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Abstract

Poynting theorem plays a very important role in analyzing electromagnetic phenomena. The electromagnetic power flux density

is usually expressed with the Poynting vector. However, since Poynting theorem basically focuses on the power balance in a

system, it is not so convenient in some situations to use it for evaluating the electromagnetic energies. The energy balance issue

for time varying fields is revisited in this paper, and a set of energy balance equations are introduced, and a modified method

for evaluating power flux is proposed.
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ABSTRACT Poynting theorem plays a very important role in analyzing electromagnetic phenomena. The electromagnetic 
power flux density is usually expressed with the Poynting vector. However, since Poynting theorem basically focuses on the 
power balance in a system, it is not so convenient in some situations to use it for evaluating the electromagnetic energies. 
The energy balance issue for time varying fields is revisited in this paper, and a set of energy balance equations are 
introduced, and a modified method for evaluating power flux is proposed. 
INDEX TERMS Poynting vector, energy density, reactive energy, power balance, energy balance

I. INTRODUCTION 
Poynting vector [1] is defined in terms of electric field and magnetic field and is widely accepted as the expression of power 
flux density. Poynting theorem is about the relationship between the Poynting vector and the electromagnetic energy 
densities, which provides an intuitive description of the electromagnetic energy propagation. However, the definition of 
electromagnetic flux density has been controversial [2]-[10], and some researchers have pointed out that there are limitations 
for Poynting theorem, though most of them have been ignored because of the great success of the wide application of 
Poynting theorem and Poynting vector [11]-[21].    
It is known that Poynting theorem is not so efficient in handling issues concerning with reactive energies[8][9]. One famous 
example is the calculation of the reactive energies stored by antennas in an open space, which has been investigated for 
decades [22]-[31]. The difficulty comes from the fact that the total stored energy obtained by integrating the energy densities 
of  0.5D E

 
and  0.5B H

 
over the whole space is infinite, which is obviously unreasonable.  Some researchers suggested 

that those fields associated with the propagating waves should not contribute to the stored reactive energies, and the results 
can become bounded by subtracting from the energy density an additional term associated with the radiation power [22][24]. 
However, it seems impossible to give a general definition for the term, because the propagation patterns are quite different 
for different antennas. It is proposed in [32] that the conventionally defined electric and magnetic energy densities, namely, 
 0.5D E

 
and  0.5B H

 
, are generally for static fields and may not suitable for time-varying fields. Their integrations over 

a region are not rigorously equal to the total electromagnetic energy in that region in time varying situations.  Since the 
energy densities involved in Poynting theorem are not absolutely correct for time varying fields, it is possible that limitations 
may exist for Poynting theorem, especially when reactive energies are concerned. No doubt that Poynting equation is 
rigorous because it is derived directly from Maxwell’s equations. However, its interpretation can be slightly modified in 
some situations. It can be seen that Poynting theorem is basically directly describing the power balance in the system instead 
of the stored energy. Although it contains the energy densities, but it is their time varying rate that contributes to the balance. 
Therefore, it is not strange that sin some situations Poynting theorem is not much efficient for addressing issues concerning 
with total electromagnetic energies.  
Based on these observations, I revisited the energy balance issue associated with current/charge sources in free space, and 
propose a set of balance equations for reactive electromagnetic energies. Because the energy balance equations are derived 
from the electromagnetic energies associated with given source distributions at a certain time, one cannot expect to get 
sufficient information for electromagnetic powers from these equations alone. Roughly speaking, the energy balance 
equations can be used complimentarily with Poynting theorem, i.e., the energy balance equations are used for handling 
energy balance problems, meanwhile, the Poynting equation is used for addressing power balance issues. Furthermore, a new 
formulation is proposed to calculate the power flow generated by current sources. Although no explicit expression for the 
modified power flux density is provided, it indeed gives a reasonable hypothesis that Poynting vector may not always exactly 
reflect the power flux density.    

 
II. GUIDELINES FOR MANUSCRIPT PREPARATION 

Consider a time-varying charge distribution with density of  ,r t 
 in region aV  enclosed by surface aS , as shown in  Fig.1. A 

popular method to evaluate the total energy associated with the charge is to assume that all charges are moved piece by piece 
from infinitely far away to their current positions. Based on energy conservation law, it can be deduced that the total electric 
energy associated with the charge distribution is equal to the work done to them in the process of shifting them, which is derived 
to be [33][34] 

      1
, ,

2 aV
W t r t r t dr     

  
 (1) 
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Fig. 1   Current and charge distribution enclosed by aS .  

The scalar potential  ,r t 
 in three dimensional free space is expressed as 

    ,
,

4aV

r t R v
r t dr

R





 

 


 
 (2) 

where R r r 
 

 is the distance between the charge point and the evaluation point,   and v  represent the permittivity and 

propagation velocity in free space, respectively.  Eq.(1) is well used for static fields. It is reasonable to postulate that it is still 
valid for time varying fields considered in classical electromagnetic problems, because (1) just describes the relationship 
between the electric energy and the charge distribution, as well as the scalar potential, at a certain time, no matter whether 
they are time-varying or not.   

Similarly, if in region aV  there is a current distribution with density of   ,J r t
 

, the magnetic energy associated with the 

current can be evaluated with 

      1
, ,

2 a
J V

W t A r t J r t dr   
   

 (3) 

The vector magnetic potential  ,A r t
 

 in three dimensional free space is  

    ,
,

4aV

J r t R v
A r t dr

R



 

 
   

 (4)

  
where   is the permeability for free space. The zero point for both potentials is put at the infinity. 

In time-varying situations, the electric field relates to both potentials with E A t    


. Making use of vector identities, 

the electric energy in (1) can be transformed to 

   1 1
ˆ

2 2a aV S

A
W t E D D dr D rdS

t 
        

 
 

      (5) 

where  ,D r t
 

 is the electric flux density, and n̂ stands for the outward unit normal vector on the surface.  Eq.(5) states that 

the total electric energy associated with the charge distribution is separated into two parts, one part is stored in the region aV , 

expressed by the first term in the RHS of (5), and the rest part, expressed by the second term in the RHS of (5),  will pass 
through the surface aS  and leak to the region outside aV . For the sake of convenience, a terminology of electric energy 

generation density is defined as 

      1
, , ,

2
w r t r t r t  

  
 (6)

  
Meanwhile, define the stored reactive electric energy density as [32], 

          
,1

, , , ,
2e

A r t
w r t E r t D r t D r t

t

 
    

  

        (7) 

and denote  

      1
, , ,

2e r t r t D r t
   
  (8)

  
Here an upper script “~” is intentionally added on top of the parameter  ,ew r t

  to emphasize the difference compared to the 

definition for static fields. (5) is the balance equation for the electric energy associated with charge distribution  ,r t 
. At a 

certain time t ,  one part of the electric energy is stored in region aV  with energy density of   ,ew r t
 , the other part is stored 

 ,r t 

 ,J r t
 

, aV

aS

n̂
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outside aV , the amount of which can be calculated with the surface integral on aS ,  however, the storing area and the energy 

density outside aV  is not known. Vector  ,e r t
 
  represents the energy passing through the surface per unit area. It is 

important to note that the balance equation is valid for any surface aS  containing the charge distribution, including the 

spherical surface with its radius approaching infinity, hereafter denoted by S . 

Following the same analogy, we can introduce the balance equation for the magnetic energy associated with current 

distribution  ,J r t
 

, 

     1 1
ˆ

2 2a a
J V S

D
W t B H A dr H A ndS

t

          
 

         (9) 

which implies that the magnetic energy is also divided into two parts. Define magnetic energy generation density as 

      1
, , ,

2Jw r t A r t J r t 
   

 (10) 

with the stored reactive magnetic energy density defined as  

          ,1
, , , ,

2m

D r t
w r t B r t H r t A r t

t

 
    

  

       (11) 

and denote 

      1
, , ,

2m r t H r t A r t 
   
  (12) 

(9) is the balance equation for the magnetic energy associated with current distribution at a certain time t. It can be 
interpreted in the same way as the electric energy balance equation (5).  
It is worthwhile to emphasize that the densities of (7) (11) are defined only for reactive energies associated with sources. 
They are not defined to replace the ordinary energy densities for fields.  
Combining (5) and (9), we get the balance equation for the total electromagnetic energy,  

             ˆ, , , , , ,
a a a

J e m e mV V S
w r t w r t dr w r t w r t dr r t r t ndS                      

              (13) 

Taking derivatives with respect to time yields 

             ˆ, , , , , ,
a a a

J e m e mV V S
w r t w r t dr w r t w r t dr r t r t ndS

t t t
                          

              (14) 

which can be written in differential form 

    J e ew w w w
t t
 

    
 


    (15) 

where 

     1 1
,

2 2e mr t D H A
t t

           

    
    (16) 

Eq.(14) describes the relationship between the varying rate of the total energy associated with the sources and the varying 
rate of the stored energies at time t. However, it is not sufficient to determine the total propagation power since it is basically 
not a power balance equation. 
Reconsider the Poynting theorem, which directly comes from Maxwell’s equations 

 
1 1

ˆ
2 2a a aS V V

S ndS E Jdr D E B H dr
t

               
         (17) 

where the Poynting vector is S E H 
  

. (17) is usually interpreted based on power conservation law. The RHS of (17) is the 

total power generated by  ,J r t
 

 in domain aV , subtracting the increasing rate of energy stored in the domain, which should 

be the total radiated power coming out of the surface aS . Hence, the Poynting vector is intuitively regarded as the power 

flux density.  There is no doubt that Poynting equation itself is correct. However, the interpretation may be not so perfect due 
to the fact that the energy densities involved are basically only accurate for static fields.  As illustrated by (5) and (9), for 
time varying fields, only the energy densities defined by (7) and (11) are strictly related to the stored energies associated with 
the current and charge sources. The time varying rate of the newly defined total reactive electromagnetic energy density can 
be rewritten as 

  
2 2

2 2

1 1 1

2 2 2m e

A D
w w B H D E D A

t t t t

                     

     
   (18) 
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For time harmonic fields with time dependence of  exp j t , we have 2 2 2t    , the second term in the RHS of (18) 

vanishes, and Poynting relationship can be written as 

  ˆ
a a a

m eS V V
S ndS E Jdr w w dr

t

      
  

       (19) 

In this situation, the Poynting vector can be naturally considered as the power flux density since the energy densities are 
valid for both static and time varying cases.  For non sinusoidal but slowly varying fields, the second term in the RHS of (19) 
can be very small because of small second order derivatives, therefore, (19) approximately holds true. In other situations, the 
Poynting vector may not correctly reflect the power flux density.   
It is rational to introduce a modified formulation for the total power coming out from aS as 

                                                     

   

   

2 2

2 2

2 2

2 2

1 1

2 2

ˆ

, ,

a a

a a a

a a

a

rad e mV V

V V V

S V

JV

P t E Jdr w w dr
t

A D
E Jdr B H D E dr D A dr

t t t

A D
S ndS D A dr

t t

E Jdr w r t w r t
t 

     


                       
         
  

      


 

  

 



     
         

   

    



ˆ

1 1
ˆ

2 2

a a

a a

V S

V S

dr ndS

E J A J dr ndS
t



    

                

 

 



    

 



  (20) 

Note that in (20) the energy densities for time varying fields have been used to replace those for static fields. Eq. (20)shows 
that the total power contains two parts, the first part is the power generated by the source in the domain aV , while the second 

part is the decreasing rate of the stored reactive energy in the domain. Substituting  (17) and (18) into (20), we can show that 

  
2 2

2 2

1
ˆ

2a a
rad S V

A D
P t S ndS D A dr

t t

         
  

 
      (21) 

As has been discussed right above, for time harmonic fields or slowly varying fields, the electromagnetic power coming out 
from a closed surface is just the total flux of Poynting vector over the surface. 

Making use of (14) and (16), the total power can be expressed in terms of sources and the vector  ,r t
 
  as  

   1 1
ˆ

2 2a a
rad V S

P t E J A J dr ndS
t

                
 

       (22) 

 
III. RADIATION PROBLEMS 
For antennas in three dimensional free space, the stored reactive energies can be derived by letting aS S , with the 

integration volume for reactive energies expanding to V .  The source distribution region remains the same as aV . Recalling 

that    2ˆlim 1
r

D r O r





 ,  lim 1
r

O r


 , where r̂  is the unit radial vector, the surface integral at the RHS of (5) 

approaches zero,  so the electric reactive energy is  

   1 1

2 2 a
e V V

A
W t E D D dr dr

t




        
 

 
    

 (23) 

Therefore, for radiation problems, the total reactive electric energy can be calculated in terms of fields with integration over 
the whole space, or in terms of charge and potential with integration over the source area, depending on which kind of 
information is available.   

It is a little bit different for the magnetic energy. Since    2ˆlim 1
r

H A r O r


 


  , the surface integral in (9) is usually a 

nonzero but bounded value. As has discussed in [32], this term can be considered as the energy stored at the infinity point 
beyond surface S , or equivalently, considered as being absorbed by the radiation resistor at infinity. The stored reactive 

magnetic energy accounts for the magnetic energy normally stored within S , and can be expressed with 

    1 1 1
ˆ

2 2 2a
m mV V V S

D
W t w dr B H A dr A Jdr H A rdS

t  

              
   

          (24) 
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Therefore, the basic way to calculate the reactive magnetic energy is to integrate the reactive magnetic energy density 

mw over the whole space. It can also be calculated with integration in terms of current and vector potential over the source 

area, subtracting the surface integral on S , i.e., the last term in (24).  The radiation power is calculated using (22), with  

aS being replaced by S . 

It is very important to notice that for pulse sources, the electromagnetic fields generated by the source will never reach S , 

so the surface integrals in (22) and (24) are zeros.  Therefore, the stored reactive energies and radiation power in time 
domain for pulse excitations can be calculated with 

 

     

     

 

1
, ,

2
1

, ,
2

1 1

2 2

a

a

a

E V

m V

rad V

W t r t r t dr

W t A r t J r t dr

P t E J A J dr
t

 




  




   

                







  

   

   

 (25) 

For time harmonic fields, it can be proved that  *

S
H A dS



 
 

 =0 [32]. Therefore, as has proved in [32], the time average 

energies and radiation power can be calculated with 

 

     

     

   

*

*

*

1
Re

4

1
Re

4

1
Re

2

a

a

a

E av V

m av V

rad V

W r r dr

W A r J r dr

P E r J r dr

         
       

 
        

 







  

   

   �

 (26) 

where the same symbols are used for the corresponding phasors for the sake of convenience.  
It can be seen from (25) and (26) that the reactive energies and the radiation power for pulses and harmonic sources can all 
be calculated with integrations over source region, which is very efficient for evaluating Q factors of large complex antennas.  

IV. CASE STUDY: HERTZIAN DIPOLE 
A Hertzian dipole at the origin is analyzed to show the energy balance relationships. The moment of the dipole is assumed to 
be cosql t , the scalar potential and the vector potential of which can be readily derived from a Hertzian potential 

   4 cosql r t kr    [35] 

 
  ˆˆsin cos sin

4

ql
A t kr r

r

    


   
  (27)

  
 

   2

1
cos cos sin

4

ql k
t kr t kr

rr
   


      

 (28) 

from which the fields are found to be 
 

       
2

2 2 2 2

1 1 1 1ˆˆ2cos cos sin sin 1 cos sin
4

k ql
E r t kr t kr t kr t kr

r kr krk r k r
      


                      

  (29) 

 
   1

ˆsin sin cos
4

kql
H t kr t kr

r kr

    


       

  (30)

The total reactive energies at a certain time t stored in the whole space outside a small sphere with radius a can be derived 
from the fields and potentials as 

                               
       0 0

1
1 cos 2 sin 2 limsin 2m r

W t t ka t ka t kr
ka

    


           

 (31) 

                               
     0 3 3 3 3 2 2

1 1 1 1 2
cos 2 sin 2eW t t ka t ka

ka kak a k a k a
              

 (32) 

and the nonzero surface integral is  
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    0ˆ limsin 2e mS r
rdS t kr 

 
   
 

  
 (33) 

where  
2

2

0 24

k
ql

 


 . Both the total reactive electric energy  mW t  and the total reactive magnetic energy  eW t  are 

bounded. As can be seen from (33) that although the surface integral is not zero, its time average is zero. Furthermore, we 
can show that     

  0ˆ 2 lim cos 2
S r

rdS t kr 
 

  


 
 (34) 

  0 0ˆ 2 +2 lim cos 2
S r

S rdS t kr  
 

  



 (35) 

Comparing (34) with (35) implies that the DC component of the Poynting vector is cancelled in the energy balance equation.  
The time averages can be easily found and are listed below,  

  

 

 

0

0

0 3 3

2

1

1 1

rad av

m av

e av

P S

W
ka

W
kak a







 


      


      





 (36) 

The Q factor is calculated to be 

  
3 3

2 1 1e av

rad

W
Q

P kak a


  

  (37) 

which is exactly in agreement with the results shown in [24].  

For comparison, the equivalent circuit model proposed by Chu [34] for Hertzian dipole is show in Fig.2. Assuming that the 
current in the radiation resistor at the interface of r a  is  0 cosRi I t ka  , the energies stored in the capacitor and the 

inductor can be derived to be 

 

   
 

 
 

 

2
0

3 3 2

2
20

1 1 1 1 1
cos 2 sin 2

2

1
sin

2

C

L

I
W t ka t ka

ka kaka ka ka

I
W t ka

ka

 





   
         

     
     

 

 (38) 

  
Fig.2 Equivalent circuit model for Hertzian dipole radiation. 

If we let 2
0 02I  , it can be checked that    C eW t W t , and    L mW t W t . It is because that in the equivalent circuit, 

the radiation resistor is assumed to be connected at the input port, namely, at r a . However, for real antennas, the radiation 
resistor is at r  . For time-averaged energies, the equations hold strictly.   

V. CONCLUSION 
With the energy densities for time varying fields proposed in [32], the balance equations for reactive energies associated with 
charge or current sources are created for fields at a certain time. These balance equations are for the stored energies instead of 
power flux. The formulation proposed for calculating the electromagnetic power is slightly different from the conventional 
method based on Poynting theorem, the detailed derivation shows that the modification may be a possible way for remedying 
the limitations of applying Poynting vector for power flux density.      
 

C a v

L a v

1R 
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