
P
os
te
d
on

29
J
u
n
20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
25
68
65
2
.v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
ot

b
..
.

An application and Parallel Tabu Search Algorithm for Solving the

PTSP Under the OpenMP-MPI Environment

Mohamed Abdellahi Amar 1 and Walid Khaznaji 2

1CRISTAL-GRIFT Laboratory
2Affiliation not available

October 30, 2023

Abstract

This paper reviews some real-world problems modeling

as Probabilistic Traveling Salesman Problem (PTSP), by

presenting the important results found in the literature. It

illustrates the usefulness of the inclusion of probabilistic elements in deterministic models. We propose a new modeling of the
PTSP by the deviations of the routing of a robot in order to avoid obstacles which are not foreseen in its path. The Probabilistic
Traveling Salesman Problem(PTSP) is a variation of the classic Traveling Salesman Problem (TSP) where each node i is present

with probability pi. The solution for the PTSP consists in finding an a priori tour that visits all the cities that minimizes the

expected length of the tour. From the litterateur the PTSP is NP-Complete, therefore the execution time is a prime factor in

its resolution. In the last of his paper we present a new parallel Tabu search heuristic for solving PTSP by using the Open MPI

environment.
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Abstract—This paper reviews some real-world problems mod-
eling as Probabilistic Traveling Salesman Problem (PTSP), by
presenting the important results found in the literature. It
illustrates the usefulness of the inclusion of probabilistic elements
in deterministic models. We propose a new modeling of the PTSP
by the deviations of the routing of a robot in order to avoid
obstacles which are not foreseen in its path. The Probabilistic
Traveling Salesman Problem(PTSP) is a variation of the classic
Traveling Salesman Problem (TSP) where each node i is present
with probability pi. The solution for the PTSP consists in finding
an a priori tour that visits all the cities that minimizes the
expected length of the tour. From the litterateur the PTSP is
NP-Complete, therefore the execution time is a prime factor in
its resolution. In the last of his paper we present a new parallel
Tabu search heuristic for solving PTSP by using the Open MPI
environment.

I. INTRODUCTION

There are various motivations for studying the effect of
including probabilistic elements in combinatorial optimization
problems COP. The reason for this is that many of the COPs
have concrete applications. For example, for many delivery
companies, only a subset of their customers requires a delivery
each day. The most natural approach that comes in mind is
to consider each potential instance as a new problem defined
through the present data and to optimally solve the instance
considered. This approach is called re-optimization strategy.
This approach is optimal, however, it can be very much time
and space consuming, in particular when the COP considered
is NP-complete [1], [2], [3]. It is therefore necessary to adopt
another resolution strategy, which is less costly in terms of
computations. This approach is called an a priori optimization
and has been introduced in [1]. It consists of determining a
solution of the initial instance, where all data are present,
called an a priori solution, and applying a strategy called a
modification strategy to adapt as quickly as possible the a
priori solution to the sub-instance that must effectively be
solved.

The Probabilistic Traveling Salesman Problem (PTSP) is a
probabilistic extension of the well-known Traveling Salesman
Problem (TSP) was introduced by Jaillet [1] where it assumes
that the number of cities is a random variable, that is the
cities of TSP may or may not be present according to a
probability of presence. The inclusion of probabilistic elements
in TSP admit an immediate interest, which is the modeling of
practical problems for which randomness is a constant source
of preoccupation, also it can be used to model many real-
world applications [1], [4]. Bertsimas and al. [2] showed that
the PTSP is a NP-Complete problem, and it’s harder than its
deterministic version. Therefore many approximate methods
were proposed to solve the PTSP. We cite, stochastic simulated
annealing [5], genetic algorithm [6], ant colony system [7],and
other [8]. For literature on the PTSP, a very limited number
of papers have seen the light for the parallelization of the
PTSP [9], [10], [11], [12] Our goal is to propose a parallel
Tabu search heuristic (TS) for the PTSP, by using the methods
of local search heuristics 2-opt. In this context, the strategy
consists in studying the parallelization of the phenomena of
intensification and diversification of the TS.

The paper is organized as follows: We begin in section 2 by
the definition of the PTSP and its formulation. In section 3 we
give a view on modeling. In section 4 we present the models
of deviations of the routing of a robot as PTSP. Then in section
5 we introduce the definition of Tabu search and local search
2-opt. In section 6 we present the numerical results. Finally,
section 7 contains the conclusion and future work.

II. PROBABILISTIC TRAVELING SALESMAN PROBLEM

The Probabilistic Traveling Salesman Problem (PTSP) is an
extension of a variation of the classical Traveling Salesman
Problem (TSP). It can be formulated as follows [1]: let a
fully connected graph whose set of nodes is denoted by
V = {1, 2, , , , , n}. Given an a priori tour T, and the subset
of S: P (V ) that will occur with probability P(S). Let LT (S)
be a length of instance S. The resolution of the problem is



to find an a priori tour through all n potential nodes, which
minimizes the quantity: 1 [1].

min
T

E(LT ) =
∑
S⊆V

P (S)LT (S) (1)

Let E be a set of edges E = {(i, j), 0 ≤ i ≤ n, 0 ≤ j ≤ n}.
To each edge (i, j) is associated a distance dij .
The expression of objective function was introduced by Jaillet
[1]. Let T = (1, 2, ..., n, 1) an a priori tour and each vertex
has a probability of presence pi

E(LT ) =

n∑
i=1

n∑
j=i+1

dijpipj

j−1∏
k=i+1

(1− pk)

+

n∑
i=1

i−1∑
j=1

dijpipj

n∏
k=i+1

(1− pk)

j−1∏
l=1

(1− pl)

In the case when the pi = p(q = 1 − p)∀i, according to [1],
the expected length of an a priori tour T = (1, 2, ..., n, 1)
becomes

E(LT ) = p2
n−2∑
r=0

qr
n∑

i=1

d(i, T r(i)) (2)

Where T r(i) is the successor number r of i in the tour T .
Other paper discus this objective function of the PTSP, for
example in [5] the objective function of the PTSP is estimated
by sampling.

III. A VIEW ON MODELING

This first problem was introduced by Jaillet [1], who
studied some of its properties and derived asymptotic results.
Vast various papers were proposed different heuristics [1] [5],
[13]. Also many papers discuss the modeling of this problem
by concrete application. The authors in [4] use of this a
priori strategy allows the wireless sensor network to collect
effectively detected information from external environments
and deliver it to the required applications with reducing
energy consumption, even if some nodes are destroyed.
Concerning the problem of optimization of the routing path
at KAT − mobility, the authors in [4] proposed that only
certain group centers among the K vertices actually require
a visit according to their probabilities of presence. In other
words, they applied the strategy a priori they got a tour
through the K initial vertices such that the new tour through
the present vertices is obtained from the a priori tour T
according to the modification method U . This is the problem
of finding the tour that minimizes the expected distance
traveled [1]. So one has a probability distribution P , the
set of group centers, the set of all subsets of V , i.e. each
exemplary V ′ ⊆ V has a probability of presence P (V ′). Let

R be a tour through the centers, The method U consists to
erase the absent centers of the a priori tour. Let L(R,U)
the random variable, that for all V ′ ⊆ V and has a priori
tour R, associate the length L(R(V ′,U)) of the tour, through
V ′, by the method of modification U from R. Accordingly,
the optimization of the path of the mobile collector in order
to visit once and for all the center sensors of the groups
is equivalent to searching for a tour which minimizes the
expected of the random variable L((R,U))

min
R

E(LR) =
∑
S⊆V

P (S)LR,U (S)

Other papers have been found in litterateur in order to
model many real-world applications [1], [14], [15], [8].

IV. MODELING ROUTING OF A ROBOT

There are two main families of maps in the literature that
allow connecting perception, decision and action: maps in the
form of occupancy grids, which are a metric discretization
of the environment and topological maps. They represent
the environment in the form of a graph where the nodes
correspond to particular locations and the arcs represent the
connectivity between the nodes [16] [17], [18]. Knowing a
map of the environment and the position of the robot within
this map, it is possible to calculate a trajectory to reach a
goal. We consider robots capable of moving in a 2-dimensional
space whose commands influence with simple relationships on
the position in this space. The calculation of the displacements
can therefore be done directly in the space of the map.
Planning algorithms generally use path search methods in
graphs. It is therefore necessary to represent the map in the
form of a graph. The topological maps directly provide this
graph.

A. Within a topological map
Robots are transported in a wide variety of environments

that can be grouped into two main categories: static en-
vironments and dynamic environments. Static environments
are environments that do not undergo changes over time.
This stability concerns both their spatial structure and their
appearance for the sensors of the robot [17]. This excludes
the majority of environments in which humans daily evolve.
Dynamic environments, on the other hand, exhibit charac-
teristics that evolve over time. Most common environments
obviously belong to the second category. For example, an
office environment is dynamic, because people who work
there, chairs that are moved or doors that are open or closed.
This uncertainty is characteristic of dynamic environments, in
which objects are likely to move, appear or disappear. Since
that the topological map reproduces the raw data perceived by
the sensors of the robot. So we find ourselves in the framework
of PTSP and the Probabilistic Shortest Path Problem (PSPP)
according to whether the path is closed or not as shown in
figures 1 and 2.
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Fig. 1. Topological map extraction: (a) base level; (b) level 1; (c) level 2; (d)
level 3 yielding three topological nodes; (e) level 4 yielding 10 topological
nodes; (f) level 5 yielding seven topological nodes; (g) level 6 yielding two
topological nodes; (h) level 7; (i) topological map [19].

Fig. 2. An a priori tour through 8 points (up), and the sub-tour solution
when the points 1, 2 are absent, utilizing modification method µ, by keeping
the same order (below).

B. Within an occupancy grid mapping

Obstacle avoidance is a basic behavior found in virtually all
mobile robots [17]. It is essential to enable the robot to operate
in a dynamic environment and to manage the gaps between
the internal model and the real world. As that occupancy grids
represent the environment in which space is discretized into
regular cells and each cell has an associated probability of

being occupied by an obstacle. It is clear that the problem of
avoiding obstacles in this context belongs to a PTSP or PSPP
depending on whether the path is closed or not.

V. TABU SEARCH HEURISTIC (TS)
We consider a graph G = (V,E), where V = {1, ......, n}

is a set of vertexes and E is the set of edges E = {(i, j), 0 ≤
i ≤ n, 0 ≤ j ≤ n}. To each edge (i, j) is associated a distance
dij .
The expression of objective function was introduced by Jaillet
[1]. Our resolution is limited to the homogeneous PTSP. Let
T = (1, 2, ..., n, 1) be an a priori tour and each vertex has
a probability of presence p = pi, the expected cost of T is
shown in formula V

E(LT ) = p2
n−2∑
r=0

qr
n∑

i=1

d(i, T r(i))

Where T r(i) is the successor number r of i in the tour T .
The Tabu heuristic was developed by Glover [20], it consists
of a set of general rules and mechanisms. As a function of con-
trolling and guiding an internal heuristic specifically adapted
to the problem to be solved, in order to allow it to transcend
the obstacle of the local optima. Unlike genetic algorithms or
annealing simulated that use probabilistic arguments to achieve
this objective. The TS exploits the notion of memory. Very few
papers of TS were proposed to solve the PTSP. [21].

Tabu list Stopping criterion
Size of problem Would be to stop after a given number of iterations

TABLE I
PARAMETERS OF THE TABU HEURISTIC

Local search 2-opt which consists in choosing two nonadja-
cent edges in the Hamiltonian cycle and replacing them by the
two edges which make it possible to reconstitute a Hamiltonian
cycle [7]. For calculating the difference of the expected length
of tour T (1, 2, ....n, 1), which we denote ∆ij , we introduce for
its computation two matrices A and B defined as follows: Let
j = i + k is the kth successor of i in T

Ai,k =

n−1∑
r=k

qr−1d(i, i + r), Bi,k =

n−1∑
r=k

qr−1d(i− r, i)

with 1 ≤ k ≤ n − 1 and 1 ≤ i ≤ n the calculation of ∆ij is
as follows if k = 1 we have

∆i,i+1 = p3[q−1Ai,2−

Bi,1 + Bi,n−1 −Ai+1,1 + Ai+1,n−1 + q−1Bi+1,2]

And for all k ≥ 2

∆i,j = ∆i+1,j−1 + p2[(q−k − 1)Ai,k+1+

(qk − 1)(Bi,1 −Bi,n−k) + (qk − 1)(Aj,1 −Aj,n−k)+

(q−k − 1)(Bj,k+1) + (1− qn−k)(Ai,1 −Ai,k)

+(1− qk−n)Bi,n−k+1 + (1− qn−k)

(Bj,1 −Bj,k) + (1− qk−n)Aj,n−k+1]
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VI. NUMERICAL RESULTS

We used the programming language C and the OpenMP
library for the parallel implementation. We implemented the
TS with the 2-opt structure, on a machine whose charac-
teristics are: Windows 7 System: Processor: Intel Core (2)
2 Quad CPU Q8200@2.33GHZ2.33 GHZ Ram: 4.00 GB
(3.44 GB usable). System type: 32-bit OS. According to the
sequential study of the TS for the PTSP, we have noticed that
computing time remains a major disadvantage especially when
the number of cities becomes important. For this purpose we
propose a new strategy of parallelization of the TS. In this
experimental part we will implement it of this method which
is the parallelization 1 ∆i,j . It is the cost difference between
a tour and its neighbor, obtained by a 2-opt transformation.

2 proc
p N Tseq Tparal speedup Eff

0.1 50 0.025 0.022 1.136
100 0.733 0.579 1.265 0.632
150 4.527 4.558 1.015 0.507
200 32.47 20.49 1.584 0.792

0.7 50 0.018 0.016 1.125 0.562
100 0.732 0.676 1.082 0.541
150 5.124 4.856 1.055 0.527
200 20.03 17.15 1.167 0.583

0.9 50 0.019 0.017 1.117 0.558
100 0.679 0.600 1.131 0.565
150 5.430 5.259 1.032 0.516
200 24.47 21.75 1.125 0.562

TABLE II
SPEEDUP= Tseq

Tparal
AND EFFICIENCY(EFF)= Speedup

np
FOR 2 AND 4

PROCESSORS(PROC) AND P =0.1, 0.7 AND 0.9 (TSEC= SEQUENTIAL TIME,
TPARAL= PARALLEL TIME, NB IS NUMBER OF PROCESSORS)

4 proc
p N Tseq Tparal speedup Eff

0.1 50 0.025 0.014 1.785 0.446
100 0.733 0.383 1.913 0.478
150 4.527 2.140 2.115 0.528
200 32.47 16.020 2.026 0.506

0.7 50 0.018 0.010 1.800 0.450
100 0.732 0.348 2.103 0.525
150 5.124 2.147 1.920 0.480
200 20.03 10.010 2.00 0.500

0.9 50 0.019 0.010 1.900 0.475
100 0.679 0.338 2.008 0.502
150 5.430 2.6770 2.028 0.507
200 24.47 12.160 2.012 0.503

TABLE III
SPEEDUP= Tseq

Tparal
AND EFFICIENCY(EFF)= Speedup

np
FOR 2 AND 4

PROCESSORS(PROC) AND P =0.1, 0.7 AND 0.9 (TSEC= SEQUENTIAL TIME,
TPARAL= PARALLEL TIME, NB IS NUMBER OF PROCESSORS)

The Table III shows the speedup and efficiency obtained
for different values of the number of N cities. The analysis of
this table shows that speedups and efficiencies improve when
N increases (for a fixed number of processors) and also with
the number of processors (for a fixed number of N cities)
and we have noticed that the execution time is much reduced,
where the efficiency equals to 0.792 for p=0.1. Figures 3
,4 and 5 clearly show that there is good speedups and that

Fig. 3. Speedup as function of number of points for probability p=0.1

Fig. 4. Speedup as function of number of points for probability p= 0.7

Fig. 5. Speedup as function of number of points for probability p= 0.9

speedup is an increasing function as a function of the number
of processors and cities. This implies that the proposed strategy
of parallelization of matrices A and B is very efficient.

VII. CONCLUSION AND FUTURE WORK

In this paper, we were presented the notion of the PTSP
and giving its motivation and formulation. It is very worthy
that the probabilistic notion continues to be developed because
its capacity to model real-world situations. We revealed the
hidden links that exist between the notion of ”map” used in
mobile robotics and the PTSP, where the problem of avoiding
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obstacles directly represents the PTSP. We proposed a strategy
of parallelization of Tabu search for solution of the PTSP.
It evaluated the performance of the approach on a parallel
machine. From the results obtained, we can conclude that the
parallel version of the TS was well adapted for PTSP. As
the sequential TS is very greedy in computing time, the use
of parallel computers allows to accelerate their execution, it
gave 2 as speedup. This was pointedly proved the effectiveness
of this strategy of parallelization. Our future work includes a
parallelization of the heuristic in a heterogeneous environment
and on a grid massively using the MPI-OpenMP.
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