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Abstract

Using thermal inertia in district heating systems (DHSs) to improve the dispatch flexibility and economy of integrated heat and

electricity systems (IHESs) is a research hotspot and difficulty. In most existing studies, the partial differential equations (PDEs)

of thermal inertia are approximated by discrete-time models, making it difficult to accurately describe the continuous dynamic

processes. In this paper, we propose a novel generalized phasor method (GPM) for thermal inertia in DHSs with constant mass

flow. Based on the analytical solution of the PDEs and the Fourier transform, the intractable PDEs are transformed into a series

of complex algebraic equations represented by phasors. The GPM has higher accuracy compared to traditional discrete models

because it is essentially a continuous model in the time domain. Then, we present a different representation of an integrated

heat and electricity dispatch (IHED) model combining a DHS model in phasor form and a traditional electrical power system

model. The IHED model is a convex programming problem and can be easily solved. The effectiveness of the proposed GPM

and dispatch model is verified in three test systems. Compared with traditional methods for modeling the thermal inertia, the

proposed GPM is more accurate.
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Abstract—Using thermal inertia in district heating systems 

(DHSs) to improve the dispatch flexibility and economy of 
integrated heat and electricity systems (IHESs) is a research 
hotspot and difficulty. In most existing studies, the partial 
differential equations (PDEs) of thermal inertia are approximated 
by discrete-time models, making it difficult to accurately describe 
the continuous dynamic processes. In this paper, we propose a 
novel generalized phasor method (GPM) for thermal inertia in 
DHSs with constant mass flow. Based on the analytical solution of 
the PDEs and the Fourier transform, the intractable PDEs are 
transformed into a series of complex algebraic equations 
represented by phasors. The GPM has higher accuracy compared 
to traditional discrete models because it is essentially a continuous 
model in the time domain. Then, we present a different 
representation of an integrated heat and electricity dispatch 
(IHED) model combining a DHS model in phasor form and a 
traditional electrical power system model. The IHED model is a 
convex programming problem and can be easily solved. The 
effectiveness of the proposed GPM and dispatch model is verified 
in three test systems. Compared with traditional methods for 
modeling the thermal inertia, the proposed GPM is more 
accurate.   
 

Index Terms—Energy management, generalized phasor 
method, integrated heat and electricity dispatch, thermal inertia.  

NOMENCLATURE  

A. Sets and Indices 
E  Set of electrical power system (EPS) lines. 
H  Set of district heating system (DHS) pipelines. 

b  Index of EPS lines or DHS pipelines. 

/CHP GB   Set of indices of combined heat and power (CHP) 
units/gas boilers. 

/ES EL   Set of indices of electrical sources/loads. 

/HS HL   Set of indices of heat sources/loads. 

/TU Wind   Set of indices of non-CHP thermal units/wind farms.

i  
Index of CHP units, gas boilers, electrical sources,
electrical loads, heat sources, heat loads, non-CHP 
thermal units or wind farms. 

/E H   Set of EPS buses/DHS nodes. 
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HS  Set of DHS nodes associated with heat sources. 
n Index of EPS buses or DHS nodes. 

/S E
b bn n  Index of the start/end node of EPS line b. 
ES
nS  Set of electrical sources located at EPS bus n. 

,E in
nS  Set of indices of lines ending at EPS bus n. 

,E out
nS  Set of indices of lines starting at EPS bus n. 

/HS HL
n nS S Set of indices of heat sources/loads at DHS node n.

,H in
nS  Set of indices of pipelines ending at DHS node n. 

,H out
nS  Set of indices of pipelines starting at DHS node n. 

w Index of dispatch periods. 

B. Parameters and Constants 

,k ia  kth cost coefficient of device i. 
bA  Cross-sectional area of pipeline b. 

nB  Shunt susceptance at EPS bus n. 

wC  Specific heat of water. 

bF  Transmission capacity limit of EPS line b. 

nG  Shunt conductance at EPS bus n. 
HL
ih  Load demand of heat load i. 
,i ih h  Upper and lower bounds of the heat power output of 

heat source i.

,
HL
i kH 
  Phasor of heat load demand HL

ih  at k  frequency.

K  
Number of dispatch periods per day (equal to the
order of the Fourier series). 

bm  Mass flow rate of pipeline b. 
/M N Number of pipelines/nodes in the DHS.

SN  Number of heat source nodes in the DHS. 

iNK  Number of feasible region vertexes of CHP unit i. 
EL
np  Active power demand at bus n. 
FW
ip  Forecasted generation of wind farm i. 

,i ip p  Upper and lower bounds of active power output of 
electrical source i.

, ,/i iP H   Electrical/heat power corresponding to the th
vertex of CHP unit i. 

EL
nq  Reactive power demand at bus n. 
,i iq q  Upper and lower bounds of the reactive power output 

of electrical source i. 

bR  Resistance of EPS line b. 
S  Number of heat sources in the DHS. 
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,
N
n hist  Historical temperature at DHS node n. 

,N N
n nt t  Upper and lower bounds of temperature at node n. 
Amt  Ambient temperature. 

,n nv v  
Upper and lower bounds of the voltage magnitude 

nv . 

bX  Reactance of EPS line b. 
I

b  Maximum squared magnitude of the current in line b.

,v v
b b    Upper and lower bounds of S E

b bn n
v v . 

,b b
      Upper and lower bounds of sin b . 

,b n  Shift factor of bus n to line b. 

b  Heat loss coefficient of pipeline b. 

  Fundamental frequency of phasors. 

w  Density of water. 
  Time interval per period. 

/i ip p   Upward/downward ramping capability of electrical 
source i. 

/i ih h   Upward/downward ramping capability of heat 
source i. 

b  Maximum absolute difference of the voltage phase 
angle along EPS line b. 

delay  Time delay of water flowing from the start to the end 
of the pipeline. 

( ) w  Parameters and constants at period .w  

C. Variables 

/CHP GB
i ic c  Generation cost of CHP unit/gas boiler i. 
TU
ic  Generation cost of non-CHP thermal unit i. 
HS
ih  Heat power output of heat source i. 

,
HS
i kH 
  Phasor of HS

ih  at k frequency. 

/ES ES
i ip q  Active/reactive power output of electrical source i.

/S E
b bp p  Active power flow at the start/end of EPS line b. 

/Loss Loss
b bp q

Active/reactive power loss of EPS line b. 

/S E
b bq q  Reactive power flow at the start/end of EPS line b.

bt  Temperature along pipeline b. 

/S E
b bt t  Temperature at the start/end of pipeline b. 

, ,/S E
b k b kT T 
 

Phasor of /S E
b bt t  at k frequency. 

,
N

n kT 
  Phasor of N

nt  at k frequency. 

nv  Voltage magnitude at EPS bus n 

nV  Squared voltage magnitude at EPS bus n. 
/td fdx x  Vector of time-domain/frequency-domain variables.

I
b  Squared magnitude of the current in line b. 

,v
b b

     Auxiliary variable to estimate S E
b bn n

v v and sin b . 
v
b

   Auxiliary variable to estimate v
B B

    . 

b  Difference of the voltage phase angle along EPS line 
b. 

,i  th combination factor of CHP unit i. 

( ) w  Variables at period .w  

I. INTRODUCTION 

ODAY, the relationships between different energy systems, 
e.g., electrical power systems (EPSs) and district heating 

systems (DHSs), are getting closer. For example, in north 
China, most of the heat loads are supplied by combined heat 
and power (CHP) units. In microgrids, industrial, commercial 
and residential customers may need various forms of energy at 
the same time, such as electricity and heat. Under this trend of 
increasingly close coupling of various types of energy, 
multi-energy systems have become a research hotspot [1]-[3]. 

Integrated heat and electricity systems (IHESs) are some of 
the most common multi-energy systems. Many studies have 
verified that dispatching an EPS and DHS together can improve 
the economic efficiency and promote renewable energy 
consumption [4]-[9]. Reference [4] presented a steady-state 
model of a DHS and studied integrated heat and electricity 
dispatch (IHED). In [5], IHED with heat storage was studied to 
consume more renewable energy. Reference [6] studied IHED 
with a heat pump to increase the schedulability of the isolated 
community microgrid. The authors of [7] studied IHED and 
demonstrated that the electric boilers in DHSs can help EPSs 
accommodate more wind energy. References [8]-[9] used 
thermal energy storage to make an IHES more flexible and 
reduce operating costs. However, these studies were based on 
steady-state DHS models and rarely considered the thermal 
inertia characteristics. Because the time delay between sources 
and loads of a DHS is much larger than that of an EPS, a 
steady-state DHS model will result in an unreliable result. 

Thermal inertia was considered by many researchers to make 
IHED more accurate and further explore the dispatch flexibility 
of IHESs. An accurate thermal inertia model for a district 
heating network (DHN) was described by partial differential 
equations (PDEs). In mathematics, the finite difference method 
[10] is a common method for approximating and solving partial 
differential equations. It replaces derivatives and partial 
derivatives with temporal and spatial differences. In [11]-[12], 
a set of difference schemes was proposed to solve PDEs for a 
thermal dynamic process along a pipeline. However, the finite 
difference method has rarely been used for IHED because its 
computational burden is too large. 

To overcome the weakness of finite difference methods, 
researchers used discrete models in the time domain to 
approximate PDEs without spatial differences. The node 
method (NM) [13] [14] is the most widely used method for 
considering the thermal inertia of pipelines. The key idea of the 
NM is to calculate the lossless temperature at the end of a 
pipeline by averaging the temperature of the water outflowing 
from the pipeline in each dispatch period. In [15]-[16], Li et.al. 
proposed iterative solution strategies with the NM to solve the 
IHED. Reference [17] proposed a modified NM that can better 
consider the variable mass flow and studied the IHED. 
References [18]-[20] also studied IHED and adopted the NM to 
take into account the thermal inertia. In [21]-[22], a simplified 
NM was used to study IHED in which the time delay of a 
pipeline was approximate to an integer multiple of the dispatch 
interval. Reference [23] studied the transfer function of a DHN 
in the Laplace domain and used the inverse Laplace transform 

T



to establish a discrete time-domain relationship between the 
heat source and heat load. This relationship is equivalent to the 
NM and will produce the same error as the NM.  

However, the actual thermal inertia process is continuous in 
time. Therefore, using a discrete-time model to describe the 
thermal inertia inevitably leads to errors. When the time delay 
of a pipeline is not an integer multiple of the dispatch interval, 
the process of averaging in the abovementioned NM and 
modified NM will lead to errors.  

 Quality regulation, which means the control method of 
fixing the mass flow rates and varying the supply temperatures 
to satisfy the heat demand, is widely used in China, Russia and 
some Nordic countries  [26] [27]. Under this background, 
quality regulation was adopted by many researchers [18]-[23]. 
In this paper, the mass flow in the DHN is also considered 
constant. 

As with the temperature in DHSs, the instantaneous voltage 
and current in AC circuits are also related to time and space. 
The phasor method for AC circuits was proposed by Steinmetz 
C P in 1893 [24] [25]. It transforms the differential and integral 
equations into complex algebraic equations, thereby 
simplifying the analysis and calculation of the circuit. Inspired 
by the traditional phasor method in the field of EPSs, we 
propose a novel generalized phasor method (GPM) for DHSs 
with constant mass flow by transforming the PDEs into 
complex algebraic equations. Based on the new modelling 
method, a new IHED model considering the thermal inertia of 
the DHS is developed.  

The main contributions of this paper are summarized below. 
1) A novel GPM for DHNs with constant mass flow is 

proposed. The intractable time domain PDE is converted into a 
series of linear complex algebraic equations denoted by the 
phasors in the frequency domain. This GPM not only can avoid 
spatial differences but also has a higher accuracy compared to 
the NM method. 

2) Based on the Fourier transform and the GPM, a novel 
IHED model is proposed by combining a DHS model in the 
frequency domain and an EPS model in the time domain. All 
constraints in the IHED model are convex, and the numbers of 
variables and constraints in the GPM have similar orders of 
magnitude to those in the traditional NM, so the IHED model 
can be solved efficiently.  

The remainder of this paper is organized as follows. In 
Section II, based on the analytical solutions of the PDEs, we 
derive the GPM for a DHN considering the thermal inertia. In 
Section III, we propose an IHED model combined with a 
frequency-domain DHS model and a time-domain EPS model. 
In Section IV, simulation experiments are conducted on three 
test systems to demonstrate the accuracy and effectiveness of 
the GPM and the IHED model. Conclusions are drawn in 
Section V. 

II. GPM FOR A DHN 

In this section, we propose the GPM for a DHN with constant 
mass flow. First, we define the phasor variables used in the 
GPM. Then, the PDEs and the algebraic equations in the time 

domain are transformed into a series of complex algebraic 
equations represented by phasors. Finally, a simulation 
procedure based on the GPM is proposed. 

A. Variables in the GPM 

In the first step of the derivation of the GPM, we rewrite 
some variables and parameters of the DHN into Fourier series. 
They are the thermal energy generation (1), heat load demand 
(2), temperature at the node (3), temperature at the start of the 
pipeline (4), and temperature at the end of the pipeline (5).  
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All Fourier series are represented by phasor variables to 
facilitate the derivation. In (1)-(5), the function Re( )  denotes 
taking the real part of a complex number. Taking (1) as an 
example, ( )HS

iq   is approximated by the superposition of 
trigonometric functions. ,

HS
i kQ 
  is the phasor variable associated 

with k  frequency, and  is the fundamental frequency 
whose value is discussed in Section III.  

A very important point is that all phasors should be defined 
in rectangular coordinates. In this case, the proposed GPM is 
linear with the real and imaginary parts of the phasors. If the 
phasors are defined in polar coordinates, the nonlinear 
constraints are difficult to apply in the dispatch model. 

Next, we introduce the DHN constraints one by one in 
phasor form. All complex algebraic equations mentioned below 
are equivalent to a real-part equation and an imaginary-part 
equation that are both linear. 

B. Derivation of the GPM 

1) Thermal inertia equation of the pipeline 
A widely used PDE (6) is applied to model the thermal 

inertia of hot water flows [28]. In (6),   denotes time, and l 
denotes length. The second term denotes heat convection, and 
the third term denotes heat transfer between the environment 
and water. The conductive heat transfer within the water is not 
considered in (6) because it is relatively weak compared with 
the other heat transfer terms. bm  is considered a constant. 
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By applying the superposition theorem, the PDE (6) is 
decomposed, and the PDE for each phasor is obtained, as 
shown in (7) and (8). 
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where ,0
S

bT denotes the direct component, so ,0 ,0Re( )S S
b bT T  . 
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Using the method of characteristics [29], we can obtain the 
analytical solution of (7) and (8), as shown in (9) and (10), 
respectively.  

 ,, , ,| , 0
b b b

E S Am
b k b k l L k b kt t T t k       A Β .  (9) 
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By rewriting equations (9) and (10) into phasor form, we 
obtain the phasor form of the relationship between the 
temperatures at the start and end of the pipeline as follows: 
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  ,  (11) 

Equation (11) describes the thermal inertia of the pipelines in 
phasor form. The intractable PDEs (6) are transformed into 
complex linear algebraic equations (11). When 1k  , equation 
(11) consists of a real-part equation (12) and an imaginary-part 
equation (13) that are both linear. 

 , ,, , ,Re( ) Re( ) I) Re( )m( ),Im(E S S
b k k b kb k bb kT T T     A A    (12) 

 ,, , ,,Im( ) Re( ) Im() Im( ) Re(

, 1,

),

..., .

b b
E S S

b k k b k k b k

H

T T T

k Kb

    



 

 

A A  


 (13) 

2) Temperature mixing equation 
Equation (14) is the temperature mixing equation in the time 

domain and denotes the energy balance at each node. 
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By substituting (1), (2), (3) and (5) into (14), we obtain 
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which is the phasor form of equation (14). 
3) Temperature continuity equations 

The temperature at the start of the pipeline is equal to the 
temperature of the start node of the pipeline, as shown in (16). 

 ,( ) ( ) ,, H ouS
n

N
n

t
b

Ht b S nt      .  (16) 
By substituting equations (3) and (4) into (16), we obtain the 

phasor form of (16) as follows: 

 ,
,

, , , 0,.., ,= .H out H
n

S N
b k n k b S n kT KT        . (17) 

Remark 1: If the mass flow rate bm  is not a constant, the 
superposition theorem is still valid, and solutions (9) and (10) 
can be obtained. However, the coefficients ,b kA  and bΒ  are 
related to ( )bm   by integral equations. Therefore, the current 
GPM is difficult to use in the IHED with a variable mass flow.  

C. Application in Simulation 

So far, we have established a linear DHN model in phasor 
form, as shown in  (11), (15) and (17). The GPM can be used to 

simulate the thermal inertia of the DHN. The greatest 
advantage of the proposed phasor method over a finite 
difference method is that it requires fewer calculations. The 
following three steps can be used to calculate the 
time-continuous expression of the DHN variables: 

Step 1. Transform the input data into phasors using the 
Fourier transform. 

Step 2. Write equations (11), (15) and (17) for the phasors at 
each frequency, and solve them. 

Step 3. Restore the phasor results at different frequencies to 
the time domain, and superimpose them. 

The error of the GPM mainly comes from the truncation 
error and spectrum aliasing of the Fourier series (1)-(5). Other 
parts of the GPM are strictly equivalent, which convert 
equations (6), (14) and (16) to equations (11), (15) and (17). In 
Section IV, we further verify the accuracy of the model and 
compare it with the traditional NM. 

Compared with a steady-state model in the time domain, the 
GPM requires listing equations for each frequency. However, 
the phasors are not related to time, so the GPM does not need to 
list equations at each dispatch point. In the next section, we 
apply this GPM to formulate the IHED model. 

III. IHED MODEL 

In this section, to apply the GPM to the IHED, we propose a 
preprocessing method for DHS data and constraints (21) to 
determine the initial state of the DHS.  Then a IHED model is 
proposed, consisting of a quadratic objective function, a linear 
DHS model based on the GPM and a second-order cone (SOC) 
EPS model based on an existing SOC relaxation method. 

A. Preprocessing of DHS Data 

In addition to the forecast data for the dispatch day, we also 
need to consider historical data because of the time delay 
characteristics of the DHS. 

In this paper, we consider historical data for the day before 
the dispatch day. The time lag of a large-scale DHS is 
approximately a few hours, so considering one day's historical 
data is sufficient. 

Assume that there are K dispatch periods per day and that the 
dispatch interval   satisfies 24K   hours. The dispatch 
point is denoted by w , and the dispatch points of the dispatch 
day are w w   , w = 1, 2,…, K. The dispatch points of the 
previous day are , +1, 2,...,0w w w K K       . 

There are 2K scheduling points in two days. According to the 
sampling theorem, we can fit a K-order Fourier series. This 
matches the symbol K used in Section II. 

According to the real discrete Fourier transform (RDFT) [30], 
we can derive the following modified Fourier transform of the 
heat load that matches the Fourier series (1)-(5): 
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where the fundamental frequency   is equal to / ( )K  and 
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B. DHS Constraints 

1) Inverse Fourier transform of the heat sources 
Because the dispatch plan received by the actual system is 

discrete, we need to map the phasors back to the time domain 
using a modified inverse Fourier transform (IFT), as follows: 

 ,
,0

Re( , 1, ..) . , .,w w
KHS jkH S

k

HS
i i kh H e i w K 


       (20) 

2) Heat flow constraints of the DHN 
The heat flow constraints of the DHN are formulated in 

phasor form, as defined in (11), (15) and (17). 
3) Initial value constraints of the node temperatures 

The initial boundary values are necessary for solving the 
PDEs, as well as solving the GPM. In this paper, the historical 
node temperatures are considered to formulate the initial 
boundary value constraints of the PDEs (6). We only need to 
consider the initial values of the temperatures at the heat source 
nodes (21), because the state of the mass-constant DHS is 
uniquely determined by the heat load power and the 
temperatures at the heat source nodes. 

 ,
, ,0

Re( ), , 1,...,0.w w
KN jkN HS
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          (21) 

Remark 2: According to the properties of RDFT, the 
imaginary parts of ,0

N
nT  and ,

N
n KT 
  are equal to 0. That is, the 

imaginary parts of ,0
N

nT  and ,
N

n KT 
  are not considered as 

decision variables in the IHED. 
4) Boundary constraints of the DHN 

The node temperatures cannot exceed the limit. The bound 
constraints are expressed in phasor form as follows: 

,0
, 1,... .Re( ,) ,w

K jkN N N
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H
n kk

t T e t n w K


        (22) 

5) Operating constraints of heat sources 
This paper considers two types of heat sources, gas boilers 

and CHP units. The set of indices of gas boilers GB  and the set 
of indices of CHP units CHP  are subsets of the set of indices 
of heat sources HS . The sets CHP , GB  and CHP  satisfy 

 CHP GB HS    .  (23) 
The operating constraints of gas boilers are as follows: 
 , , 1,..., , .wHS

i i
GB

ih h h i Kw       (24) 

 1, , , 2,..., .,w wHS HS
i i i i

GBh h h h i w K            (25) 

Constraints (24) and (25) are the output range constraints and 
the ramping constraints, respectively. 

Remark 3: Constraint (24) implies that the gas boilers are 
always on, but in some cases, the on-off states of gas boilers can 
be adjusted, and the IHED should consider mixed-integer linear 
constraints such as , , {0,1}.w w w wHS

i i i i i iy h h y h y      The GPM 
is linear, so it can be easily combined with the on-off model of 
gas boilers. After considering the on-off states of gas boilers, 
the DHS model becomes a mixed-integer linear model. If other 
parts of the IHED are linear or mixed-integer linear, the IHED 
is a mixed-integer linear programming (MILP) problem that 
can be solved efficiently by commercial solvers such as Gurobi  
[31]. In addition, if a SOC EPS model and a quadratic objective 
function are considered, the IHED becomes a mixed-integer 
SOC programming (MISOCP) problem. Although the 
MISOCP problem is more complex, it can still be solved by 
Gurobi. 

The operating constraints of CHP units are as follows: 
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Fig. 1 shows the feasible operating region of CHP unit i, 
which is a convex polygon. Constraints (26) and (27) use the 
linear combination of vertexes , ,( , )i iH P   to express the 
electrical power and heat power of CHP units. Constraints (28) 
and (29) bound the combination factor ,

w
i


  to ensure that 

, wES
ip   and , wHS

ih   are within the feasible operating region. 
Constraints (30) and (31) are the ramping constraints. For a 
more detailed model of CHP units, please refer to [33]. In [33], 
a concave piecewise linear model is presented to consider the 
partial-load performance of CHP units. The concave piecewise 
linear model can be converted into a mix-integer linear model, 
and then it can be used with the proposed GPM. 

C. EPS Constraints 

The EPS constraints are expressed in (32)-(56). For the 
computation complexity challenge, a SOC relaxation of the AC 
power flow is adopted to model the EPS. This SOC relaxation 
(32)-(51) was proposed in [34], and it is valid for both mesh and 
radial power networks.  
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Fig. 1.  Feasible operating region of CHP units. 

1, 1,( , )i iH P

2, 2,( , )i iH P

3, 3,( , )i iH P

4, 4,( , )i iH P

Heat power w
ih

E
lectrical pow

er

w
ip



 , , , ,w w wv vv v
b b b b b b b

                          (40) 

 , , , ,w w wv vv v
b b b b b b b

                          (41) 

 , , , ,w w wv vv v
b b b b b b b

                          (42) 

 , , , ,w w wv vv v
b b b b b b b

                          (43) 

 , ,w w w
S E S E S E
b n b n b n

v
b n n n n n n

v v v v v v        (44) 

 , ,w w w
S E S E S E
b n b n b n

v
b n n n n n n

v v v v v v        (45) 

 , ,w w w
S E S E S E
b n b n b n

v
B n n n n n n

v v v v v v        (46) 

 , ,w w w
S E S E S E
b n b n b n

v
b n n n n n n

v v v v v v        (47) 

 , cos sin
2 2 2

w wb b b
b b
            

       
    

 ，  (48) 

 
, cos +sin ,

2 2 2

, 1,..., .

w wb b b
b b

Eb w K

             
      

     
  





  (49) 

 ( ) ,w w
n n n n n nV v v v v v      (50) 

 2( ) , , 1,..., .w w E
n nV v n w K       (51) 

 , , 1,..., .w E
n n nv v v n w K       (52) 

 , , , 1,..., .wES ES
i i iq q q i w K       (53) 

 , , , 1,..., .wES
i i

TU
ip p p i w K       (54) 

 , ,0 , , 1,..., .w wES FW Wind
i ip p i w K        (55) 

1, , , 2,..., .,w wES ES
i i i i

TUp p p p i w K             (56) 

In the above formulations, the set ES  is the union of the 
sets TU , CHP  and Wind . Constraints (32)-(33) represent the 
active and reactive power balance. Constraints (34)-(37) define 
the active power loss and reactive power loss of the lines. The 
drop of the squared voltage magnitude along line b is restricted 
by (38). Constraints (39)-(49) are the convex approximation of 
the AC power flow constraint sinw w w

S E
b b

bn n
v v   = , wS

b bX p  
, wS

b bR q   that describes the difference of the voltage phase angle 
along line b. The auxiliary variables , wv

b
   , , wv

b
  and , w

b
    

are the convex approximations of , ,w wv
b b
     , w w

S E
b bn n

v v   and 
sin w

b
 , respectively. The convex hull of the constraint 

2( )w w
n nV v   is defined by (50) and (51). Constraints (52) and 

(53) represent the bounds of the voltage magnitude and the 
reactive power output, respectively. The active power capacity 
constraints of the non-CHP thermal units and the wind farms 
are shown in (54) and (55), respectively. Constraints (56) are 
the ramping constraints of the wind farms. 

D. Objective Function 

The objective is to minimize the total operating cost of the 
IHES, and this cost includes the costs of CHP units, non-CHP 
thermal units and gas boilers. The total operating cost is 

expressed as 
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Generally, equation (58) is convex [35]. Thus, the objective 
function (57) is a convex quadratic function. 

E. Matrix form of the IHED Model 

The proposed IHED model includes frequency-domain and 
time-domain variables. In the following matrix form, the vector 
of all phasor variables (frequency-domain variables) is denoted 
by fdx , and the vector of all time-domain variables is denoted 
by tdx . The matrix form of the IHED model is expressed as 
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(61)

(62)

(63)

(64)

(65)

In the above model, (62) and (63) are the matrix forms of 
time-domain constraints (26)-(56). (64) is the matrix form of 
frequency-domain constraints (11), (15), (17), (21) and (22). 
(65) is the matrix form of inverse Fourier transform (20). 

The model (61)-(65) is a second-order cone programming 
(SOCP) problem and can be easily solved. 

F. Discussion of the Number of Variables and Constraints 

Compared with solving the optimization problem, the 
preprocessing (18) requires very little calculation time and can 
be ignored. Moreover, the EPS model described in Section 
III.C is a traditional discrete time-domain model. Therefore, we 
only need to discuss the number of variables and constraints in 
the DHS model. We assume that there are N nodes, NS heat 
source nodes, M branches and S heat sources in the DHS. The 
results of a comparison of the number of variables and 
constraints in the GPM and a steady-state model [4] are shown 
in TABLE I. 

For a fair comparison, we consider a complex variable as two 
real variables and a complex constraint as two real constraints. 
In terms of the variables and constraints of the DHN, the GPM 
has approximately twice the number of variables and 
constraints as the steady-state model. These additional 
constraints and variables are mainly due to the fact that two 

TABLE I 
 COMPARISON OF THE NUMBER OF VARIABLES AND CONSTRAINTS 

Model Complex 
variables 

Real 
variables  

Heat flow 
constraints 

(real) 

Heat flow 
constraints 
(complex) 

IFT constraints
(20) and (21)

Boundary 
constraints 

Total number of 
equivalent real 

variables 

Total number of 
equivalent real 

constraints 

GPM 
N(K - 1) + 2MK 

+ SK  
2N + 2M + S(K 

+ 1) 
N + 2M NK + 2MK SK + NSK 2NK 

2NK + M(4K + 2) + 
S(3K + 1) 

N(4K + 1) + M(4K + 
2) + SK + NSK 

Steady-state 
model 

- 
NK + 2MK + 

SK 
NK + 2MK  - 2NK NK + 2MK + SK 3NK + 2MK 



days of data are considered in the GPM, while only one day of 
data is considered in the steady-state model. Based on the above 
discussion, we can conclude that the numbers of variables and 
constraints in the GPM are not high and have similar orders of 
magnitude to those in the steady-state model. 

IV. CASE STUDIES 

In this section, the accuracy of the proposed GPM is tested 
and compared with the analytical solution and the traditional 
NM. Experiments for the IHED model (61)-(65) are conducted 
on a small-scale IHES and a large-scale IHES. Moreover, the 
IHED model based on the GPM is compared with the IHED 
model based on the NM. All tests are performed on a laptop 
with a six-core processor running at 2.20 GHz with 16 GB of 
memory. Programs are coded using MATLAB R2018a. The 
IHED model is solved by Gurobi 9.0.  

A. Simulation of a Single Pipeline 

The simulation is conducted on a single heating pipeline to 
show the accuracy of the proposed GPM. The parameters of the 
pipeline are in [36]. The input data shown in Fig. 2 are available 
from a real DHS in Jilin, China. The red line is the data of the 

temperature at the start of the pipeline for two days.  
Based on the sampling points of the input curve, we use the 

GPM and the traditional NM to calculate the temperature at the 
end of the pipeline between 1:00 and 24:00. Assuming time 
delays of 1 hours and 1.25 hours and sampling intervals of 1.5 
hours, 1 hour and 0.5 hour, the simulation results are shown in 
Fig. 3.  denotes the sampling interval, and delay  denotes the 
time delay of water flowing from the start to the end of the 
pipeline. The simulation process of the GPM is described in 
Section II.C. According to the sampling theorem, the order of 
the phasors is half of the total number of sampling points. 

The NM can obtain only a few discrete points, while the 
GPM can obtain a continuous curve. To be fair, we compare 
only the solutions at each discrete point. TABLE II shows the 
numerical results of the GPM and the NM.  When the time 
delay is 1 hour and the sampling interval is 1 hour or 0.5 hour, 
the solution of the NM is equal to the analytical solution and the 
solution of the GPM. When the time delay is 1.25 hours, the 
smaller the sampling interval, the closer is the solution of GPM 
and NM to the analytical solution. Furthermore, with the same 
sampling interval, the solution of the GPM is closer to the 
analytical solution compared to the solution of the NM.  

As shown in Fig. 3 and TABLE II, the proposed GPM is 
more accurate than the traditional NM when the time delay is 
not an integer multiple of the sampling interval. The reasons 
behind this finding are explained below. The NM is a discrete 
model in the time domain, and the temperature at the end of the 
pipeline is calculated by a weighted summation of the 
temperature at the start of the pipeline (66). When the time 
delay of the pipeline is not an integer multiple of the time 
interval, this process of weighted summation will cause errors. 
The phasor method that we proposed is essentially continuous 
in the time domain and does not include the process of weighted 
summation, so this method is more accurate than the NM. The 
accuracy of the phasor method mainly depends on the fitting 
accuracy of the Fourier series. Generally, the temperature in the 
DHS changes continuously and slowly, so the Fourier series 
often has good accuracy.  
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Fig. 2. Temperature at the start of the pipeline. 

Fig. 3. Temperature at the end of the pipeline. (a)  = 1.5 hours and delay  =
1 hour. (b)  = 1.5 hours and delay  = 1.25 hours. (c)  is 1 hour and delay
= 1 hour. (d)  = 1 hour and delay  = 1.25 hours. (e)  = 0.5 hour and

delay  = 1 hour. (f)  = 0.5 hour and delay  = 1.25 hours.  
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 TABLE II 
NUMERICAL RESULTS OF THE GPM AND THE NM IN SINGLE-PIPELINE 

SIMULATION 

Model
Time 
delay
(hour)

Sampling 
interval
(hour)

Mean 
absolute 

error (℃) 

Maximum 
absolute 

error (℃) 

Mean 
relative 

error 

Maximum 
 relative 

error 

GPM

1 1.5 0.422 1.246 0.46% 1.38% 
1 1 0 0 0 0 
1 0.5 0 0 0 0 

1.25 1.5 0.251 0.746 0.28% 0.83% 
1.25 1 0.094 0.256 0.10% 0.29% 
1.25 0.5 0.010 0.045 0.01% 0.05% 

NM

1 1.5 0.572 1.330 0.62% 1.46% 
1 1 0 0 0 0 
1 0.5 0 0 0 0 

1.25 1.5 0.338 0.898 0.37% 0.99% 
1.25 1 0.181 0.5609 0.20% 0.62% 
1.25 0.5 0.080 0.2334 0.09% 0.26% 



B. Small-scale IHES 

Fig. 4 shows the configuration of the test IHES. This 
small-scale IHES consists of a six-bus EPS and a six-node DHS. 
The time delay of each pipeline is marked in Fig. 4. The time 
needed for hot water to flow from the heat source to each load is 
2 hours. The electrical load demand, heat load demand and 
available wind power are shown in Fig. 5. The ambient 
temperature is set to 10 ℃. For more detailed parameters, 
please refer to [37]. For convenience, we assume that both the 
predicted data and dispatch plans vary in the diurnal period. 
The dispatch interval is 1 hour. Experiments are conducted for 
the following two cases.  

1) Case 1 (base case)  
No additional assumptions are made in this case. The total 

heat output curves of the GPM and the steady-state model are 
shown in Fig. 6, along with the total heat load curve and the 
wind power dispatch curve. Fig. 6 (a) shows that when the 
GPM is used, the heat source is decoupled from the heat load. 
The optimal cost of IHED based on the GPM is $247,981.90. If 
IHED is modeled using the steady-state model, the optimal 
objective value is $260,655.94. The proposed IHED model can 
obtain more economic benefits and utilize 212.49 MWh more 
wind energy than the steady-state model, as shown in Fig. 6 (b).  

The dispatch plan of the steady-state IHED is not only costly 
but may also cause problems such as insufficient heating 
temperatures. Based on the initial state and the dispatch plan of 
CHP units solved by the steady-state IHED, we use analytical 
methods to calculate the temperature at node 2, as shown in Fig. 
7. The red curve solved by the steady-state model is the 
optimization result of the steady-state IHED, and the blue curve 
is the simulation result based on the dynamic model (6). The 
red curve satisfies the minimum temperature constraint. 
However, the blue curve is lower than the minimum 
temperature of 65 ℃ for more than half a day, which means that 
the steady-state model will result in insufficient heating 
temperatures for all loads.  

After solving the IHED model based on the GPM, the 
operator can also obtain the continuous temperature 
distribution of the whole DHN in time and space. The pipeline 
between node 1 and node 2 is adopted as an example to 
visualize the dynamic characteristics of DHNs in continuous 
time and space. Fig. 8 illustrates the temperatures along the 
pipeline in continuous time and space. Both the temperature 
decay along the pipeline and the temperature change over time 
can be seen in Fig. 8.  

 
Fig. 4. Configuration of the small-scale IHES [16].  

Fig. 5. Curves of the total electrical load demand, total heat load demand and 
available wind power. 

1 h 0.5 h 0.5 h

0.5 h1 h

Electrical power network

Fig. 6. (a) Total heat output and total heat load in case 1.  (b) Hourly wind 
power dispatch in case 1. 

Fig. 7. Temperature at node 4 solved by the simulation and steady-state IHED.
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Fig. 8. Temperatures along the pipeline between node 1 and node 2. 



2) Case 2 (with fixed return temperatures) 
 After fixing the temperature of the return water at the heat 

source node, we solve the IHED model again. To better 
demonstrate the advantages of the GPM, the heat loss is ignored 
in this case. The results are shown in Fig. 9. The red dashed 
curve is obtained by shifting the total heat load curve to the left 
by 2 hours. The heat output curve and the heat load curve have a 
strict translation relationship, and the time difference is 2 hours, 
which is equal to the time needed for the hot water to flow from 
the heat source to the heat load. This finding is consistent with 
intuitive physical insights when the return temperature and the 
mass flow rate are fixed.  

In this case, we also use the NM to model the thermal inertia 
of pipelines and compare the results with those of the GPM. 
The solution of the IHED model based on the NM is shown in 
Fig. 10. The heat output curve is not a translation of the heat 
load curve because the time delay of some pipelines is not an 
integer multiple of the dispatch interval. If the scale of the DHS 
is larger, the error of the NM will increase.  

As shown in TABLE III, this case verifies that the IHED 
model based on the GPM has a higher accuracy than the IHED 
model based on the traditional NM.  

C. Large-scale IHES 

Based on a real system in Jilin Province of Northeast China, 
we design a large-scale IHES that consists of a 319-bus EPS 
and a 55-node DHS. The parameters of this test system can be 
found in [38]. IHED is modeled based on the GPM. In this case, 

the SOC relaxation of the AC power flow requires a lot of 
calculation time (more than 500 s), so we use the DC power 
flow (67)-(68) to model the EPS and verify the computational 
efficiency of the GPM. The results of the IHED model are 
shown in Fig. 11. In this large-scale test system, the heat source 
is also decoupled from the heat load, and more dispatch 
flexibility is utilized.  
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Moreover, we generate more scenarios to test the calculation 
time of the proposed IHED by changing the values of the 
predicted heat load demand and the available wind power. The 
scaling factors u and o are defined to scale the available wind 
power and the predicted heat load demand, respectively. The 
calculation time in each scenario is shown in TABLE IV. It can 
be concluded from TABLE IV that the computational 
efficiency of the GPM is comparable to that of the NM. When 
the EPS is modelled by the DC power flow model, the IHED 
model based on our GPM requires very little calculation time. 
This is because the proposed GPM and the DC power flow 
model are both linear and concise, with a small number of 
constraints and decision variables.  

V. CONCLUSION 

This paper presents a GPM for DHNs with a constant mass 
flow to consider thermal inertia. All constraints on DHNs are 
formulated using phasor variables. The main feature of the 
proposed GPM is that it can describe the continuous changes of 
temperature in time and space, while traditional methods are 
discrete in the time domain. The GPM is derived based on the 
analytical solutions of PDEs, and its accuracy is satisfactory. 
Moreover, the GPM is linear and has only a small number of 
constraints and decision variables, so this method can be easily 

 TABLE IV 
CALCULATION TIME IN EACH SCENARIO 

u o Calculation time (GPM) Calculation time (NM) 
1 1 3.145 s 2.989 s 
1 0.95 3.048 s 3.004 s 

0.95 1 2.997 s 3.103 s 
0.95 0.95 3.177 s 3.034 s 

1 1.05 2.975 s 2.911 s 
1.05 1 3.299 s 3.195 s 
1.05 1.05 3.215 s 3.067 s 

Fig. 9. Total heat output of the GPM and total heat load in case 2. 
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Fig. 10. Total heat output of the NM and total heat load in case 2. 
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 TABLE III 
CALCULATION TIME AND ERROR BETWEEN THE TOTAL HEAT OUTPUT AND 

SHIFTED TOTAL HEAT LOAD 

Model Calculation time 
Maximum 

absolute error 
Mean absolute 

error 
GPM 6.81 s < 10-7 MW < 10-7 MW 
NM 6.62 s 1.947 MW 0.797 MW 

Fig. 11. Total heat output and total heat load of large-scale IHES. 
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applied in IHED. By applying the GPM and the Fourier 
transform, we propose a novel IHED model combining a 
frequency-domain DHS model and a time-domain EPS model. 
This model can accurately consider the dynamic processes of 
DHSs. In addition to traditional dispatch plans of units, the 
IHED model can be solved to obtain the continuous 
temperature distribution of a whole DHN in time and space to 
help operators make decisions. Three test systems are used to 
demonstrate that the GPM is more accurate compared to 
traditional methods and has a similar computational efficiency 
to those of traditional methods. Moreover, the IHED model can 
further utilize the flexibility of DHNs to improve the economics 
and reduce wind curtailment. 
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