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Abstract

We are concerned with the challenge of coronavirus disease (COVID-19) detection in chest

X-ray and Computed Tomography (CT) scans, and the classification and segmentation of related

infection manifestations. Even though it is arguably not an established diagnostic tool, using machine

learning-based analysis of COVID-19 medical scans has shown the potential to provide a preliminary

digital second opinion. This can help in managing the current pandemic, and thus has been attracting

significant research attention. In this research, we propose a multi-task pipeline that takes advantage

of the growing advances in deep neural network models. In the first stage, we fine-tuned an

Inception-v3 deep model for COVID-19 recognition using multi-modal learning, i.e., using X-ray and

CT scans. In addition to outperforming other deep models on the same task in the recent literature,

with an attained accuracy of 99.4%, we also present comparative analysis for multi-modal learning

against learning from X-ray scans alone. The second and the third stages of the proposed pipeline

complement one another in dealing with different types of infection manifestations. The former

features a convolutional neural network architecture for recognizing three types of manifestations,

while the latter transfers learning from another knowledge domain, namely, pulmonary nodule

segmentation in CT scans, to produce binary masks for segmenting the regions corresponding to

these manifestations. Our proposed pipeline also features specialized streams in which multiple deep

models are trained separately to segment specific types of infection manifestations, and we show the

significant impact that this framework has on various performance metrics. We evaluate the

proposed models on widely adopted datasets, and we demonstrate an increase of approximately 4%

and 7% for dice coefficient and mean intersection-over-union (mIoU), respectively, while achieving

60% reduction in computational time, compared to the recent literature.
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1. Introduction 

The Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) [1] is a strain of Severe 

Acute Respiratory Syndrome-related CoronaVirus (SARS-CoV or SARSr-CoV). The latter is a species 

of coronaviruses, which are a group Ribonucleic Acid (RNA) viruses. SARS-CoV-2 causes an infectious 

respiratory disease that is known as the Coronavirus Disease 2019 (COVID-19), since it was first 

identified in December 2019, following a pneumonia outbreak [2,3].   The first human-to-human 
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transmission was confirmed in January 2020 [4], and the World Health Organization (WHO) declared 

a pandemic on the 11th of March 2020. Over three million confirmed cases to date, hundreds of 

thousands of deaths, and a severe socioeconomic impact in hundreds of countries that are hit by the 

virus [5,6] have induced significant efforts from governmental, public, and private sectors worldwide to 

manage the pandemic. One principal aspect of pandemic management and future epidemic prevention 

is the development of effective, efficient, and scale-able diagnostic tools. 

There are several diagnostic tools that have been used, or currently under development, for 

SARS-CoV-2. To the best of our knowledge, nucleic acid tests are the most established and the most 

widely used tool to date [7]–particularly, the Polymerase Chain Reaction (PCR) and its variants, such as 

Quantitative PCR (qPCR) and Reverse Transcription PCR (RT-PCR). PCR is a DNA and RNA cloning 

technique that is used to amplify/augment DNA/RNA samples required in micro biology studies. 

Even though it is characterized by high sensitivity and specificity, in addition to rapid detection, it is 

prone to producing false negatives. In part, this is due to the localized nature of the sample acquisition 

process, mainly as nasal, throat, and nasopharyngeal swabs, i.e., an active virus could be present 

elsewhere along the respiratory tract. There are also other limitations for PCR-based tests including 

universal availability, especially amidst shortage of supplies, slow turnaround times, depending on the 

resources of the lab, and in many cases, it is required to repeat the tests several times before they can be 

confirmed [8]. Other diagnostic tools include antibody tests which can give an indication on whether a 

person was previously infected by the virus. However, they are still not well established; hence, they 

are not widely used. It is worth mentioning that the recent literature features recommendations for 

combining more than one diagnostic tool. The authors of [7], for example, suggested the adoption of a 

combination of qRT-PCR and CT scans for robust management of COVID-19. 

Using CT scans and other modalities, such as X-ray, falls under an ever-growing area of high-paced 

research, namely, medical imaging diagnostics. It has been emerging as a reliable disease diagnosis 

tool, with several recent research findings referring to a performance that is on-par with human 

performance [9,10]. To a large part, this is due to the advances that are taking place in developing new 

machine learning techniques. This has resulted in the emergence of the Human-in-the-loop (HITL) AI 

framework [11], in order to harness the power of both approaches while avoiding their respective 

limitation simultaneously. For the current pandemic, though, using imaging as a first-line diagnostic 

tool for COVID-19 has been controversial to date [12–15]. Meanwhile, to the best of our knowledge, 

there is a consensus on the possibility of using medical imaging as a digital second opinion, or a 

complement, to the gold standard PCR-based tests. For example, the authors of [16,17], respectively, 

highlighted CT scans as either a tool with comparable diagnostic performance as initial RT-PCR, or an 

important screening tool especially for patients who have initial negative results for the RT-PCR test. 

Accordingly, highly-paced research has been devoted to harness the potential of deep learning-based 

medical imaging diagnostics, towards the goal of providing a rapid, accurate, scale-able, and affordable 

diagnosis. 

Deep neural network models have shown a considerable potential with regards to automatic 

detection of lung diseases [18–20]. Thanks to their ability to extract and learn meaningful features, 

deep models can provide an effective alternative to manual labelling by radiologists–a task that is 

highly impacted by individual clinical experiences. Recent literature highlights the adoption of deep 

neural networks to analyze X-ray and CT scans, in order to recognize/classify COVID-19 from healthy 

subjects. Moreover, COVID-19 virus has a bilateral distribution of patchy shadows and ground glass 

opacity in early stages, which progress to multiple ground glass opacities and infiltrations in both lungs 

[21]. These features are very similar to other types of pneumonia with only slight differences that are 

difficult to be distinguished by radiologists. Hence, deep models have been used to recognize/classify 

COVID-19 from other types of pneumonia, including bacterial and viral pneumonia [22–24]. Deep 

models have also been used in the quantification and the segmentation of infection manifestations 

such as ground-glass opacity (GGO) and pulmonary consolidation, in early and late stages of infection 

respectively [15,25]. 
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In this research, we are inspired by a typical flow in a real-life scenario where a radiologist would 

employ a deep learning-empowered screening system, first, to recognize/diagnose COVID-19, then to 

quantify and segment infection manifestations in X-ray and CT scans. The development of multi-task 

pipelines has been the scope for previous research [26]. Nevertheless, we demonstrate either 

competitive or superior performance compared to the recent literature at every stage of the proposed 

pipeline. The following points summarize the principal contributions of this research: 

1. We outperformed the recent literature on COVID-19 recognition by attaining a classification 

accuracy of 99.4% for the two-class problem, i.e. (COVID-19/Non-COVID-19) and 98.1% for the 

four-class problem of recognizing COVID-19 among scans that involve normal cases, other types 

of pneumonia, in addition to COVID-19. To achieve this performance, we propose a training 

procedure that involves fine-tuning of an Inception-v3 architecture. We present the performance 

of this architecture under varying learning parameters, and using different performance metrics. 
2. For the same stage, we show comparative analysis for learning using X-ray scans only against 

learning from X-ray and CT scans combined, i.e., multi-modal learning, and we demonstrate a 

potential advantage for the latter. 

3. We propose a CNN architecture for multi-label recognition/classification (ML-CNN) of different 

types of lung infection manifestations. Particularly, we solve the problem of identifying the 

probabilities of having infection manifestations, such as Ground Glass Opacities (GGO), Pleural 

Effusion (PE), and Consolidation, in medical scans. This is envisaged to have a potential role in 

the early diagnosis of COVID-19. It is worth mentioning that this problem was not addressed by 

previous work on multi-task pipelines for COVID-19 [26]. 

4. We adapt knowledge from another domain, namely, pulmonary nodule detection, to enhance 

the segmentation of lung infections in chest CT scans. Particularly, we employ our own previous 

work [18] on improving semantic segmentation of pulmonary nodules using the recently 

proposed DeepLab-v3+ architecture. Moreover, using Xception network as a feature extractor 

backbone, we evaluate the performance of the DeepLab model, which suits client-side 

applications. 

5. We propose a new learning procedure for semantic segmentation of infection manifestations. It 

involves the training of multiple streams, each of which is specialized to segment a specific type 

of manifestations. We demonstrate the effectiveness of this procedure over single stream-based 

segmentation, and compared to the recent literature, we attain an increase of approximately 7% 

and 4% for mean intersection-over-union (mIoU) and dice coefficient, respectively. 

The rest of the paper is organized as follows: Previous research that incorporates deep learning 

methods for COVID-19 diagnosis and infection segmentation is presented in section 2.   Section       3 

discusses the proposed multi-stage pipeline, and we elaborate on the adopted datasets, data 

augmentation methods, and pre-processing techniques. Section 4 is dedicated to highlight and 

discuss the Experimental results, and finally the work is concluded in section 5. 

2. Related Work 

This research intersects with four main areas in the literature, namely, COVID-19 recognition based 

on deep models, segmentation of COVID-19-related infection manifestations based on deep models, 

multi-task pipelines that have the ability to accomplish both tasks, and multi-stream recognition 

pipelines. In the rest of this section, we highlight the most relevant (to the proposed work) in these 

four areas. 

The literature on COVID-19 diagnosis features end-to-end deep models as well as transfer learning 

approaches. The authors of [27], for example, proposed a COVID-19 classification method in X-ray 

images using deep features that are computed using a pre-trained convolutional neural network (CNN) 

model, and an SVM classifier. This method attained an accuracy of 95.38% with the ResNet50 model 

employed as the feature extractor. In [28], a retrospective, single-center, study was conducted on 78 

patients. They aimed at investigating the correlation between CT-based manifestations and clinical 
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classification of COVID-19. With an attained sensitivity of 82.6% and a specificity of 100.0%, they 

concluded that CT-based quantitative analysis is highly correlated with the clinical classification of 

COVID-19. They also pointed out that CT visual quantitative analysis is highly consistent in terms  of 

the Total  Severity Score that was introduced in their research.  The authors of [29] used a dataset  of 

150 CT scans to generate two sub-datasets of 16 × 16 and 32 × 32 patches. Deep features were then 

computed and an SVM classifier was trained on producing binary labels. They also proposed a novel 

method for feature ranking and fusion to enhance the performance of the proposed approach. An 

accuracy of 98.27% and 98.93% sensitivity were attained on the latter sub-dataset of patches. A 

weakly-supervised software system was developed in [30]. It adopts deep learning and uses 3D CT 

volumes to detect COVID-19, achieving a specificity and sensitivity of 0.911 and 0.907, respectively. 

The U-Net model is a CNN that was proposed by [31], and is among the widely-adopted neural 

networks in medical image segmentation. It was further extended to 3D U-Net [32], and UNet++ 

[33] that showed promising performance on various image segmentation tasks. The authors of [34] 

proposed a U-Net-based segmentation technique that addressed COVID-19, and that employed an 

attention mechanism on 100 CT slices. They obtained a Dice Score of 69.1%. In our previous work 

[18], DeepLab-v3+ [35] was shown to outperform U-Net in pulmonary nodule segmentation. In  [36], 

Fan et al. proposed a novel COVID-19 deep model for lung infection segmentation (Inf-Net) to 

identify infected regions from chest CT scans in an automated manner. On ground glass opacities and 

consolidation, Inf-Net achieved a dice coefficient of 0.646 and 0.238, respectively. 

The authors of [26] proposed a deep learning model that jointly identifies COVID-19 and segments 

the related lesions in chest CT scans. Their three-arm model consisted of a common encoder and two 

decoders for image reconstruction and segmentation, where the image reconstruction stage is meant 

to enhance feature representation. The third arm featured a multi-layer perceptron neural network 

for COVID-19 recognition, i.e., a binary classification problem. For the segmentation task, they 

achieved a dice coefficient of 0.78. Yu-Huan Wu et al. [37] proposed a COVID-19 classification and 

segmentation system, that was trained on a dataset containing 144,167 CT scans, collected from 400 

COVID-19 patients and 350 uninfected cases. Their JCS model achieved a 78.3% Dice Coefficient on the 

segmentation test set, and a sensitivity of 95.0%, and a specificity of 93.0% on the classification test set. 

Deep networks with multiple streams have been employed in visual recognition applications. To 

the best of our knowledge, the authors [38] were the first to adopt a two-stream ConvNet architecture, 

which incorporates spatial and temporal networks, for action recognition in videos. The proposed 

architecture involved training the second stream on optical flow, and it was shown to attain a very 

good performance despite limited data. Following the work of [38], other multi-stream techniques that 

adopt other modalities [39] were proposed. In contrast to these previous techniques, our proposed 

multi-stream approach for segmenting infection manifestations trains each stream on a different label, 

rather than training each stream on a different modality of the whole dataset (all the labels). The latter 

is still a point of future research, though. 

3. Proposed Methods 

A machine learning-empowered system for COVID-19 diagnostics inherently involves multiple 

tasks. As a digital second opinion for radiologists, the system would first be required to recognize 

COVID-19 in medical scans. It might further be asked to differentiate between COVID-19 and other 

types of pneumonia. Following the recognition of COVID-19, the system would be required to 

identify the probability of presence of different infection manifestations, and would further be asked to 

segment the regions corresponding to these manifestations accurately. Figure 1 depicts the proposed 

pipeline which realizes the aforementioned tasks. First, we employ the Inception-v3 model for image 

classification, particularly, for COVID-19 recognition. Second, we train a multi-label classifier to infer 

the probability of different types of infection manifestations, namely, Ground Glass Opacities (GGO), 

Pleural Effusion (PE), and Consolidation. The third stage involves feeding COVID-19 CT scans to 

DeepLab-v3+ model, which produces binary segmentation masks that highlight the regions 
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corresponding to infection manifestations. To alleviate the impact of the limited amount of data, we 

use data augmentation techniques throughout the proposed pipeline. In the rest of this section, we 

elaborate on the datasets that are used for the training and testing of the proposed models, we elaborate 

on the adopted data augmentation techniques, and we discuss the implementation details of each of 

the three stages in the pipeline. 
 

Figure 1. The block diagram of the proposed method. 

 
3.1. Datasets 

To the best of our knowledge, the research community still lacks a comprehensive dataset that 

involves CT and/or X-ray scans and that suits both diagnosis and segmentation tasks at the same time. 

This necessitates the reliance on multiple datasets if the goal is to develop a multi-task pipeline. For 

training the proposed deep models, we used the following datasets, which involve two of the most 

widely used datasets in the recent literature [36]: 

1. COVID-19 CT Segmentation Dataset: This dataset includes 100 axial CT images from 40 patients 

with COVID-19. The images were segmented by a radiologist using Three labels: ground-glass, 

consolidation and pleural effusion. Figure 2 shows an example of CT COVID-19 slice from the 

dataset. 

2. The COVID-19 Image Data Collection Repository on GitHub: This dataset is hared by Dr. 

Joseph Cohen. It is a growing collection of deidentified chest X-rays (CXRs) and CT scans from 

COVID-19 cases internationally [40]. 

3. The RSNA Pneumonia Detection Challenge Dataset: This dataset is available on Kaggle, and 

it contains several deidentified CXRs and includes a label indicating whether the image shows 

evidence of pneumonia. Figure 3 shows different examples of X-ray images from the dataset. 

https://bit.ly/34UEMdV
https://github.com/ieee8023/COVID-chestxray-dataset
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge
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(a) (b) 

Figure 2. An example of a CT scan. Figure 2a shows the COVID-19 CT axial slice, and Figure 2b shows 

the ground truth segmented mask. The white regions in the latter represent the consolidation, while the 

dark gray regions represent pleural effusion, and light gray regions represent ground-glass opacities. 

Please see sub-section 3.1. 

 

 
Figure 3. Examples of input X-ray images from the adopted datasets. Please see subsection 3.1 

3.2. Preprocessing and Data Augmentation 

All medical scans were resized to have the shape of 512 × 512 × 3. The Contrast Limited Adaptive 

Histogram Equalization (CLAHE) method is used for enhancing small details, textures and local 

contrast of the images [41]. Local details can therefore be enhanced even in the regions that are darker 

or lighter than most of the image [42]. To avoid over-fitting, since the number of CT volumes is limited, 

we applied data augmentation strategies such as random transformations. These transformations 

include rotation, horizontal and vertical translations, zooming and shearing. For each training sample, 

the transformation parameters were randomly generated and the augmentation was identically applied 

for each slice in the sampled image. More details about the medical scans included in the adopted 

datasets are summarized in Table 1, such as the types of involved cases, the number of slices in each 

case and their modalities, and the total number of slices after augmentation. 
 

Table 1. Details of the medical scans included in the adopted datasets, such as the cases available, the 

number of slices in each case and their modalities, the total number of slices after augmentation, and 

the task supported by each type of slices 
 

 Case Modality #Slices Total after Augmentation Task 
COVID-19 COVID-19 X-rays 60 1995 Diagnosis 

 COVID-19 (with segmented masks) CT Scan 100 5403 Diagnosis + Segmentation 
Pneumonia Bacterial Pneumonia X-rays 70 2122 Diagnosis 

 Viral Pneumonia X-rays 70 2277 Diagnosis 
Normal Normal X-rays 70 2485 Diagnosis 

 

3.3. COVID-19 Recognition Using Transfer Learning on the Inception-v3 Architecture 

The Inception-v3 architecture is an evolution of the GoogLeNet architecture. Prior to GoogLeNet, 

such as in the AlexNet and VGGNet architectures, a standard structure for CNNc consisted of stacked 
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convolutional layers, max-pooling, and full-connected layers. To avoid over-fitting, computational 

demand, and exploding or vanishing gradients, the inception architecture encouraged sparsity through 

local sparse structures, namely, the Inception Modules/Blocks. Each of these blocks consists of four 

paths, and contains filters (convolutions) of different sizes, providing the ability to extract patterns at 

different spatial sizes. Convolutional layers that consist of 1 × 1 filters were used to make the network 

deeper, and to reduce the model’s complexity and the number of parameters, by reducing the number 

of input channels. The 1 × 1 convolutional layers also add more non-linearity by using ReLU after 

each 1 × 1 convolutional layer [43]. The fully connected layer in this architecture is replaced with a 

global average pooling layer. Compared to GoogLeNet, Incpetion-v2 featured the factorization of 

convolutions into smaller convolutions, while Incpetion-v3 extended Incpetion-v2 by batch-

normalization of the fully connected layer of the auxiliary classifier [44]. Figure 4 depicts a 

compressed view of the Inception-v3 [45] model. 

In the first stage of the proposed pipeline, we fine-tuned an Incpetion-v3 architecture, which 

consists of a feature extraction stage, followed by a classification stage. Instead of training the whole 

architecture from scratch, we started from a model that is pre-trained on ImageNet. We left the weights 

of the pre-trained model untouched while the final layer is retrained from scratch. The number of 

classes in the dataset determines the number of output nodes in the last layer. In section 4, we discuss 

the impact of varying learning parameters, such as the number of steps and the learning rate, on the 

attained accuracy. We also demonstrate the performance of fine-tuning using multi-modal data, i.e., 

X-rays and CT scans, as compared to fine-tuning using X-rays only. 
 

Figure 4. A schematic diagram of the Inception-v3 architecture, inspired by the research in [44]. 

 
3.4. A CNN Architecture for Multi-Label Recognition of Infection Manifestations in Chest CT Scans 

There are several differences between the proposed pipeline and previous work on multi-task 

models for COVID-19 [26]. One principal difference, though, is that the second stage of our pipeline 

addresses a problem that was not handled by previously proposed models [26], namely, the inference 

of the probabilities of presence of different infection manifestations, namely, Ground Glass Opacities 

(GGO), Pleural Effusion (PE), and Consolidation.  Given that the output of the segmentation stage  is 

a binary mask, important insights are missing with regards to the types of manifestations that 

correspond to the segmented regions, i.e., the white regions in the output mask. 

COVID-19 CT scans have featured three types of manifestations, namely, ground-glass opacity, 

consolidation and pleural effusion. Moreover, a scan may include one or more types of infections; 

hence it is a multi-label image recognition/classification problem. Towards the goal of recognizing 

different manifestations, we propose the CNN architecture that is shown in Figure 5. The output of this 

architecture is a vector of three probabilities for the presence of ground-glass opacities, consolidations 
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and pleural effusion in a CT scan. In a sense, the output of this stage complements the information 

obtained from binary segmentation masks, which will be addressed by the third stage of the pipeline. 

In addition, we envisage the second stage to have a significant role in early diagnosis even if the output 

from the first stage does not indicate signs for COVID-19. 
 

Figure 5. The proposed CNN model for multi-label classification of infection manifestations. As 

depicted in the figure, the output from the model are the probabilities of having different types of 

infection manifestations in chest CT scans. 

The convolutional layers consist of M kernels of size N × N. Max-pooling is applied in non-

overlapping windows of size 2 × 2. Every max-pooling reduces the size of each patch by half. Two dense 

layers with 128 and 64 neurons respectively are used with a dropout of 0.5 to avoid over-fitting, and 

the elu activation function is applied. The last layer is a dense layer for image classification using a 

sigmoid function to obtain the multi-label predictions and a cross entropy as the loss function. For N 

>2, i.e., multi-label classification, we calculate a separate loss per observation for each class label and 

sum the result as follows: 
 

N 

loss = ∑ yi log(ŷ i ) (1) 
i=1 

where, N is the number of classes, y is the corrected label, yˆ is a predicted output. 

Another principal difference between the proposed model and the work in [26] is that we deal 

with each task in the pipeline separately, i.e., there is no common encoder. Hence, we are able to 

harness the power of different architectures in each task. This becomes apparent in the third stage 

where we adopted the DeepLab-v3+ model for segmentation, which was shown to achieve significantly 

better results [18] compared to U-NET that was adopted in [26]. 

3.5. Segmenting Infection Manifestations with Knowledge Adaptation from Pulmonary Nodule Segmentation 

The third stage of the proposed pipeline uses the first dataset in sub-section 3.1, and is concerned 

with pixel-level segmentation of the regions corresponding to infection manifestations in CT scans. We 

capitalize on our previous research work in [18] in which we employed the DeepLab-v3+ model with 

CT scans to enhance the segmentation of pulmonary nodules, and in which we attained competitive 

results compared to the recent literature. The DeepLab-v3+ model was developed by Google,  and  it 

involves a simple decoder module to refine the segmentation masks along object boundaries. The 

model is fed with a single CT slice, and the corresponding ground truth mask showing the lesion 

locations is expected at the output. We explain the elements of the adopted model as follows: 

1. Atrous Separable Convolution: This form of convolution [46] is meant to reduce the complexity 

of the proposed model without compromising the performance. It is applied in the depth-wise 

convolution, where a depth-wise separable convolution replaces the standard convolution with 
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two consecutive steps, namely, a depth-wise convolution followed by a point-wise convolution 

(i.e., 1 × 1 convolution). For 2D signals, each location i on the output feature map y, atrous 

convolution is computed as follows: 

y[i] = ∑[x i + r.k]w[k], (2) 
k 

 

where w is a convolution filter. The stride with the sampled input signal is determined by the 

atrous rate r. Standard convolution, though, is a particular case with r = 1. 

2. Encoder: In segmentation tasks, objects in images as well as their locations represent the essential 

information required to accomplish successfully the computation of segmentation masks. This 

information is expected to get extracted by the encoder. In the proposed pipeline, the primary 

feature extractor in the DeepLab-v3+ model is an Aligned Xception model–a modified version 

of the Xception-65 model [47]. Xception is a modified version of the Inception module, in which 

Incpetion modules are replaced with separable depth convolutions. Moreover, in Aligned 

Xception, we use depthwise separable convolution with striding instead of all the maximum 

pooling operations. After each 3 x 3 depthwise convolution, extra batch normalization and ReLU 

activation are applied. Also, the depth of the model is increased without varying the entry flow 

of the network structure. Figure 6 depicts the modified Xception model. 

3. Decoder: In this stage, the features computed during the encoding phase are employed to 

compute the segmentation masks. First, we bilinearly-upsample the encoder features by a factor 

of 4, before we concatenate them with the corresponding low-level features. 1 × 1 convolution is 

used on the low-level features before concatenation, in order to decrease the number of channels. 

After the concatenation, 3 × 3 convolutions are applied to enhance the features, which is followed 

by another bilinear upsampling by a factor of 4, as shown in the DeepLab-v3+ model in Figure 1. 
 

In this work, we started from a pre-trained DeepLab-v3+ model. Particularly, we adapt another 

knowledge domain, namely, the pulmonary nodule segmentation, to enhance the segmentation of 

COVID-19 manifestations in CT-scans. We used the pre-trained model weights that were obtained in 

[18]. Furthermore, since we focus on the enhancement of segmentation masks, we propose a new 

learning procedure that involves specialized streams, each of which features a DeepLab-v3+ model 

that trains to segment a specific type of manifestations. In the next section, we present the results of the 

proposed pipeline, and we elaborate on the gain of training multiple specialized streams as compared 

to a single-stream pipeline. 

4. Results and Discussion 

All the simulations were carried out on a machine with a GeForce GTX 1080Ti GPU, and           8 

GB of VRAM. We used Python as the primary programming language and Tensorflow as the 

backbone in all the experiments. This research implements a new multi-task pipeline that is capable 

of accomplishing the following types of tasks: 1) COVID-19 classification in X-rays and CT scans, 

2) Multi-label recognition of COVID-19 manifestations in CT scans, and 3) and segmentation of 

COVID-19 manifestations in CT scans. We adopted the most commonly used performance metrics in 

the respective areas, i.e., for classification and segmentation, which are: sensitivity, specificity, accuracy, 

precision, F1-Score, Dice Coefficient (DSC), Intersection over Union (IoU), and Matthews Correlation 

Coefficient (MCC). The mathematical expressions for computing the aforementioned metrics are are 

given by: 

Accuracy =  TP
+TN 

, (3) 
TP +TN +FP +FN 

 
Senstivity =    TP , (4) 

TP +FN 
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Figure 6. The modified Xception model [48] which is used as the backbone (feature extractor) for the 

DeepLab-v3+ model in the segmentation stage of the proposed pipeline. 

 
 

Speci f icity =    TN , (5) 
TN +FP 

 
Precision =    TP   , (6) 

TP +FP 

MCC =
  (TP∗TN ) − (FN ∗FP) 

, (7)
 

(TP +FN ) ∗ (TN +FP ) ∗ (TP +FP ) ∗ (TN +FN ) 

F1 Score = 2 
 precision.Recall 

, (8)
 

precision + precision 

DSC = 
2 |A B| 

, (9) 
|A| + |B| 

IoU =  TP , (10) 
TP +FP +FN 

where TP, FP, FN, and TN are the number of True Positives, False Positives, False negatives, and True 

Negatives, respectively. 

For the segmentation task, our training set contains 5000 COVID-19 images and the test set has 403 

images. For the classification task, however, the training set contains the 9618 images, and 955 images 

are included in the test set. For the two-class version of the classification problem, i.e., COVID-19 vs. 

Normal, the total number of training images are 5219, and 536 images are included in the test set. In 

the rest of this section, we refer to the COVID-19 classification of stage 1 as Task 1, to the multi-label 

recognition probelm of stage 2 as Task 2, and the segmentation problem of stage 3 as Task 3. 
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4.1. Results of Task 1: Classification Using a Fine-Tuned Inception-v3 Model 

For fine-tuning the Inception-v3 model, we used a batch size of 100 for 2800 steps/iterations. 

Starting from a pre-trained model on ImageNet, we removed the weights of the last layer and re-trained 

it using X-ray and CT scans. For the four-class version of the recognition problem, i.e., COVID-19, 

Normal, Viral Pneumonia, and Bacterial Pneumonia, the number of output nodes that is equal to the 

number of the classes is set to 4. For the two-class version of the recognition problem, i.e., COVID-19 

and Normal, the number of output nodes is set to 2. The last layer of the model was trained with  the 

back-propagation algorithm, and the weight parameter is adjusted using the cross-entropy cost 

function by calculating the error between the softmax layer output and the specified sample class label 

vector. 

Table 2 summarizes the results of the fine-tuned Inception-v3 model using 0.01 learning rate on 

the two-class and the four-class problems.  After 2800 steps for 4 classes, we achieved an accuracy  of 

99.9%, 97.71%, and 98.1% for the training, validation and testing, respectively. For 2 classes, however, 

we achieved an accuracy of 98.84%, 99.08%, and 99.4% for the training, validation and testing 

respectively. The confusion matrices of the two-class and four-class cases are shown in Fig. 7a and Fig. 

7b respectively. We also show the variations of the accuracy and cross-entropy for that model for 

classification of 2 classes in Figure 8. 

Table 2. Classification results of the fine-tuned Inception-v3 model for the two-class and the four-class 

COVID-19 recognition problems. Please see text for more details. 
 

# of Classes Training Accuracy Validation Accuracy Test Accurac y Training Cross Entropy Validation Cross Entropy 
4 Classes 98.59% 97.71% 98.1% 0.07687 0.09425 

2 Classes 99.84% 99.08% 99.4% 0.01626 0.03283 

 

(a) Confusion matrix for two classes  

(b) Confusion matrix for four classes 

Figure 7. Confusion matrices of the fine-tuned Inception-v3 model for the two-class and the four-class 

COVID-19 recognition problems. Figure 7a shows the confusion matrix for two classes, and Figure 7b 

shows the confusion matrix for four classes. 

We also compared the performance of the adopted model with other models in the recent 

literature. Table 3 presents a summary of the accuracy, sensitivity, specificity, precision, F1-Score and 

MCC attained by different architectures. We demonstrate that the transfer learning approach with 

Inception-v3 surpassed all other architectures by achieving a 99.4% accuracy in case the training was 

done using X-rays only. We further tried to train using multi-modal data, i.e., using X-rays and CT 

scans, and we achieved a 99.5% accuracy. We argue that the increase in the attained accuracy, using 

multi-modal data, is due to the 3D cues that are provided by, and inherently exist, in CT scans, but are 

missing in X-rays. It is worth mentioning that in order to avoid imbalanced data, we made sure that 
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Figure 8. The variation of accuracy and cross-entropy using the Inception-v3 model with 2-classes 

X-ray dataset . 

 
we have an equal number of X-rays and CT scans when we trained with multi-modal data. Particularly, 

we under-sampled the X-rays so that we get a number equal to the number of available CT scans. The 

under-sampling was done randomly, and we report the results that corresponds to the average of 5 

runs. Complete results for each of the 5 runs are given in Table  4.  It is worth mentioning that due  to 

the limited number of available CT scans, uni-modal learning (using X-rays only) was carried out 

using a larger number of scans, yet multi-modal learning attained a slightly higher accuracy–99.4% for 

the former vs. 99.5% for the latter. We report this comparison to highlight that multi-modal learning is 

worth further exploration when larger number of CT scans becomes available. 

 
Table 3. Comparing the recognition performance of the proposed model with other models in the 

recent literature 
 

 Method Modality Accuracy(%) Senstivity(%) Specificty(%) Precision(%) F1-score(%) FPR MCC(%) 
4-Classes Alexnet [49] X-ray 66.67 66.67 – 64.68 65.66 – – 

 Resnet18 [49] X-ray 69.46 66.67 – 72.50 69.46 – – 
 ShuffleNet + SVM [27] X-ray 70.66 65.26 – – 58.79 17.36 – 
 Googlenet [49] X-ray 80.56 80.56 – 84.17 82.32 – – 
 CNN [50] CT 84.7 76.2 – 97.0 85.3 – – 
 Inception-v3 + SVM [27] X-ray 96.00 90.26 – – 90.28 4.86 – 
 DenseNet201 + SVM [27] X-ray 97.33 93.86 – – 93.86 3.06 – 
 XceptionNet + SVM [27] X-ray 97.33 93.00 – – 93.00 3.50 – 
 VGG-16 + SVM [27] X-ray 97.33 94.20 – – 94.20 2.90 – 
 InceptionResnetV2 + SVM [27] X-ray 97.33 91.13 – – 91.74 4.43 – 
 Ours TL-Incep-V3 X-ray 98.1 98.02 98.03 98.2 98.2 2 – 

2-Classes          

 DRE-Net [24] CT 64 92 96.12 96 94 3.85 88.3 
 VGG-16 CT 96.93 99.20 94.67 94.90 97.0 5.33 93.96 
 Resnet-50 CT 97.33 99.20 95.47 95.63 97.38 4.53 94.73 
 GoogleNet CT 97.87 96.93 98.80 98.78 97.85 1.2 95.75 
 Umut Özkaya et al. [29] CT 98.27 98.93 97.60 97.63 98.28 2.4 96.54 
 Ours TL-Incep-V3 X-ray 99.4 99.5 99.1 99.1 99.3 0.9 98.7 
 Ours TL-Incep-V3 CT+X-ray 99.5 99.8 98.2 99.2 99.5 0.81 99.0 

 
 

4.2. Results of Task 2: Multi-Label Classification of Infection Manifestations in CT Scans 

In the multi-label classifier, each convolutional layer is followed by maxpooling and dropout 

regularization of 25% to prevent the model from over-fitting. We used 5 × 5 filter for convolution and 

2 × 2 for maxpooling, then, a flattening operation is carried out for classification. The activation 

function is elu for all the layers, except for the last one which is a sigmoid, in order to generate a 

probability for each label–ground glass, consolidation, and pleural effusion. The loss function is the 

binary cross-entropy and the metric is the accuracy, with Adam as the optimizer [51]. The model was 

trained for 50 epochs. Figure 9 shows the confusion matrix for the three labels in the COVID-19 
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Table 4. The prediction performance for the 5 runs which were carried out on two-class, multi-modal 

data (X-ray and CT scans). 
 

Test no Accuracy(%) Senstivity(%) Specificity(%) Precision(%) F1-Score(%) FPR MCC 
Test-1 99.7 100 99.4 99.5 99.7 0.57 99.4 

Test-2 99.7 100 99.4 99.5 99.7 0.56 99.5 
Test-3 99.4 100 98.9 98.9 99.4 1.14 98.9 
Test-4 99.7 100 99.4 99.4 99.7 0.64 99.4 

Test-5 99.1 99.4 98.9 98.8 99.1 1.16 98.2 
Mean 99.5 99.8 99.2 99.2 99.5 0.81 99.0 

 

dataset. More performance metrics are given in Table 5. It is worth mentioning that we do not report 

a comparison between our performance at this stage and the recent literature. This is because, to the 

best of our knowledge, this research is the first to address the problem of recognizing different types of 

infection manifestations. Even for the recently proposed multi-task model in [26], its recognition arm 

addressed binary classification, which is identical to the two-class problem addressed by stage 1 of our 

pipeline. The segmentation stage in [26] did not address multi-label infection recognition either, as it 

was limited to produce binary masks. 
 

Figure 9. The confusion matrix of the adopted multi-label classifier. 

 
Table 5. Different performance metrics for the adopted multi-label classifier. We show the performance 

for individual labels as well as the overall performance. 
 

Class Name Accuracy Precision Senstivity F1-Score 
Pleural effusion 91.31% 83% 90% 86% 
Ground glass 89.46% 91% 80% 85% 

Consolidation 93.72% 88% 93% 90% 
Overall 87.2% 87.3% 87.6% 87% 

 

4.3. Results of Task 3: Semantic Segmentation of COVID-19 Infection Manifestations Using Multiple 
Specialized Streams 

As mentioned in the previous section, we initialized the DeepLab-v3+ model using the weights of 

the checkpoint used to segment the lung cancer nodules in our previous work [18]. We set the learning 

rate to 0.0001, the momentum to 0.9, the weight decay to 0.00004, and the steps to 50,000. We also 

adjusted the atrous rates as [6, 12, 18] with an output stride of 16. In Fig. 10, we present the output 

segmentation masks on the COVID-19 validation set. The figure shows the segmentation output of 

each of the specialized streams, and the output of the all-class stream, i.e., the single stream that was 

trained to segment all the classes of manifestations at the same time. To support subjective results 
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with objective measures, we report in Table 6 the dice coefficient (DSC) and the mean Intersection 

over Union (IoU) attained by the all-class stream, each of the three specialized streams, and their 

average. Considering the performance of the specialized streams, which outperformed the single 

stream approach, we believe that this defines an accuracy-complexity trade-off, i.e., in order to attain 

better DSC and IoU, the system needs to include multiple specialized streams.  We  also believe   that 

given the COVID-19 pandemic management as an application, in which significant resources have 

already been invested, there is a higher priority for developing highly accurate systems over low-

complexity systems. 
 

Figure 10. The output segmentation masks of the adopted deep models. The images in column (a) 

show the chest CT images of three scans. Column (b) shows the ground-truth masks for these three 

scans, where the white represents the consolidation, dark gray represents pleural effusion and light 

gray corresponds to ground-glass opacities. Column (c) depicts the segmentation results generated by 

our model for all classes where the red represents the consolidation, the green represents the pleural 

effusion, and the yellow represents the ground-glass opacities. The images in columns (d), (e), and (f) 

represent the output from the specialized stream that are trained to segment ground-glass opacities, 

pleural effusion, and the consolidation, respectively. 

 
Table 6. A comparison between the performance of each of the specialized streams as well as the all-

class stream, with regards to dice coefficient (DSC) and mean Intersection over Union (mIoU). For all 

the streams, a DeepLab-v3+ model, with an Xception_65 as a feature extractor, is used. 

All-Class Stream 1: PE Stream 2: GGO Stream 3: Consolidation Multi-Stream Average 
DSC (%) 87.01 91.52 91.61 92.45 91.68 

mIOU (%) 77.0 84.36 84.51 85.95 84.94 

 
To compare the performance of the proposed approach with other models, we report the results 

for specific types of infection manifestations as well as the overall performance for all types of 

manifestations.  Table  7 shows a manifestation-specific comparison between the performance of   our 

model, namely, DeepLab-v3+ model with transfer learning from pulmonary nodule detection, and 

other models from the recent literature including previous research that adopted DeepLab-v3+. The 

comparison highlights the superiority of our approach consistently for the two types of 

manifestations. This represents approximately 41% and 290% increase in DCS of ground-glass opacities 

and consolidation, respectively, compared to the recent literature. For mIoU, the comparison yields an 

increase of approximately 77% and 500% in DCS of ground-glass opacities and consolidation, 

respectively. 
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Table 7. A quantitative comparison of manifestation-specific DSC and mIoU, for Ground-Glass Opacity 

and Consolidation, between our segmented method and other methods in the recent literature. 
 

 Method DSC mIOU 
Ground-glass opacities DeepLabV3+ (stride = 8) [36] 0.375 0.230 

 DeepLabV3+ (stride = 16) [36] 0.443 0.284 
 FCN8s [36] 0.471 0.308 
 Semi-Inf-Net+FCN8s [36] 0.646 0.477 
 Ours (DeepLab-v3+ + exception-65) 0.916 0.845 

Consolidation DeepLabV3+ (stride = 8) [36] 0.117 0.062 
 DeepLabV3+ (stride = 16) [36] 0.188 0.103 
 FCN8s [36] 0.221 0.124 
 Semi-Inf-Net+FCN8s [36] 0.238 0.135 
 Ours (DeepLab-v3+ + exception-65) 0.9245 0.8595 

 
We further make a comparison that is not manifestation-specific, between the performance of the 

proposed approach and the recent literature. In Table 8, we demonstrate an increase of approximately 

7% and 4% for mean intersection-over-union (mIoU) and dice coefficient,  respectively,  compared  to 

the recent literature. Figure 11 depicts a subjective comparison using examples for the output 

segmentation masks on the COVID-19 validation set obtained using U-net [52] and DeepLab-v3+ 

(ours). We also demonstrate less computational cost than the traditional test, the RT-PCR, and other 

diagnostic tools [37,53]. We report this comparison in Table 9, which shows a 60% reduction in 

diagnosis/computational time per case. 

 
Table 8. A quantitative comparison on the COVID-19 segmentation dataset between our segmentation 

method and other methods in the recent literature. The comparison considers DSC and mIoU. It also 

considers the overall performance on the three different types of infection manifestations, i.e., it is not a 

manifestation-specific comparison. 
 

Method DSC mIOU 
U-Net + DL [34] 61.0% 43.88% 
U-Net + FTL [34] 66.7% 50.15% 

U-NET 512 × 512[26] 
AU-Net + DL [34] 

67.14% 
68.5% 

50.53% 
52.09% 

U-NET 256 256[26] 69.09% 52.77% 
AU-Net + FTL [34] 69.1% 52.78% 
Backbone+PPD+RA+EA [36] 73.9% 58.6% 
JCS [37] 77.5% 65.2% 
JCS‘ [37] 78.3% 66.5% 
Amine Amyar et.al [26] 78.52% 64.6% 
U-net [52] 82% 69.49% 
M - A [52] 85% 73.91% 
M - R [52] 84% 72.41% 

   Ours method 87.01% 77%  
 

5. Conclusion 

In this research, we proposed a multi-task pipeline for the recognition of COVID-19, and the 

classification and segmentation of related infection manifestations in medical scans. We are inspired 

by the emerging role that medical imaging-based diagnostics can play as a digital second opinion to 

manage the current pandemic. The proposed pipeline starts with a COVID-19 recognition stage. 

Towards  this goal,  we fine-tuned and Inception-v3 model which was pre-trained on ImageNet.    We 

evaluated the performance of this model on two tasks, namely, the two-class problem of COVID-

19/non-COVID-19 recognition, and the four-class problem of recognizing COVID-19 scans from other 

scans that correspond to normal, viral pneumonia, and bacterial pneumonia cases. We outperformed 

other techniques in the recent literature, consistently in both types of classification problems. To the 

best of our knowledge, we are also the first to highlight a potential advantage for 
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multi-modal learning, i.e., learning from X-rays and CT scans over learning from X-rays only. In the 

second stage, we addressed a problem that was not been addressed by the recent literature, namely, the 

identification of the probabilities of presence for different types of infection manifestations in medical 

scans. This stage was implemented using a multi-label CNN classifier, and we envisage its potential to 

serve in early detection of infection manifestations. It also complements the third stage which addresses 

the problem of computing binary masks for segmenting the regions corresponding to infection regions 

in CT scans. For effective segmentation, we adapted the knowledge from another domain, namely, 

pulmonary nodule segmentation. This approach resulted in an increase of approximately 4% and 7% 

for dice coefficient and mean intersection-over-union (mIoU), respectively, while requiring 60% less 

computational time, compared to the recent literature. All the stages of the proposed pipeline were 

trained and tested using widely adopted datasets, and evaluated using various objective measures. 

We also used data augmentation techniques to avoid over-fitting that might have occurred due to the 

relatively limited volume of available data. For further enhancement of the performance of the 

segmentation stage, we showed that using multiple streams can significantly improve the quality of 

the output masks, as measured by the DSC and mIoU, such that each stream is trained to segment a 

specific type of infection manifestations. 
 

Figure 11. Segmentation output visualization results. The row images (a) show the chest CT images 

of two scans. The row images (b) show the ground-truth masks for these two scans, where the white 

represents the consolidation, dark gray represents pleural effusion and light gray corresponds to 

ground-glass opacities. The row images (c) are the outputs of the U-Net. The row images (d) are the 

segmentation results generated by our model. 

 
Table 9. A comparison between the proposed method and other diagnostic tools in the literature 

concerning the average diagnosis time per case. 

Method RT-PCR [54] CT Radiolgist [53] JCS [37] Ours 
 

   Test Time 4 h 21.5 min 19 sec 5.33 sec  
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