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Abstract

This paper proposes a novel tariff regime for peerto-peer energy trading, with an aim to increase transmission

efficiency and grid stability by penalising long distance power transactions. In this scheme a portion of the transacted energy is
withheld based on the electrical distance between buying and selling parties, calculated here according to the Klein Resistance
Distance. This tariff regime is simulated using a dataset of producers and consumers over a 24-hour period. First, a notional
marketplace equilibrium simulation is performed, in which

consumers can optimally activate demand response resources to exploit local availability of energy. Consumers are observed to
move some demand away from peak times to make use of local generation availability. These simulated market out-turns are
then used as inputs to a time series power flow analysis, in order to evaluate the network’s electrical performance. The regime
is found to decrease grid losses and the magnitude of global voltage angle separation. However, the metric whereby taxes are
calculated is found to be too skewed in the utility’s favour and may discourage adoption of the peer-to-peer system.

The method also attempts to encourage regulatory adoption

by existing grid operators and utilities. Some counter-intuitive allocations of tokenised energy occur, owing to specific consumers’

demand profiles and proximity to generators.
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Abstract—This paper proposes a novel tariff regime for peer-
to-peer energy trading, with an aim to increase transmission
efficiency and grid stability by penalising long distance power
transactions. In this scheme a portion of the transacted energy
is withheld based on the electrical distance between buying and
selling parties, calculated here according to the Klein Resistance
Distance. This tariff regime is simulated using a dataset of
producers and consumers over a 24-hour period. First, a no-
tional marketplace equilibrium simulation is performed, in which
consumers can optimally activate demand response resources
to exploit local availability of energy. Consumers are observed
to move some demand away from peak times to make use of
local generation availability. These simulated market out-turns
are then used as inputs to a time series power flow analysis,
in order to evaluate the network’s electrical performance. The
regime is found to decrease grid losses and the magnitude of
global voltage angle separation. However, the metric whereby
taxes are calculated is found to be too skewed in the utility’s
favour and may discourage adoption of the peer-to-peer system.
The method also attempts to encourage regulatory adoption
by existing grid operators and utilities. Some counter-intuitive
allocations of tokenised energy occur, owing to specific consumers’
demand profiles and proximity to generators.

I. Introduction

THERE is a sharp increase in renewable generation, mo-
tivating proposals for a new decentralised grid model

[1]. Peer-to-peer (P2P) energy trading has consequently been
proposed as new evolution of electricity markets, allowing
producers and consumers to trade energy in a free market [2].
Blockchain, a secured cryptographic proof-based transaction
system, has been proposed as a potential facilitator for this
system [3], [4]. A nascent base of research has emerged on
blockchain-based P2P energy trading [5] with some real world
applications [6].
P2P electricity trading arrangements act as a regulatory

dispensation that can be layered onto existing power system ori-
entations, including microgrids or larger transmission systems.
A new financial regime is put in place to allow participating
parties to buy and sell from each other freely [7]. This paper
proposes a novel method whereby energy traded between
P2P participants is taxed based on the grid distance between
parties. The taxed portion of energy could be utilised as a
reimbursement to the utility operator for usage of the grid
network. Buyers and sellers can thus be geographically far from
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Fig. 1. Visual representation of the energy tokenisation paradigm

each other and retain the ability to buy and sell electrical energy
from each other. Furthermore, consumers are encouraged to
shift their demand to periods of more abundant local generation.
Since the high-profile rise of the pseudonymous Satoshi

Nakamoto’s Bitcoin cryptocurrency [8] blockchain has garnered
much attention. The term refers to a decentralised data ledger,
which is both trustless and immutable [9]. Data is stored in
blocks linked by hash chains [10]. A complete transaction list is
maintained by all active participants. Involved parties have the
option to accept or reject new transactions as they are received.
The most popular consensus method is known as proof of
work, whereby miners are tasked with solving increasingly
difficult numerical problems. Despite their complexity, problem
solutions are designed to be easily verifiable [9]. Blocks are
added as they are verified [10]. Miners are rewarded for their
contributions, usually by receiving a unit of cryptocurency. A
further evolution of the technology was the rise of Smart Con-
tracts. These are distributed scripts that function autonomously
and trustlessly [11].
A emerging base of research has been performed on

blockchain’s potential use in the electrical energy industry.
A majority of this research examine the role of smart contracts
in facilitating P2P electricity trade on a microgrid scale [4]. P2P,
in its purest form, allows generated energy to be traded between
producers and consumers. This trade exists in a financial sense
[12], as energy is not necessarily transmitted directly between
the two parties. This system may result in a more intermediate
role for electrical utilities, perhaps serving more as a liquidity
providers than sole energy wholesalers.
The P2P paradigm of transactions is largely reliant on the

process of energy tokenisation. This term, with origins in data
security [13], describes the method of representing a sensitive
asset or value cryptographically, enabling simple trade, analysis,
or storage. Actual values are stored securely, while simpler
tokens are manipulated and transferred [13].
For energy tokenisation, the value of a token is typically

attached to a quantity of electrical energy (e.g. one kWmin
or MWh). A token is created for each unit of energy that is
produced [14], which can be transferred, traded or stored. A
token is not bound to a physical unit of energy, so parallels to
data science end here. However, the energy has now become



2

more tangible to involved parties. Figure 1 illustrates the
paradigm of energy tokenisation.
A P2P tokenised energy trading environment with an

electrical distance-based tax could thus serve as a means of
incentivising both demand side management and engagement
from the relevant regulators, while requiring only smart
metering and a financial transaction platform. This paper
attempts to simulate such a market, and investigate trends
in electrical export allocation and the effects on the operation
of the power system. This framework forms the starting point
for the investigation into these methods.

II. Methodology
This section explains the development of a blockchain-hosted

P2P energy transaction framework with electrical distance-
based tax mechanism, beginning with the electrical distance
metric method on which it is based. The market simulation
procedure and powerflow simulations used for evaluation are
discussed so as to examine the electrical effects of the regime.
This exploratory study omits some elements typically used in
marketplace simulations, and does not consider any form of
financial transactions. Rather, local generation is assumed to
be cheaper than utility-level generation. Consumers vie for this
local production, with the grid operator serving as liquidity
provider.

A. Proposed Marketplace Structure
The methodology presented here proposes a P2P energy

trading system, implemented on a dedicated blockchain. Parties
are free to buy and sell at will, with grid-level generation
serving as a liquidity provider. Energy exchanges are subject
to the an electrical distance-related tax. Some form of oracle
is required to establish these electrical distances [7].

B. Electrical Distance Tax
This section proposes Klein resistance as a method of

evaluating the electrical distance between transacting parties.
The Klein resistance is a measure of Thevenin impedance
distance between two nodes, developed in [15]. The method
has been utilised in power systems in examples such as [16] and
[17]. It has also been used in some form in [7] as a method of
establishing the effect of P2P trading partners 1 for calculating
the effect of trading with parties in other geographical locations.
The Klein Resistance Distance is formulated as below.

Taking the inverse of a power system’s admittance matrix
Ybus produces Zbus. This can be used to find the Thevenin
impedance between power system nodes i and j as in equation
1 [18].

zthevi j = zii + zj j − zi j − zji (1)

The resulting complex value of zi j is thus the parallel
impedance, or Klein Resistance Distance, between those nodes.

1Hayes et al use a variation on the method that also incorporates the “shortest
path".

Taking the magnitude of this complex-valued result produces
the scalar as in equation 2.

zi j = |zthevi j | (2)

For the proposed method, network usage charges are applied
in the form of an “energy tax". This tax consists of a portion
of the generator’s production when a sale is made to a specific
consumer. The energy tax percentage imposed on each “sale"
of kWh token is calculated as in equation 3. This value can
be understood as the portion of the purchased energy that is
supplied to the consumer, with the remainder being surrendered
to the network operator. Hereafter, the term “tax" refers to this
mechanism. This notional method of determining tax, which is
chosen for simplicity, will be evaluated in the results of this
study. It is formulated so that no more than 50% of energy can
be withheld as tax.

Bi j = 1 −
1
2
|

zi j
zmax

| (3)

C. Market Simulation Procedure
A marketplace simulation is performed, with the sole

objective to determine how rational actors might transact energy
and activate their demand response within the proposed regime.
The usage of this optimisation may be counter-intuitive to
the concept of blockchain, which is generally considered for
decentralised platforms. It may be assumed that all transacting
parties are rational actors i.e. make the most logical choices
with regard to lowering their total consumption at any time.
Participants are also assumed to have perfect foresight in their
own consumption, as well as generation availability. This thus
serves only as a rough estimate of a potential market equilibrium.
It in no way represents a course of action for a centralised
market operator, nor a set of market clearing rules.
Two optimisation variables are defined, namely E and H.

The prior is a (I × T) matrix used in defining the consumption
of each consumer at each time point. The latter is a (I × J
× T) matrix, representing the allocated generation (with its
appropriate tax applied) to each individual consumer at each
time point. In terms of energy tokenisation, the method assumes
a 1 MWh value per token, a rate that is chosen for simplicity.
These tokens can be subdivided as need be i.e. are not granular
to any degree. Tokens and their attached energy value are
referred to as Enertoks hereafter [19].
The objective function sees the optimisation minimise the

total consumption of all consumers, after their appropriate
Enertoks are allocated. This could be understood as the total
energy consumed by the individual consumers provided by the
operating utility (a liquidity provider role) It also serves to
most effectively utilise the distributed generation in the system.
This can be seen in equation 4:

min
∑

t∈T,i∈I, j∈J

(Ei,t − Hi, j) (4)
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where:
• t is the time index,
• T is total set of time points considered,
• j is the producer index and
• J is total set of producers considered.
With the objective function set, the first step of the op-

timisation sees load shifting implemented. A parameter s
represents the percentage whereby a consumer’s demand can be
raised or lowered at any point. However, each consumer’s total
consumption across all time points needs to remain constant.
This is expressed as the constraint in equation 5.

Ei,t (1 − s) − Hi,t ≤ Ei,t − Hi,t ≤ Ei,t (1 + s) − Hi,t (5)

The H values in constraint equation 5 allow the optimisation
to consider the allocated Enertoks when shifting the load
i.e. load will be shifted to periods when more Enertoks are
available.

A necessary consideration is to ensure that total consumption
before and after shifting remains constant. This is accomplished
by the constraint in equation 6.

T∑
t=1

Ei =

T∑
t=1

Ci (6)

where:
• i is the consumer index and
• Ci is the total consumption of consumer i before load

shifting has occurred.
The second step sees the simulation ensure that allocated

Enertoks never exceed the consumption at any point. This is
shown in constraint equation 7. Similarly, equation 8 ensures
that consumption is never negative.

Eti ≥

J∑
j=1

Hi,t (7)

Ei,t ≥ 0 (8)

The final steps sees Enertoks allocated, with their appropriate
taxes applied. This is done according to the constraints in
equations 9 and 10.

H ≤ G · B (9)

T∑
t=1

Hj,t

Bj,t
≤ G j,t (10)

where:
• BBB is a parameter matrix of taxes between generators and

consumers, calculated according to equation 3 and
• G is a parameter matrix of generator outputs.

Fig. 2. Plot of IEEE Case_30 example system [16], [21]
.

D. Powerflow Analysis

Once taxes have been established and the combined Enertok
allocation/load shifting optimisation has been implemented,
the outturns are applied to the powersystem in question. A
powerflow analysis is performed for each dataset time point,
with generation and optimised consumption profiles applied
to their respective buses. A slack bus is defined, which serves
as a simulated connection between this system and the larger
transmission network.

III. Test Platform

The market simulation is implemented in Matlab using the
Yalmip package [20]. With this optimisation complete, gener-
ation and consumption profiles are applied to the powerflow,
using IEEE Case_30 [16]. This is executed in the Matpower
package [21]. The test dataset is scaled and adapted from [22].

IV. Results

IEEE Case_30 power system is used as case study and is
shown in Figure 2 [16], [21]. This system consists of 24 load
buses and 6 generator buses2, namely P1, P2, P22, P13, P23 and
P27. Bus 1 is the slack bus, which represents a connection to the
larger grid. The grid provides liquidity to consumers i.e. reliably
provides electricity when no local generation is available. This
grid-supplied electricity is considered to be less preferable and
more expensive to consumers than local generation. In the
test dataset, P2, P22, P23 and P27 are large wind generation
facilities, while P13 is a grid-scale PV generator. The dataset
consists of hourly MWh consumption and generation values
for the 24 consumers and 5 producers. Raw results data can
be viewed at [23].
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Fig. 3. Taxed values between generators and consumers. Red indicates more taxed values, while green indicates less taxed values

Fig. 4. Generation profiles for producers at each node. Buses 2, 22, 27 and
23 are wind farms, while bus 13 is a PV plant

A. Electrical Distance Tax Results
Tax values are calculated as in Section II-B, producing the

results shown in figure 3. This figure shows producers on the
vertical axis and consumers on the horizontal axis. It can be
seen that buses P13 and C26 have the highest taxed value
between them, substantiated by being on opposite sides of
the network. The figure also shows the average tax value per
consumer in decreasing order. Certain generators, such as P2
are more centrally located, and will thus likely have most of
their generation allocated. Examining the network plot in figure
2, it can be seen that producer P13 is electrically far from most
of the consumers. Thus, P13 has the highest overall burden.

Generation profiles can be seen in figure 4. Figure 5 shows
the total power generated by all producers. Generation at
midday is significantly higher, owing to the P13’s midday peak.
Afternoon/evening output is significantly higher than morning
output, with wind sources becoming more active.

B. Enertok Allocation Results
Next, the market simulation is performed. Figure 6 shows

the total energy value of Enertoks allocated to each consumer.
Interestingly, some counter-intuitive phenomena are observed.

2Hereafter producer buses will gain a P prefix, while consumer buses will
be referred to with a C prefix.

Fig. 5. Total generation by all producers

The consumer that receives the most energy is C10, despite
being more taxed than C6, as per figure 3. This could be a case
of having the optimal relationship to all producers to ensure
their unique generation profiles are best taken advantage of i.e.
“being in the right place at the right time". The advantage of
being centrally located in the system becomes evident in these
results, as C4 and C6 both receive a considerable amount of
Enertoks. Consumers such as C29 and C30 predictably receive
few Enertoks, owing to their high tax values. However, C26,
which has the most severe tax value, does not receive the
least allocated Enertoks. This is a role reserved for C24; an
interesting phenomenon similar to that of C10.

C. Market Simulation Results
For the load shifting element, each consumer is given the

option to increase or decrease their consumption by 20% at any
time point (s =0.2). However, total energy consumption over the
24 hours must remain constant per consumer. Figure 7 shows
the average consumption at each time point before and after the
optimisation has been implemented, omitting any generation
influence. It can be seen that as much load as possible is
moved to the early hours of the morning, so as to make use of
under-utilised generation at this time. However, with low base
demand in this time period, the total load cannot be shifted
dramatically. The high output of all generators, especially the
solar plant, around midday means that consumption at this



5

Fig. 6. Total Enertoks allocated to each consumer

Fig. 7. Total consumption before and after load shifting implementation

point remains largely unchanged. Consumption is moved away
from the evening high-demand period, especially as there is
less generation during this period (when compared to midday),
with solar PV production having ceased completely. Similarly
to early morning period, late night consumption is increased
by a small portion, to make use of available generation.

Figure 8 shows total system consumption for all consumers,
with the energy value of allocated Enertoks subtracted. This
can be understood as the total energy purchased by consumers
from the grid utility. It can be seen that early morning and
late evening consumption is decreased, even reaching zero
during low-demand periods. A fairly consistent decrease during
daytime and early evening hours is observed(±90 MW), owing
to the abundance of generation, with allocation ratios being
consistent.

D. Power Flow Results
As the Enertok values and consumption profiles have dealt

solely with real power values thus far, an average power factor
value is chosen to calculate reactive power values. For this
study the power factor value is set to 0.90 (an approximate
voltage angle of 26°).

Figure 9 shows power provided by the slack bus at node 1
before and after the optimisation has been implemented. This
can be understood as the power imported/exported from the
broader transmission system. With a less intensive load during
the early hours of the morning, a net export of energy occurs.
A similar phenomenon can be observed during the late night

Fig. 8. Power purchased from grid operator

Fig. 9. Power supplied from/to broader transmission system through slack
bus

Fig. 10. Total losses in transmission system

hours, from 21h00 to 00h00. With less consumption during
peak evening hours (17h00 to 21h00), net imported power is
marginally decreased. These observations align with the periods
of zero consumption mentioned above in figure 8. Furthermore,
examining the average voltage angle of consumers shows a
marginal ease, decreasing from -3.46°to -3.44°.
Figure 10 shows average losses across all power system

branches per time point. The early morning hours see a
slight increase, due to the extra load shifted to these times,
mentioned above. A decrease occurs roughly around the evening
peak (19h00 to 21h00). This may be due to the high supply
of generation during this time, coupled with a decrease in
demand due to load shifting. Ultimately, total system losses are
decreased by 10.90% after the optimisation has been performed.
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V. Conclusions
The methodology developed in this paper attempts to

show that an electrical tax could potentially encourage local
consumption, and serves as the first step towards a complete
study of this concept. The Klein Resistance method is used
as an initial rough metric for tax formulation. This taxing
mechanism is found to be skewed towards the utility, and
may discourage P2P market participation. Despite this, results
from market simulations and load flows suggest that a location-
based electrical tax may encourage some measure of beneficial
demand response activation. This new locational profile of
demand response activations, both up and down, seems to
result in reduced losses system-wide and a less stressed power
system as indicated by smaller voltage angle deviations.

The first step for future studies may be implementing a more
robust method of determining the taxes imposed on participating
parties. In this study the magnitude of this tax is determined
from a normalised value, which would result in uneven scaling
if the considered system increased in size. In the tokenisation
step, Enertoks could be made to be granular to some form,
to more closely resemble existing cryptocurrency methods i.e.
can only be subdivided multiples of some minimum value.
Furthermore, by excluding any true financial metrics, electricity
value estimates become approximate, and parties will need to
consider the price of local vs. utility generation. Without some
form of time-of-use cost mechanism, it is difficult to incentivise
consumers to shift their demand when demand profiles are much
higher in magnitude than local generation. Future studies thus
should include such aspects.

References
[1] W. Huang, N. Zhang, J. Yang, Y. Wang, and C. Kang, “Optimal

configuration planning of multi-energy systems considering
distributed renewable energy,” IEEE Transactions on Smart
Grid, vol. 10, no. 2, pp. 1452–1464, Mar. 2019. doi: 10.1109/
TSG.2017.2767860.

[2] T. Morstyn and M. McCulloch, “Multi-class energy man-
agement for peer-to-peer energy trading driven by prosumer
preferences,” IEEE Transactions on Power Systems, 2018.

[3] S. Wang, L. Ouyang, Y. Yuan, X. Ni Xiaochun Han, and
F.-Y. Wand, “Blockchain-enabled smart contracts: Architecture,
applications, and future trends,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, pp. 1–12, 2019.

[4] M. Andoni, V. Robu, D. Flynn, S. Abram, D. Geach, D. Jenkins,
P. McCallum, and A. Peacock, “Blockchain technology in
the energy sector: A systematic review of challenges and
opportunities,” Renewable and Sustainable Eneregy Reviews,
vol. 100, pp. 143–174, 2019.

[5] Z. Li, J. Kang, R. Yu, D. Ye, Q. Deng, and Z. Yan, “Consortium
blockchain for secure energy trading in industrial internet of
things,” IEEE Transactions on Industrial Informatics, vol. 14,
no. 8, pp. 3690–3700, 2018.

[6] R. Sharma, “Brooklyn microgrid brings community microgrid
to New York,” EnergyCentral, Dec. 2016.

[7] B. Hayes, S. Thakur, and J. Breslin, “Co-simulation of
electricity distribution networks and peer to peer energy trading
platforms,” International Journal of Electrical Power & Energy
Systems, vol. 115, p. 105 419, 2020.

[8] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
2008.

[9] T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi, and
J. Wang, “Untangling blockchain: A data processing view of
blockchain systems,” IEEE Transactions on Knowledge and
Data Engineering, vol. 30, no. 7, pp. 1366–1385, 2018.

[10] E. Deirmentzoglou, P. Georgios, and C. Patsakis, “A survey on
long-range attacks for proof of stake protocols,” IEEE Access,
vol. 7, pp. 28 712–28 725, 2019.

[11] G. Wood, “Ethereum: A secure decentralised generalised
transaction ledger,” Ethereum Project Yellow Paper, 2014.

[12] M. L. D. Silvestre, P. Gallo, M. G. Ippolito, E. R. Sanseverino,
and G. Zizzo, “A technical approach to the energy blockchain
in microgrids,” IEEE Transactions on Industrial Informatics,
vol. 14, no. 11, pp. 4792–4803, 2018.

[13] R. C. Goldstein and C. Wagner, “Database management with
sequence trees and tokens,” IEEE Transactions on Knowledge
and Data Engineering, vol. 9, no. 1, pp. 186–192, 1997.

[14] J. Dispenza, C. Garcia, and R. Molecke, “Energy efficiency
coin (EECoin) a blockchain asset class pegged to renewable
energy markets,” 2017.

[15] D. J. Klein and M. Randić, “Resistance distance,” Journal
of Mathematical Chemistry, vol. 12, no. 1, pp. 81–95, Dec.
1993, issn: 1572-8897. doi: 10.1007/BF01164627. [Online].
Available: https://doi.org/10.1007/BF01164627.

[16] P. Cuffe and A. Keane, “Visualizing the electrical structure of
power systems,” IEEE Systems Journal, 2015.

[17] T. Baroche, P. Pinson, R. L. G. Latimier, and H. B. Ahmed,
“Exogenous cost allocation in peer-to-peer electricity markets,”
IEEE Transactions on Power Systems, vol. 34, no. 4, pp. 2553–
2564, Jul. 2019, issn: 0885-8950. doi: 10.1109/TPWRS.2019.
2896654.

[18] P. Cuffe and F. Milano, “Validating two novel equivalent
impedance estimators,” IEEE Transactions on Power Systems,
vol. 33, no. 1, pp. 1151–1152, Jan. 2018, issn: 0885-8950. doi:
10.1109/TPWRS.2017.2768223.

[19] M. T. Devine and P. Cuffe, “Blockchain electricity trading
under demurrage,” IEEE Transactions on Smart Grid, vol. 10,
no. 2, pp. 2323–2325, 2019.

[20] J. Löfberg, “YALMIP : A toolbox for modeling and optimiza-
tion in MATLAB,” in In Proceedings of the CACSD Conference,
Taipei, Taiwan, 2004.

[21] R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas,
“MATPOWER: Steady-state operations, planning, and analysis
tools for power systems research and education,” IEEE Trans-
actions on Power Systems, vol. 26, no. 1, pp. 12–19, Feb. 2011.
doi: 10.1109/TPWRS.2010.2051168.

[22] A. Minde. (2017). Open power system data. 2017. data package
household data. version 2017-11-10., [Online]. Available: https:
//data.open-power-system-data.org/household_data/.

[23] A. de Villiers and P. Cuffe. (2019). Raw test data, scripts and
figures from “towards embedding network usage charges within
a peer-to-peer electricity marketplace", [Online]. Available:
https://figshare.com/s/341ec0f232a91f7c75bd.


