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Abstract

An ad-hoc network using unmanned aerial vehicle (UAV) as relay, has been gaining significant attention especially for commu-

nication between far apart ground terminals during emergency conditions due to agility and resilience requirements. However,

UAV hovering localization (HL) and power allocation (PA) are the key issues in such relay based flying ad hoc networks

(FANETs). In this work, we propose a framework to jointly optimize the placement of rotary-wing UAV hovering and PA for

maximization of network throughput in a three node decode-and-forward (DF) FANET. Specifically, we develop three different

optimization schemes, (i) individual UAV HL optimization with a fixed allocated power, (ii) individual PA optimization for a

fixed UAV HL, (iii) jointly optimal UAV HL and PA. For every optimization problem, the underlying convexity is proved and

the global optimal solutions have been obtained. Further, we provide novel analysis by utilizing the characteristics of sigmoidal

function thereby obtaining the closed-form and semi-closed-form expressions respectively for the globally-optimal solutions for

individual and joint optimization schemes. The analytical results are numerically validated and various optimal design insights

are discussed. It has been found that the proposed joint optimal scheme shows an average performance enhancement of 52%

over benchmark scheme.
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Abstract—An ad-hoc network using unmanned aerial vehicle
(UAV) as relay, has been gaining significant attention especially
for communication between far apart ground terminals during
emergency conditions due to agility and resilience requirements.
However, UAV hovering localization (HL) and power allocation
(PA) are the key issues in such relay based flying ad hoc networks
(FANETs). In this work, we propose a framework to jointly
optimize the placement of rotary-wing UAV hovering and PA
for maximization of network throughput in a three node decode-
and-forward (DF) FANET. Specifically, we develop three different
optimization schemes, (i) individual UAV HL optimization with
a fixed allocated power, (ii) individual PA optimization for a
fixed UAV HL, (iii) jointly optimal UAV HL and PA. For every
optimization problem, the underlying convexity is proved and
the global optimal solutions have been obtained. Further, we
provide novel analysis by utilizing the characteristics of sigmoidal
function thereby obtaining the closed-form and semi-closed-form
expressions respectively for the globally-optimal solutions for
individual and joint optimization schemes. The analytical results
are numerically validated and various optimal design insights
are discussed. It has been found that the proposed joint optimal
scheme shows an average performance enhancement of 52% over
benchmark scheme.

Index Terms—Ad hoc network, UAV, relay placement, hovering
localization, power allocation, network throughput maximization.

I. INTRODUCTION

With the unprecedented advancement in 5G radio access
technologies, the demand for ultra-high reliability, availability
and adaptability of a wireless network is alarmingly increasing.
In mission critical scenarios, such as public safety, disaster
management or uninterrupted surveillance, the communication
may be severely disrupted, where a sudden cost-effective solu-
tion is of utmost necessity. Flying ad hoc networks (FANETs),
with unmanned aerial vehicles (UAVs) as relays, can pro-
vide seamless connectivity between the terrestrial users as a
temporary recovery option in such situations [1]. Moreover,
cooperative relaying using UAVs enhances the network cover-
age, end-to-end capacity and diversity gains [2]. However, few
challenges like UAV hovering localization (HL) and transmit
power allocation (PA) do exist in FANETs, and are required
to be jointly optimized.

A. State-of-the-Art

The notion of UAV assisted cooperative communication has
been well demonstrated in the existing literature [3]–[6]. In
[7], UAV altitude was optimized using numerical simulations,
considering Nakagami-m fading channel. In contrast, optimal
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Fig. 1: Three-node (G1,U ,G2) UAV relay-based network topology.

UAV HL was studied using deep learning approaches in [8],
but neither the model was realistic nor the solutions were
globally-optimal.

Few works also investigated the problem of optimal UAV
HL and PA for throughput maximization. Specifically, in
[9], an optimum UAV relay placement scheme was proposed
while maximizing the UAV achievable rate. Further, authors
in [10] maximized system throughput for a UAV-based mobile
relaying station thereby optimizing the transmit PA and relay
trajectory. Recently, [11] focused on optimal node placement
and resource allocation for a UAV relaying network. However,
these works have not considered non-line-of-sight (NLOS)
component in the path loss model between any two com-
municating nodes. Alzenad et al. [12] did incorporate the
line-of-sight (LOS) and NLOS components in their path loss
model, and obtained optimal 3D placement of a UAV, but they
considered UAV as an aerial base station [13].

B. Motivation and Contribution

Most of the existing works uniquely deal with the prob-
lem of either optimizing UAV HL or PA. Additionally, they
consider only the LOS component in their path loss model.
Few works did include the NLOS component [13], but the
discussion on global optimality of the solutions has not yet
been covered in the current literature. However, simultaneous
analysis of optimal UAV HL and PA may drastically reduce
the occasions of interrupted quality of service, thereby signif-
icantly improving the performance of FANETs. Therefore, to
wholly exploit the benefits of a UAV-based aerial communica-
tion, we investigate the joint optimization of UAV HL and PA



under varying real-world constraints. In particular, we study
the performance of two-hop UAV assisted DF relaying FANET
for maximizing the network throughput. Three optimization
schemes have been proposed, viz. 1) Optimal HL: as there is
no central-controller for allocating transmit power to ground
terminals, so UAV relay is to be optimally positioned. 2)
Optimal PA: due to variability factors in case of natural
calamities like tsunamis/ cyclones, the hovering UAV may
not be properly localized, and hence transmit PA optimization
is required. 3) Joint optimal HL and PA: the merits of joint
optimization offer enhanced overall network performance.

For practical applications, the proposed framework can be
very beneficial to several stakeholders including public safety
agencies, disaster management rescue bodies, defence organi-
zations, where the communication between the terrestrial users
is generally hampered.

To the best of our knowledge, this is the first work which
investigates the joint optimization of UAV HL and PA in a
DF relaying ad hoc network considering both LOS and NLOS
components in the path loss model between the communicating
nodes. The key contributions of our work are five-fold:
• The unique system model is proposed in Section II, in

which the problem of joint optimization of UAV HL and
PA is solved while considering both LOS and NLOS
components in the path loss model.

• Convexity of the three optimization problems is proved
in Section III.

• Global optimal solutions of HL and PA are obtained in
Section IV, both individually and jointly.

• Closed-form expressions are provided for optimal PA, and
HL in three specific UAV hovering scenarios.

• In Section V, we provide key optimal design insights
along with the improved performance of the proposed
schemes over benchmark, followed by conclusion in
Section VI.

II. NETWORK TOPOLOGY AND CHANNEL MODEL

As presented in Fig. 1, we consider a three-node wireless
ad hoc network in a temporary emergency situation, where
a Cartesian coordinate system is used for node localization.
The direct link between two ground terminals G1 and G2
located respectively at (0, 0, 0) and (D, 0, 0) is negligible
due to blockage. A fixed rotary-wing UAV U hovering at a
height of H m is thus employed at (d, 0, H) as relay for
assisting the communication between G1 and G2 using DF
relaying strategy. Without loss of generality, we assume G1
as source node with transmit power Pg and G2 as destination
node communicating cooperatively via U with transmit power
Pu. For effective utilization of energy resources, a common
power budget Pmax is considered such that Pmax = Pg +Pu.
Further, we neglect the effect of small scale fading in the air-
to-ground (or ground-to-air) channel modeling as indicated in
[1], and consider both LOS as well as NLOS components
along with their separate probabilities of occurrence in path
loss between communicating nodes [14]. However, in order to
better highlight the novelty of the proposed model, we provide

the channel power gain expression for two models, i.e. existing
and proposed.

A. Existing Model

If the effect of only LOS component is included in the path
loss model, the channel power gain is given by,

|hi|2 = |Xi|−n∀ i ∈ {1, 2}, (1)
where i = {1, 2} respectively denote the link between G1 and
U , and the link between U and G2, |X1| ,

√
H2 + d2 is the

distance between G1 and U , |X2| ,
√
H2 + (D − d)2 is the

distance between U and G2, n is the path loss exponent.

B. Proposed model

Here, we incorporate the effect of LOS as well as NLOS
component in the path loss model, thereby solving the problem
of joint optimization of HL and PA. Consequently, the channel
power gain is modified to,
|hi|2 = |Xi|−nPRLi + ηi|Xi|−nPRNLi∀ i ∈ {1, 2}, (2)

where PRLi and PRNLi , (1 − PRLi) are the LOS and
NLOS probabilities of occurrence corresponding to the ith

communicating link, and ηi is the ith link attenuation factor
due to NLOS connection. The LOS probability PRLi

is
defined as [1],

PRLi
=

1

1 + Ci exp (−Bi(θi − Ci))
∀ i ∈ {1, 2}, (3)

where θi = 180
π sin−1

(
H
|Xi|

)
is the elevation angle of U with

respect to the ith channel link.
Now, as the direct link between G1 and G2 is not available,

the end-to-end SNR is restricted by weaker of SNRs of G1-
to-U link γ1 , |h1|2 Pg

σ2 and U-to-G2 link γ2 , |h2|2 Pu

σ2 .
Therefore, the network throughput RG1G2 is defined as,

RG1G2 = log2 (1 + min {γ1, γ2}) . (4)

III. OPTIMIZATION FRAMEWORK

In this section, we present the optimization formulation,
followed by the proof of convexity of optimization problem.

A. Mathematical Formulation

In order to maximize RG1G2 subject to constraints on d, H
and Pg , following optimization problem has to be solved:

(P0): maximize
d,Pg

RG1G2 , subject to

C1 : d ≤ D, C2 : H > Hmin, C3 : Pg < Pmax.
(5)

where Hmin is the minimum allowable altitude of UAV.
As log(.) is a monotonically increasing function, so max-

imizing the antilogarithm of RG1G2 , denoted as R̂G1G2 =
min {γ1, γ2} subject to constraints C1 − C3, is equivalent
to problem (P0). Therefore, the joint optimization problem
of finding optimal PA P ∗g and optimal HL d∗ to maximize
R̂G1G2 subject to maximum UAV HL, minimum UAV altitude
and total power constraints (C1− C3) is given as:

(P1): maximize
d,Pg

R̂G1G2 , subject to C1, C2, C3. (6)



Keeping boundary constraints (C1 − C3) implicit, the La-
grangian of (P1) is given by:

L(d, Pg, R̂G1G2 , λ1, λ2) = R̂G1G2 − λ1
(
R̂G1G2 − γ1

)
− λ2

(
R̂G1G2 − γ2

)
,

(7)

where λ1, λ2 ≥ 0 are the associated Lagrange multipliers.

B. Proof for Convexity of (P1)

Here we provide Lemmas 1, 2 and 3, which together prove
the convexity of (P1) [15].

Lemma 1: The objective R̂G1G2 is a concave function of d.
Proof: Please refer to Appendix A.

Lemma 2: R̂G1G2 is strictly pseudoconcave in d and Pg .
Proof: R̂G1G2 is a concave function of d from Lemma

1, and is linear in Pg , hence R̂G1G2 proves to be strictly
pseudoconcave function of d and Pg [16, Table 5.2].

Lemma 3: Constraints C1, C2, C3 form a convex set.
Proof: Since constraints C1, C2, C3 are linear in d as

well as Pg , therefore they form a convex set.
From Lemmas 1, 2 and 3, (P1) is a generalized convex

optimization problem in d and Pg .

IV. GLOBALLY-OPTIMAL HL AND PA SOLUTIONS

As (P1) is a generalized convex optimization problem in
d and Pg from Section III. B, the underlying Karush-Kuhn-
Tucker (KKT) point (d∗, P ∗g , λ

∗
1, λ

∗
2) provides the joint

globally-optimal solution of (P1) [17, Theorem 4.3.8]. The
corresponding KKT conditions are,

∂L
∂d

, λ1
∂γ1
∂d

+ λ2
∂γ2
∂d

= 0, (8a)

∂L
∂Pg

, λ1

(
|h1|2

σ2

)
− λ2

(
|h2|2

σ2

)
= 0, (8b)

∂L
∂R̂G1G2

, 1− λ1 − λ2 = 0. (8c)

Since both γ1 as well as γ2 are monotonic in each of the
variables d and Pg , and λ1, λ2 ≥ 0, thus (8a), (8b), (8c) can
simultaneously hold true only when,

∂γ1
∂d

=
∂γ2
∂d

. (9)

Therefore, from the above discussion, the global optimal
solution of (P1) in d and Pg will satisfy:

γ1 = γ2. (10)
We next provide three optimization schemes to maximize

R̂G1G2 , thereby obtaining the semi-closed-form optimal solu-
tions.

A. Fully Adaptive Scheme: Joint Optimization of PA and HL

After solving (10) in P ∗g (as a function of d), we get
P ∗g = |h2|2Pmax

|h1|2+|h2|2 . Thus, the problem (P1) can be reformulated
explicitly as a function of d as follows:

(P2): maximize
d

|h1|2|h2|2

|h1|2 + |h2|2
Pmax
σ2

subject to C1, C2, C3.

(11)

Since R̂G1G2 is a concave function of d from Lemma 1,
therefore, the objective in (P2) is also a concave function
of d [15] which leads to convexity of the problem (P2) due
to linearity of constraints C1, C2, C3 in d. Consequently, the
following condition holds true for maxima:

∂

∂d

(
|h1|2|h2|2

|h1|2 + |h2|2
Pmax
σ2

)
= 0. (12)

Simplifying (12) further results in,

|h1|4
∂|h2|2

∂d
+ |h2|4

∂|h1|2

∂d
= 0. (13)

Finally, considering free-space path loss (i.e. n = 2), a
univariable eq. in d from (13) is obtained as,

α2
1 [µ2(α2 − η2)(1− α2) + 2(D − d)α2]

− α2
2 [µ1(α1 − η1)(1− α1)− 2dα1] = 0,

(14)

where αi , (1− ηi)PRLi + ηi, µi = 180
π

BH
1−ηi ∀i ∈ {1, 2}.

We solve (14) for specific UAV applications (θ1 = θ2 , Θ)
to obtain optimal d∗ as,

d∗ =
ζ2 − ζ1 − 2Dα2

1α2

2α1α2(α2 − α1)
, (15)

where ζi = α2
i [µj(αj − ηj)(1− αj)] ∀ i, j ∈ {1, 2}, i 6= j,

and αi = αi ∀ θi = Θ, i ∈ {1, 2}. For Θ, we have considered
following three special UAV hovering scenarios:

1) UAV Hovering at Large Height: Hmin � D, therefore
θ1 = θ2 , Θ ≈ 90o.

2) UAV Hovering at Small Height: Hmin � dmin, hence
θ1 = θ2 , Θ ≈ 0o.

3) UAV Hovering Equidistant from G1 and G2: d = D
2 ,

consequently θ1 = θ2 , Θ ≈ 180
π tan−1

(
2H
D

)
.

However for a generalized path loss scenario, we solve (P2)
in d∗ with the help of Golden Section Line Search (GSLS)
method [18]. The number of computations NGS

C in GSLS
algorithm is given by NGS

C =
⌈
2− 2.08 ln

(
ξ

d∗U−d∗L

)⌉
, where

ξ is the acceptable tolerance, d∗L and d∗U are respectively the
lower and upper bound on d∗.

B. First Semi-adaptive Scheme: Optimal HL for a Fixed PA

For a predetermined PA (Pg, Pu), the problem of optimal
HL (OHL) that maximizes R̂G1G2 subject to constraint C1 is
given by:

(P3): maximize
d

R̂G1G2 , subject to C1. (16)

As R̂G1G2 is a concave function of d from Lemma 1, and
constraint C1 is linear in d, thus (P3) is convex, and from (8a),
(8c), the global optimum solution can be obtained by solving
(10) in d, because λi ≥ 0 and γi are monotonic functions of
d. Therefore, (10) can now be solved in d to obtain OHL da
numerically for a fixed Pg via GSLS method.

Furthermore, we utilize few key characteristics of sigmoidal
function thereby proposing two approximation approaches to
obtain the value of OHL using (10):

1) Step Approximation: As the LOS probability is charac-
terized by a sigmoidal function, PRLi = 1

1+Ci exp(−Bi(θi−Ci))

∀i ∈ {1, 2}, so for high values of Bi, i.e., Bi > 1,



PRLi
∈ {0, 1}. Consider the case when PRL1

= 1 and
PRL2 = 0, therefore, from (10) we have,

Pg
|X1|n

=
η2(Pmax − Pg)
|X2|n

. (17)

After few mathematical arrangements in (17), the closed-form
solution in OHL dsa can be obtained as,

dsa = D −
√
D2ρ−H2 (18)

where D , D
1−ρ , ρ =

[
η2

(
Pmax

Pg
− 1
)] 2

n

.
2) Linear Approximation: If the value of Bi ∀ i ∈ {1, 2}

is small enough (Bi < 0.01) to approximately linearize the
sigmoidal function, i.e., PRLi

is linear in θi, then PRLi
(as

a function of θi) is given by:
PRLi(θi) = miθi + ki, (19)

where mi =
∂PRLi

(0o)

∂θi
, ki = PRLi(0

o)∀ i ∈ {1, 2}.
Therefore, from (10) and (19),∣∣∣∣X2

X1

∣∣∣∣n=
(Pmax − Pg){(1− η2)(m2θ2 + k2) + η2}

Pg{(1− η1)(m1θ1 + k1) + η1}
, %(θ1, θ2).

(20)

Let us initially assume θi ∀ i ∈ {1, 2} in (20) to be
independent of d present in |Xi| ∀ i ∈ {1, 2} at the left-hand
side of (20), then similar to (18),

d = D−
√
D2%(θ1, θ2)−H2, (21)

where D , D
1−%(θ1,θ2) .

Now, we obtain optimal OHL dla by solving (21) in d
for three different UAV communication scenarios as proposed
above in fully adaptive scheme:

dlai = Di −
√
D2
i %(φi, φi)−H2, (22)

where Di, D
1−%(φi,φi)

, φi ∈
{

90o, 0o, 180π tan−1
(
2H
D

)}
, i ∈

{1, 2, 3}.

C. Second Semi-Adaptive Scheme: Optimal PA for a Fixed HL

In this scheme, we study the optimal PA (OPA) problem for
a given HL thereby maximizing R̂G1G2 subject to total power
constraint C3, which leads to the formulation of the following
optimization problem:

(P3): maximize
Pg

R̂G1G2 , subject to C3.

Since R̂G1G2 is linear in Pg , and ∂2R̂G1G2
∂P 2

g
= 0 which is a

necessary condition for concavity of a function [15]. Moreover,
constraint C3 forms a convex set, hence (P4) is a convex
optimization problem [15]. Consequently, from (8b) and (8c),
the globally-optimal PA solution is the root of (10) in Pg .

For a fixed d, (10) can be solved for joint optimal PA, Pga
as follows:

Pga ,
α2β1

α1β2 + α2β1
Pmax, (23)

where βi , |Xi|n, ∀i ∈ {1, 2}.

V. RESULTS AND PERFORMANCE EVALUATION

In this section, the key numerical insights of the two indi-
vidual OHL and OPA schemes along with joint optimization
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of HL and PA scheme have been discussed. Unless explicitly
stated, we have considered, Pmax = 10 W, σ2 − 100 dBm,
n = 3, η1 = 200, η2 = 100. The parameters for dense urban
environment are assumed to be equal for two communicating
links, i.e. B1 = B2 , B = 0.35 and C1 = C2 , C = 5. For
comparison, we undertake a uniform fixed localization and
PA scheme as the benchmark with HL as d = D

2 and PA as
Pg = Pu = Pmax

2 .

A. Performance Evaluation of OHL Scheme

For validating the proposed scheme to obtain OHL for a
fixed PA, we plot the variation of RG1G2 as a function of d for
three fixed PAs at different D in Figs. 2 and 3. At high value
of environment parameter B = 5, the OHL values obtained by
using GSLS and step approximation (app.) are found to exactly
match with the maximum RG1G2 in Fig. 2. Similar behavior
can be observed for linear approximation based OHL in Fig.
3 for low B = 0.01. Moreover, as D becomes large, RG1G2
due to OHL is reduced because of increased path loss between
both the communication links. However, this leads to increase
in OHL which shifts U towards G2 to strengthen the weakened
U − G2 link.

B. Performance Evaluation of OPA Scheme

In Fig. 4, we vary RG1G2 against Pg for different values
of d to validate the global OPA solution as obtained from
(23). Network throughput due to OPA is improved with
source power Pg , because with high Pg , the G1 − U link
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Fig. 5: Joint optimization of HL and PA and the maximized RG1G2 .

gets strengthened. However, further increase in Pg pushes U
towards G2 by which U − G2 becomes vigorous, therefore
RG1G2 increases with high d value. Further, for low values
of D, both G1 − U and U − G2 links get sufficient strength
with increase in elevation angle that leads to mitigated path
loss, hence the overall throughput is enhanced.

C. Performance Evaluation of Joint Optimization Scheme

A contour plot has been provided in Fig. 5, showing
the variation of RG1G2 for different values of d and Pg .
Additionally, we plot the joint optimal HL and PA value with
a magenta-colored pentagram. It can be noticed that the joint
optimal point (d∗, P ∗g ) is obtained in the feasible region with
a large source power Pg and lower d value. This is attributed
to the fact that more Pg and less d respectively improves the
SNR and reduces the path loss of the G1 − U link, which
leads to maximized network throughput. Moreover, if Pg is
drastically increased, then the maximum RG1G2 due to joint
optimal HL and PA is achieved at a higher value of d∗ because
of the strengthened U − G2 link. So, joint optimal P ∗g and d∗

simultaneously govern the strength of G1−U and U−G2 links.

D. Impact of Environment Conditions on Optimal Design

In Fig. 6, the joint OHL and joint OPA have been plotted as
a function of D for different values of environment parameter
B. It is observed that in any environment, d∗ increases with
D, because large D leads to suppression in elevation angle of
U from G1, which actually increases d∗ with stronger U −G2
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link. Simultaneously, P ∗g also gets increased in order to fully
strengthen the weakened G1 − U link when D is more. So,
similar behavior can be seen in low B environment, as the
path loss varies linearly with the elevation angle. On the other
hand, in high B environment, optimal P ∗g is achieved at lower
value, as less power is required due to the nullified effect of
NLOS component in G1−U link. But, in order to increase the
SNR of the G1−U link, optimal d∗ value is also low, thereby
further reducing the path loss.

E. Performance Comparison and Achievable Gain

For comparative analysis, we plot the average RG1G2 per-
centage gain achieved using the proposed OPA, OHL and
joint optimization schemes over the benchmark scheme for
different system parameters such as D, n, H in Fig. 7. Clearly,
the proposed schemes outperform the benchmark for any
parameter with a mean improvement of almost 52% in case
of joint optimal scheme, because due to fixed allocation, the
benchmark scheme fails to provide optimal value with respect
to any geographical or environment change in the networking
scenario.

VI. CONCLUSION

This work investigated the problem of joint as well as indi-
vidual optimization UAV HL and PA in a DF relaying based
two-hop wireless ad hoc network. We successfully proved the
convexity of three optimization problems and obtained the
global optimal solutions. Furthermore, we provided various



closed-form and semi-closed-form expressions of the solutions
corresponding to step and linear approximations in case of in-
dividual optimal HL, generalized scenario in case of individual
PA, and some specific UAV hovering applications in case of
joint optimal HL and PA. The results are numerically validated
for all the obtained optimal solutions. Finally, a significant
performance enhancement is observed by the proposed scheme
over the benchmark.

APPENDIX A
PROOF OF LEMMA 1

In this appendix, we provide the proof of Lemma 1. Let
us consider Consider |h1|2, which is the ratio of α1 , (1 −
η1)PRL1

+ η1 and β1 , |X1|n. Clearly, α1, β1 > 0 ∀ η1 > 0
and 0 ≤ PRL1 ≤ 1. Moreover,

∂α1

∂d
,

[
(η1 − 1)

180

π

H

H2 + d2
B1PRL1

(1− PRL1
)

]
> 0

∀ η1 > 1, B1 > 0,
(A.1a)

∂β1
∂d

, nd
(
H2 + d2

)n−2
2 > 0 ∀n > 0, (A.1b)

∂2α1

∂d2
,

[
(η1 − 1)

180

π

H

H2 + d2
B1PR

2
L1
C1

(
B1H{2PRL1

− 1} − 2d

)]
< 0 ∀ B1H < 2d,

(A.1c)

∂2β1
∂d2

,

[
n
(
H2 + d2

)n−4
2 {H2 + (n− 1)d2}

]
> 0 ∀n > 1.

(A.1d)
Therefore, from (A.1a)−(A.1d),
∂2|h1|2

∂d2
,

1

A4
2

[
A2

2

{
β1
∂2α1

∂d2
− α1

∂2β1
∂d2

}
− 2β1

∂β1
∂d

{
β1
∂α1

∂d
− α1

∂β1
∂d

}]
< 0,

(A.2)

which implies that |h1|2 is strictly concave in d [15].
Similarly, |h2|2 , α2

β2
, where α2 , (1− η2)PRL2 + η2 and

β2 , |X2|n. It can be seen that, α2, β2 > 0 ∀ η2 > 0 and
0 ≤ PRL2

≤ 1. Further,

∂α2

∂d
,

[
(1− η2)

180

π

H

H2 + (D − d)2
B2PRL2 (1− PRL2)

]
< 0∀ η2 > 1, B2 > 0,

(A.3a)

∂β2
∂d

, n(d−D)
(
H2 + (D − d)2

)n−2
2 < 0 ∀n > 0, (A.3b)

∂2α2

∂d2
,

[
(η2 − 1)

180

π

H

H2 + (D − d)2
B2P

2
L2
C2

(
B2H

× {2PRL2 − 1} − 2d

)]
< 0∀B2H < 2(D − d),

(A.3c)

∂2β2
∂d2

,

[
n

(
H2 + (D − d)2

)n−4
2

{H2 + (n− 1)

× (D − d)2}
]
> 0 ∀n > 1.

(A.3d)

As a result from (A.3a)−(A.3d),
∂2|h2|2

∂d2
,

1

A4
4

[
A2

4

{
β2
∂2α2

∂d2
− α2

∂2β2
∂d2

}
− 2β2

∂β2
∂d

{
β2
∂α2

∂d
− α2

∂β2
∂d

}]
< 0,

(A.4)

and hence |h2|2 is strictly concave in d.
As both |h1|2 and |h2|2 are concave functions of d, so the

minimum of two concave functions is also a concave function
[15], thus R̂G1G2 is a concave function of d.
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