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Abstract

How to represent spatiotemporal information in an
artificial neuron model has been a problem of long-
standing interest in artificial intelligence. After a brief
review of recent advances, Caianiello’s neuronic
convolutional model is extended in this paper for
spatiotemporal information representation. The kernel
functions that correspond to the convolutional neuron's
receptive field profile can be described by neural wavelets.
The convolutional neuron-based multilayer network and its
back propagation algorithm are developed to perform
spatiotemporal pattern processing. The results provide a
natural framework for the discussion of spatiotemporal
information representation in an artificial neural network.

1 Introduction

A wide variety of patterns from many applications, such as
image processing, speech recognition, system identification
etc., are described by certain spatiotemporal frequencies.
The conventional MP neuron model is a “snap shot
representation” where a dynamic pattern is transferred to a
static pattern for processing and much spatiotemporal
information implied in an input signal is missing due to the
dot product of the input with weight function in the MP
neuron. Some real-time neuron models have been devel oped
from the MP modedl by two strategies, one with constant
weights and another with time-varying weights. In the first
strategy, an additive short-term memory (STM) modd is
obtained by adding a positive state feedback term to the MP
model. STM has been extensively studied in neura
modelings [1-2] and applied successfully in artificial neural
networks. However, there are some computational problems
[3] associated with this method which restrict computational
flexibility in the temporal domain.

The second strategy incorporates explicit delays in the MP
model, such as Caianiello’s neuronic equation [4] which is
defined as

0,0)= (@ dw Mo, - Dt g ), @

where the neuron’s input, output, and threshold are
represented by 0;(t), o, (t), and ¢ (t), respectively, f is

the neuron activation function, and W (t) is the time-

varying connection weight with which the firing of the jth
neuron affects the ith neuron after the t  time-units. Thereis
ample biological support for the substitution of constant
weights W by time-varying weights w; (t) . The neuron

equation (1) represents a neuron with its spatial integration
of inputs being a dot-product operation similar to the MP
model, but with its temporal integration of inputs being a
convolution. Noted that the integral in equation (1) is the
Riemann convolution over O to t rather than the
conventional convolution over - ¥ to +¥ .

In general, the flexible Caianiello’s time-convolution
equation needs strong simplifications of the weight kernel
for engineering applications [5-7] [3], otherwise the
increased dimensionality of the time-varying weights with
time destroys the performance of the net. The solution to
this problem introduces perceptual aperture problem. The
input data to a neural net will be convolution-stacked over a
given range called perceptua aperture that is related to the
region of the receptive field sensitivity profile. Based on the
investigation of visual system, it is a relatively fixed
parameter independent of the length of the input signal.
That is, the time-varying weights in the Caianiello model
should be short convolutional operators with their length
unchanged during the net training. The Caianiello model has
been modified with short convolutional operators to
congtruct artificial neural nets for engineering applications
[8-9]. Here, we extend this approach for both space- and
time-varying information processing. We first develop a
neural wavelet representation to describe the amplitude-
phase characteristics of time- and space-varying weights.
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The problem is related to the spatiotemporal properties of
the receptive field profile [10-11]. The experimental results
in vision research have shown that the main spatiotemporal
properties of major types of receptive fields in different
levels of vertebrates can be described in terms of afamily of
extended Gabor functions. The spectrum of the function
may be zero-phase for spatial frequency so as to assure
topologically correct mappings, and minimum-phase for
temporal frequency due to the real-time requirements of
visual system. We employ the convolutional neurons with
the spatiotemporal wavelet representation with limited
wavelet apertures to construct multilayer neural nets. Since
the forward- and back-propagation procedures of the net
involve spatiotemporal convolution and crosscorrelation
respectively, it is possible to efficiently implement these
operations using Fourier transforms and the corresponding
block updating strategies for neura wavelets. We design
examples on several data sets of varying quality to test the
performance and ability of the net.

2 Information Representation in Early Visual System

For space- and time-varying signals, the topographic
mappings actually require neural networks to process their
amplitude-phase information with regard to spatiotemporal
frequencies. Much remains unknown about how the brain
trains itself to process the information. In the visual system,
there are many topographic mappings of visual space onto
the surface of the visual cortex. The topographic
representations must be related to the cell’s information
transfer function that describes spatiotemporal properties of
the so-called receptive field. The information transfer
function when distributed appropriately over spatiotemporal
frequencies is able to encode an arbitrary visual image. To
our understanding, the representation of information in a
single neuron is the key to the problem. There have been
several papers studying the representation of space- and
time-varying patterns based on spatiotemporal filtering in
the visual nervous system [12-15]. These papers describe
families of motion-sensitive mechanisms. Some properties
of visual image motion are most evident in the Fourier
domain. Thus the motion information in the visual field may
be described in terms of spatia and temporal frequencies.
To use such mechanisms for constructing an artificial
neuron model for artificial neural networks, the following
three problems must be solved.

The first problem is the operation relationship between
inputs and weights of a neuron. It determines the
computational capability and complexity of an artificial
neuron model. The operations with a dot product for space
and a convolution for time yield the Caianiello neuron
model in which the tempora information of the input is
processed and remained in the output but much spatial
information loses; the convolutional operations for both
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space and time are discussed in this paper. The second
problem is about the spatiotemporal properties of the
receptive field profile (i.e, the amplitude-phase
characteristics of the neural wavelet in this paper). Its
significance is based on the fact that the output of a neuron
depends not solely on the spatiotemporal frequencies of the
input signal but rather on the amplitude-phase
characteristics of the neuronic weight function. The
investigations in vision researches [16-20] have shown that
the main spatiotemporal properties of major types of
receptive fields in different levels of vertebrates can be
described in terms of a family of extended Gabor functions.
The phase spectrum of the function may be zero-phase for
spatial frequency so as to assure topologicaly correct
mappings, and minimum-phase for temporal frequency due
to the real-time requirements of visual system. The artificial
neuron with its weight function being the kind of function
can selectively response to the different spatiotemporal
frequency components of input signals. The third problem is
the aperture problem that is related to the region of the
receptive field sensitivity profile. The aperture corresponds
to the length of the weight function of a visual neuron, and
will be referred to as the length of a neural wavelet in this
paper. Based on the investigation of visual system, it is a
fixed parameter that is independent of the length of the
input signal to the neuron and has different values for
neurons with different functions. This property determines
local interconnections instead of globa interconnections
among neuronsin aneura network.

3 General Neuron Model and Neural Wavelet

As avisua signa is distributed over space and time, any
visual neuron must collect together and appropriately
combine information at different points in the image at
different times. The spatiotemporal integration can be
described as: at each point in space and time, the signal is
weighted by some coefficient and these values are added
together. The weight function specifying these coefficients
completely characterizes the neuron. Consequently, a
generalized neuron model can be defined as

ofr,t) = f(gm(r.r t)s(r ¢t)dr &t - q(r,t)), (2
where 1 =(X,Y,2), and r¢=(x¢y¢z9. In the case of a
visuad neuron, the weight function w(r,r¢t) is the
neuronic detection and integration operator to the input
signal s(r ¢t), its spatial components correspond to what is
ordinarily called the receptive field sensitivity profile. On
the other hand, the weight function w(r,r ¢t) is also the
point spread function at r where the neuron is located. The
Fourier transform of the weight function consists of two
parts:. modulation transfer function and phase transfer

function. According to the generalized neuron model of
equation (2), certain spectrum structure of the weight and



threshold functions will endow the neuron with the ability to
process information.

Based on immense experimenta results in vision
researches, the main spatiotemporal properties of major
types of receptive fields in different levels of vertebrates
may be described in terms of a family of extended Gabor
functions, that is, the optimal weight function in equation
(2) for a visua neuron is a set of Gabor basis functions
which can provide a complete and exact representation of
an arbitrary spatiotemporal signal. An example of a 3-D
Gabor function in the complex form can be expressed as

G(x,y,zt) = Aexp(2pi(f x+ fyy+ f,z+ f,t)

3)

where A is the maximum amplitude; (f,, f,, f,) represents
spatial frequency, f; tempora frequency; (s,,s,,S,)

and s, represent spatial and temporal deviations
respectively. The shapes of the cosine- and sine-phase
versions of the 1-D Gabor function are pictured in Figure 1.
Apparently, the form of the Gabor function is a waveform
with the central frequency (f,,f,,f,, f,), the damping

factor exp(- X°/s " - yz/si - 22/si-t?/s]), and the

frequency band width (I/s,.,1/s .Ys,,1/s,). The
waveform is referred to as the neural wavelet. It can
describe various properties of receptive fields if the
parameters in equation (3) are taken properly. Note that the
side lobes of the neural wavelet in Figure 1 attenuate rapidly
far from the central frequency. Therefore, the valid length

of the weight function (or neural wavelet) should be a
limited dimensional set, not depending on the length of a

input signal. Undoubtedly, a set of such neurons defined as
equation (3), when their neural wavelets are distributed
appropriately over spatiotemporal frequencies, are able to
encode an arbitrary visual image with topologically correct

mapping.
app g 1.00 G(t)

-1.00 —

Figure 1. Examples of the one-dimensional Gabor function.
Solid curve is the cosine-phase (or even-symmetric) version, and
dashed curve is the sine-phase (or odd-symmetric) version.
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4 Neuronic Spatiotemporal Convolution Model

From the viewpoint of engineering applications, each
neuron in the brain is a filter with the kernel function being
a particular spatiotemporal spectrum. It is actually a
scanning operator in the 4-D domain to complete
spatiotemporal integration of unceasing inputs from the
synapses of other neurons. For some vertebrate’s primary
visual system with spatiotemporal invariance, the
generalized neuron model of equation (2) can be simplified
s

o(r,t) = £ (s(r, 1) * W(r, 1) - q(r, 1))
= £(Q) Q' SrEOW - r6t- t)dret - q(r.1)),@

where * is a spatiotemporal convolution symbol of
operation; o(r,t) is the output of the neuron located at r

at thetime t; s(r¢t) istheinput to the neuron at r from

theneuron at r ¢ at thetime t ; w(r - r¢t- t) isthe neura
wavelet of the neuron at r, with which the firing of the
neuron & r ¢ affectstheneuron at r at thetime t-t; L, is

the space length of the neural wavelet that consists of three
lengths along the x- , y- and z-axis respectively, and also
denotes the number of the neuron’s synapses connected to
other neurons; L, is the time length of the neural wavelet.

According to the shape of the Gabor function, L, and L,

are limited and small, not changing with the length of the
input signal. Because of the convolutional interaction
among the neurons, each neuron radially connects to other
neurons in a neural network, This can be designed as a
symmetrical local connection in the network.

The neuron’s filtering mechanism, intrinsically, is that its
neural wavelets cross-correlate with the inputs from other
neurons, and large correlation coefficients denote a good
match between the input information and the neuron’s
filtering property. The neurons with similar spatiotemporal
spectrum gather to complete the same task using what are
known as population codes. The adaptive changes of the
neural wavelet in equation (4) can provide the neuron with
immense learning power. For engineering applications, the
form of the neural wavelet in equation (3) can be simplified
as

W(ro, 19 =[1- 2(pfr)*]exp(- (pfor)®),  (5)
where the artificial neuronislocated at ro; r =|r ¢ ro| and

f, isthe center frequency. Obviously, the neural wavelet of

equation (5) is a zero-phase wavelet, and its spectrum is
determined by two independent parameters. the center
frequency and the wavelet length. To train a convolution
neuron-based network to perform some task, for the first
step, one must set each neuron with an initial wavelet with
certain specia spectrum, which is different from the MP
neuron-based network where the initial weights of each



neuron are set with random series. Maybe, such initia
wavelets can be viewed as the background issue in
biological neurons. Then the wavelet of each neuron is
adjusted in such a way that the error between the desired
output and the actua output is reduced. Thus, the
information is loaded on the background issue. It is worth
emphasizing, the center frequency of neural wavelets
should be related to the center frequencies of the input and
desired output signas, that is, the proper choice of the
parameter can speed up the convergence of the network.

5 Convolution Neuron-Based Multilayer Network

A 3-D multilayer neural network can be built using the
neurons described in equation (4) and the back propagation
algorithm [21]. Each neuron in the network fans out to
connect to other neurons. For the convenience of deriving
equations, equation (4) is rewritten as

0. (r,t) = f (0., (r,)* w(r,t)- q,(r.1)),  (6)
where subscripts k and k-1 denote the kth and k-1th layers of
the network respectively. w, (r,t) and q,(r,t) are
respectively, the neural wavelet and threshold function of
the neuron located at r in the kth layer. Obvioudly, the
input to the network is a 4-D signal matrix since each
neuron receives a time signal sequence each time during
training. Let

E=2 dp(r Dk

:%c‘ﬂd(r,t)- o, (r.]*drdt, (7)

be the error measure on an input/output pattern in the form
of a matrix. To implement a gradient descent in E, the
neural wavelets are updated according to

Dw, (r,t) =h(t) gy, (r ¢t)o, ,(r & r,t - t)dr it

=h@®d,(r,t)Ao,,(r,1), (8)
where A is a spatiotemporal correlation operation symbol
and the backprop error d, (r,t) is computed for two cases.
For an output neuron of the network, we have

d (r.t)=e (r,t) f net, (r,t)- q, (r.1)). (9
If the kth layer is not an output layer of the network we use
the chain ruleto yield
A (r,t) = f qnet (1, 1) - Gy (1 D)[dya (1, 1) A Wiy (1, 1.
(10
Equations (9) and (10) give a recursive procedure for
computing the d’sfor all neurons of the network, which are
then used to compute the changes for the neural wavelet
according to equation (8). Since the forward- and back-
propagation procedures of the network involve
spatiotemporal convolution and cross-correlation operations
respectively, it is possible to efficiently implement these
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operations using FFTs and corresponding block updating
strategies for neural wavelets.

6 Example

The convolutional neuron-based network can be applied to
functional  approximation, pattern  recognition and
classification of space- and time-varying signals. The
network, through training, searches a space of solutions to
find the optimal set of neural wavelets to best compute the
mapping function. In this section, a three-layer (one hidden
layer) network is designed for a simple two-class
classification problem to illustrate the capacity of the
network. Then computational properties of the network are
investigated. In general, the network can be extended for a
general multi-class classification problem.

One of the two-class signal patterns is the low-frequency
signal whose center frequency is lower than a value of about
35 Hz and its target signa is a cosine-phase sequence in
time with the center frequency being 35 Hz ; another is the
high-frequency signal whose center frequency is higher than
avalue of about 35 Hz and its target signal is a sine-phase
sequence in time with the center frequency also being 35
Hz. A total of 8 such training and testing pattern samples
(representing 200 ms, sampling rate=2 ms) with different
center frequencies are shown in Figure 2, where Figure 2a
shows the inputs and Figure 2b shows the corresponding
outputs from the trained network. Among them, four pattern
samples (Curves 1, 3, 5, and 7) with the center frequencies
20 Hz, 30 Hz, 40 Hz, and 50 Hz respectively (the former
two signals representing the low-frequency class and the
latter two being the high-frequency class) are used to
simultaneously train the classifier, and the other are testing
pattern samples. No learning takes place during testing.
These resultsillustrate the performance of the network.

In the above example, if we set several initia neural
wavelets with different function types or different frequent
spectrums, what will happen to convergence of the
algorithm and evolution of neural wavelets? We have
carried out many simulations with different neural wavelets
or different training sets, which show that the agorithm
always converges but with little difference in the speed of
convergence. Choosing the center frequency of the neural
wavelet close to that of the input signal can improve the
speed of convergence.

It is interesting to discuss the selection of the initial neural
wavelet (viewed as the neuron’s background issue) affects
its evolution results (viewed as the neuron’s information
loaded). The simulations are divided in 4 tests to illustrate
the relationship between the neuron’s encoding mode and
its initial neural wavelet with different function type or
frequent spectrum. In these tests we use exactly the same



network (the three-layer) and the same training sets. 4 tests
are performed and the evolution wavelets after 30 iterations
are constructed in Figures 3a~3d, where the upper of each
figure shows the initial neural wavelets with Curve 1 for the
hidden layer and Curve 2 for the output layer, and the lower
correspondingly shows their evolution results. Obviously,
the information loaded is expressed as the high-frequency
variations of neural wavelets. Figures 3a and 3c have the
initial wavelets with the same center frequency and phase
but different wavelet function types, however, we look at
the nearly similar evolution wavelets after 30 iterations.
Figures 3a and 3b have the same function type and phase
but different center frequencies, but the evolution wavelets
are different. Similarly, in Figures 3c and 3d their initial
wavelets with the same amplitude spectrum but different
phase spectrum evolve into different results. These tests
show that the evolution of a neural wavelet is not dependent
on its functional type, but mainly on its amplitude and phase
spectrums. This means the network uses frequent-spectrum
codes.

7 Conclusions

In this study, we discuss the neuronic convolution model for
spatiotemporal information representation. It is actualy a 4-
D convolutional scanning operator to perform the
spatiotemporal integration of unceasing inputs from other
neurons. The neural wavelets with a particular amplitude-
phase spectrum in terms of spatiotemporal frequencies
provide the convolution neuron with an information
processing ability rather than only a logic unit. The length
of the neural wavelet is independent of the length of the
input signal. It is biologically fixed to make the connections
among neurons local instead of global. The performance of
the convolution neuron-based network is tested on severa
data sets of varying quality. These results illustrate the
ability of the network to process spatiotemporal patterns.
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Figure 2: Study of the two-class classification. (a) The input signals with different center frequency f,’s, among which Curves 1 and 3
represent the low-frequency training sets whose desired output is a cosine function with ;=35 Hz, Curves 5 and 7 represent the high-

frequency training sets whose desired output is asine function with f,=35 Hz, and the other are the testing signals. (b) The corresponding
outputs. The center frequencies for Curves 1~8 are equal to 20 Hz, 25 Hz, 30 Hz, 35 Hz, 40 Hz, 45 Hz, 50 Hz, and 55 Hz, respectively.
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Figure 3: Study of the evolution characteristics of neural wavelets. The upper of each figure shows initial wavelets with Curve 1 (its center

frequency is f,) for the hidden layer and Curve 2 (its center frequency is T, ) for the output layer, and the lower shows the corresponding

evolution results. (a) The cosine-type, zero-phase initial wavelets with f;=5Hz and f,=10Hz. (b) The cosine-type, zero-phase initial

wavelets with f; =10Hz and f, =15Hz. (c) The Gabor-type, zero-phase initial wavelets with f; =5Hz and f,=10Hz. (d) The Gabor-

type, minimum-phase initial waveletswith f; =5Hz and f, =10Hz.
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