζ = 0), the optimum value of g approaches the speed of light c as the antenna frequency increases
sufficiently away from the plasma frequency ωp since in such scenario we inherently enter the relativistic
regime. Hence, to properly design a plasma-type NL-MTM for this application, one needs to operate as
close to ωp as possible if it is desired to remain within the nonrelativistic regime. However, as we start
to inject nonlocal behaviour into the MTM by gradually increasing ζ, the optimum value of g shifts
into the relativistic regime at much lower frequencies compared with the local T wave case (ζ = 0). In
fact, at sufficiently large values for ζ, the optimum g-parameter value enters the superluminal regime
at operating frequencies fairly close to ωp. This general behaviour is further investigated in Fig. 8(b)
where we focus on how the optimum value of g changes with the T wave nonlocality parameter ζ
at specific frequency. We note there that whenever we move the operating frequency away from ωp,
the nonlocal metamaterial design parameters enter the relativistic then the superluminal regimes with
even increasing ζ. This becomes more rapid as the frequency gets greater, so for example in the case
of ω = 1.5ωp, the NL-MTM becomes superluminal starting from just around ζ = 0.4. The overall
conclusion here is that one would expects the MTM to exhibit weaker T wave nonlocality in order to
realize the optimum L wave design parameter g if the latter is to be associated with particle velocities
moving at speeds much lower than c. However, note that relativistic corrections on speed in plasma
are well known long time ago, e.g., see the analysis of the so-called relativistic plasma [23,25,30]. Also,
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(a) (b)

Figure 8: Design curves for perfectly isotropic power radiation by a point source oriented along the
z-direction embedded into class N = 1 isotropic nonresonant nonlocal metamaterial (NR-NL-MTM)
given in (9) and negligible T wave temporal dispersion (b0 = 1, ∂b1(ω)/∂ω = 0)). The antenna is
excited by the sinusoidal point source with frequency ω while ωp is the plasma frequency for the Drude
model a0 = 1 − ω2

p/ω
2 and a1 = −g2/ω2. We use (75) to estimate the optimum design value of g in

two cases: (a) Variation of optimum isotropic g with frequency for various values of ζ := −ω2
pb1/c

2. (b)
Variation of optimum isotropic g with ζ for various frequencies.

radiation phenomena in which the radiating particles are relativistic (Cherenkov radiation) are well
understood [25,44]. Finally, we add that the generic nonresonant nonlocal metamaterial discussed here
need not be exclusively realized as hot plasma domain; other technologies might be deployed in the
future to implement such metamaterial system such as near-field coupled dense packing domains or
periodic strucutres.

There are two potential difficulties with the exact design equation (74). First, it is not immediately
clear that for a given frequency and number of modes that relation can yield useful solution for
εT(k, ω), εL(k, ω). Even if such solutions exist, the realization of the nonlocal metamaterial might
be not available for the range of values obtained. Second, the design approach encapsulated by (74)
is inherently a single-frequency approach and hence inherently narrowband. For many applications,
especially modern wireless communication system, the bandwidth could be much larger. To resolve
these two difficulties, an approximation is more suited. The idea is that instead of enforcing an exact
isotropic radiator, one may construct a suitable cost function to measure the deviation of the actually
obtained radiation pattern from a target isotropic reference

P ref(ω; θ, ϕ) :=
J2
sAL(ω)

4ε0π2
. (76)

One such suitable cost measure can be the minimum mean square error (MMSE) function

C[εT(k, ω), εL(k, ω), NT, NL] =
1

ωmax − ωmin

∫ ωmax

ωmin

dω
1

Ωr

∫
Ωr

dΩ |Prad(ω; θ, ϕ)− P ref(ω; θ, ϕ)|2, (77)

where a convenient numerical optimization of this error will be performed over both the frequency
interval of interest [ωmin, ωmax] and the radiation pattern observed over a given solid angle sector Ωr.
The goal then is clearly to use powerful optimization algorithm to numerically search for the best
nonlocal metamaterial parameters εT(k, ω), εL(k, ω), NT, , NL, such that the error C is minimum. This
is usually attained with additional restriction on the available ranges for these optimization parameters
enforced by the availability of the nonlocal domain to the designer, leading effectively to constrained
optimization problems. In this way, a nonlocal metamaterial can be designed to realize a wideband
isotropic nonlocal antenna system.
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7. CONCLUSION

We provided a detailed application of the general momentum-space radiation theory expounded in
Part I focusing on the special but essential case of nonlocal isotropic metamaterials. The specialized
dispersion and radiation formulas corresponding to this scenario were derived in details and several
analytical and numerical examples were provided to illustrate the use of the theory in describing and
designing nonlocal antenna systems. In particular, we studied the behaviour of transverse (T) and
longitudinal (L) wave antennas and explored some of their properties. Comparison with local antenna
counterparts were given for the cases of time-harmonic and rectangular pulse excitation of infinitesimal
dipole sources. Bandwidth and directivity performance were investigated and the distinctive differences
between local and nonlocal antennas were explicated. As a more striking difference we also explored
virtual array phenomena in nonlocal domains and showed that single sources can have array-factor like
radiation pattern. One of the possible engineering applications demonstrated here was the design of
perfectly isotropic antenna systems using small dipoles launching a proper combination of T and L
waves. Also, we computed the directivity of a combined L-T system and predicted that it may reach
four times the value of classical (local) antenna under certain (design) conditions. The theory and
examples given in this paper suggest that future antenna systems utilizing nonlocal metamaterials are
possible and promising but the path ahead is still wide open since we have only scratched the surface
of the new emerging research field of nonlocal antenna theory. Examples of future work to follow is
devising techniques to efficiently deal with computations of the radiation function when the number of
excited modes is large. Also, examples including various types of anisotropic domains will be provided
in future works. It is the hope that this theory will stimulate experimental research to design and
build nonlocal metamaterials for future antenna systems applications, especially in nanotechnology and
wireless communications.

APPENDIX A. ISOTROPIC SPATIALLY-DISPERSIVE TENSOR FORMULAS AND
SOME OF THEIR PROPERTIES

We work with a medium possessing a dielectric tensor given by (1). In this case, we can write

G
−1,L

(k, ω) = εL(k, ω)k̂k̂, G
−1,T

(k, ω) =
(
εT(k, ω)− n2

)
(I− k̂k̂), (A1)

where the momentum-space dyadic GF

G
−1

(k, ω) := −k
2c2

ω2

(
I− k̂k̂

)
+ ε(k, ω) (A2)

from [22] and n2 = k2c2

ω2 were used. From the definition of matrix determinant, we conclude

G−1,L(k, ω) = εL(k, ω), G−1,T(k, ω) = εT(k, ω)− n2. (A3)

It can also be shown by direct calculations that the following decomposition hold

G−1(k, ω) = εL(k, ω)
[
εT(k, ω)− n2

]2
. (A4)

On the other hand, expanding the co-factor matrix into longitudinal and transverse parts, we arrive at

C(k, ω) =
(
εT(k, ω)− n2

) [(
εT(k, ω)− n2

)
k̂k̂ + εL(k, ω)(I− k̂k̂)

]
. (A5)

In particular, the forward Green’s function in of this special nonlocal medium acquires the simple form

G(k, ω) =

(
εT(k, ω)− n2

)
k̂k̂ + εL(k, ω)(I− k̂k̂)

εL(k, ω) (εT(k, ω)− n2)
. (A6)
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Let us now evaluate the trace of the co-factor matrix. Nothing the relations tr[k̂k̂] = 1, tr[I] = 3, the
trace function γl(k) := tr[C(k, ωl(k))] from [22] applied to (A5) yields

γl(k) :=
(
εT(k, ω)− n2

) [(
εT(k, ω)− n2

)
+ 2εL(k, ω)

]
. (A7)

Next, in order to estimate the crucial Rl(k) function

Rl(k) =
γl(k)

ω∂G−1(k, ω)/∂ω

∣∣∣∣
ω=ωl(k)

(A8)

constructed in [22], we use (A4) to compute

∂G−1(k, ω)

∂ω
=
∂εL(k, ω)

∂ω

[
εT(k, ω)− n2

]2
+ 2εL(k, ω)

(
εT(k, ω)− n2

) ∂ (εT(k, ω)− n2
)

∂ω
, (A9)

which after substituting into (A8) and making use (A7) results in the following expression

Rl(k) :=

(
εT(k, ω)− n2

)
+ 2εL(k, ω)

ω ∂ε
L(k,ω)
∂ω (εT(k, ω)− n2) + 2ωεL(k, ω)∂(εT(k,ω)−n2)

∂ω

∣∣∣∣∣
ω=ωl(k)

(A10)

valid for arbitrary nonlocal isotropic and optically inactive metamaterials. Even though (A10) may still
look complicated, it has the advantage that it does not require evaluating the modal field distribution
functions êl(k) and depends only on the dispersion relations ωl(k) and the material tensor functions.

APPENDIX B. THE MOMENTUM-SPACE RADIATION FORMULA FOR GENERIC
TIME-DOMAIN SOURCES

We convert the radiation formula (2) into a form more convenient for antenna applications valid for
arbitrary nonlocal metamaterial domains, not necessary only isotropic media as done in Sec. 3. The
direction of wave propagation is k̂ := k/k, so we may describe this direction by a solid angle Ω. The

magnitude k = |k| is related to frequency through the mode dispersion relation ω = ωl(k, k̂). It is
better, however, to express the dispersion relation in the form

k2c2

ω2
= n2

l

(
ω, k̂

)
, (B1)

which is very frequently used in optics [26]. Here, nl is the index of refraction of the lth mode and the
positive square root of (B1) is assumed. The volume element d3k/(2π)3 in momentum space can now
be re-expressed in spherical coordinates, then we transform k to ω using (B1). Therefore,

∫
R3

d3k

(2π)3
=

∫ ∞
0

dω

∫
4π

dk̂
ω2n2

l

(
ω, k̂

)
(2πc)3

∂

∂ω

[
ωnl

(
ω, k̂

)]
. (B2)

We now introduce the antenna radiation pattern Ul(ω, k̂), which is defined by∫
R3

d3k

(2π)3
Ul(k) =

∫ ∞
0

dω

∫
4π

dk̂ Ul

(
k, k̂
)
. (B3)

Physically, Ul(ω, k̂) is the energy radiated in standard time interval with duration T per unit frequency
per unit solid angle. Using (B2) and (2), we finally arrive at

Ul

(
ω, k̂

)
=
ω2n2

l

(
ω, k̂

)
(2πc)3

∂

∂ω

[
ωnl

(
ω, k̂

)]
Ul

[
(ω/c)nl

(
ω, k̂

)
k̂
]
, (B4)
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where
Ul

[
(ω/c)nl

(
ω, k̂

)
k̂
]

= J∗ant(k, ω) ·Rl(k) · Jant(k, ω)
∣∣
k=(ω/c)nl(ω,k̂)k̂

. (B5)

In writing (B4) and (B5), we have used k = kk̂ then re-expressed k in terms of ω and k̂ with the
help of (B1). Consequently, the radiation mode antenna pattern intensity as function of direction and
frequency is completely determined by the dispersion relation (B1).
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