
P
os
te
d
on

26
J
u
n
20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
25
70
92
6
.v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
ot

b
..
.

Anomaly Detection via Mining Numerical Workflow Relations from

Logs

Bo Zhang 1, Hongyu Zhang 2, and Pablo Moscato 2

1University Of Newcastle Australia
2Affiliation not available

October 30, 2023

Abstract

Complex software intensive systems, especially distributed systems, generate logs for troubleshooting. The logs are text messages
recording system events, which can help engineers determine the system’s runtime status. This paper proposes a novel approach
named ADR (stands for Anomaly Detection by workflow Relations) that employs matrix nullspace to mine numerical relations
from log data. The mined relations can be used for both offline and online anomaly detection and facilitate fault diagnosis. We
have evaluated ADR on log data collected from two distributed systems, HDFS (Hadoop Distributed File System) and BGL
(IBM Blue Gene/L supercomputers system). ADR successfully mined 87 and 669 numerical relations from the logs and used
them to detect anomalies with high precision and recall. For online anomaly detection, ADR employs PSO (Particle Swarm
Optimization) to find the optimal sliding windows’ size and achieves fast anomaly detection.

The experimental results confirm that ADR is effective for both offline and online anomaly detection.

1

Anomaly Detection via Mining Numerical
Workflow Relations from Logs

Bo Zhang, Hongyu Zhang, Pablo Moscato
School of Electrical Engineering and Computing, The University of Newcastle, NSW, Australia

c3288930@uon.edu.au, hongyu.zhang@newcastle.edu.au, pablo.moscato@newcastle.edu.au

Abstract—Complex software intensive systems, especially dis-
tributed systems, generate logs for troubleshooting. The logs are
text messages recording system events, which can help engineers
determine the system’s runtime status. This paper proposes a
novel approach named ADR (stands for Anomaly Detection
by workflow Relations) that employs matrix nullspace to mine
numerical relations from log data. The mined relations can be
used for both offline and online anomaly detection and facilitate
fault diagnosis. We have evaluated ADR on log data collected
from two distributed systems, HDFS (Hadoop Distributed File
System) and BGL (IBM Blue Gene/L supercomputers system).
ADR successfully mined 87 and 669 numerical relations from the
logs and used them to detect anomalies with high precision and
recall. For online anomaly detection, ADR employs PSO (Particle
Swarm Optimization) to find the optimal sliding windows’ size
and achieves fast anomaly detection. The experimental results
confirm that ADR is effective for both offline and online anomaly
detection.

I. INTRODUCTION

Many large-scale distributed systems provide online services
to a large number of users from around the world. Therefore,
high system availability and reliability are essential. A small
problem could affect user experience and even cause significant
financial loss. Although a lot of effort has been devoted to
quality assurance, in reality, distributed systems still encounter
many problems and often fail to satisfy user requests.

To facilitate problem identification and diagnosis, most
distributed systems generate console logs. The logs are usually
unstructured text messages recording system events, which
can help engineers understand the system’s internal status
and determine whether the status is normal or not. When a
system behaves abnormally, the engineers can try to identify
the reason for the failure by examining the logs. Clearly, to
uncover abnormal system behaviors in an effective manner,
manually checking the logs is extremely time-consuming or
even infeasible, especially for large-scale distributed systems
that provide 24-7 services. Therefore, automated log-based
anomaly detection is important.

Over the years, many automated log-based anomaly detection
approaches have been proposed. These approaches include
supervised machine learning methods (such as Logistic Re-
gression (LR) [1], Decision Tree (DT) [2], Support Vector
Machine (SVM) [3]) and unsupervised methods (such as
Log Clustering (LC) [4] and Principle Component Analysis
(PCA) [5]). However, one drawback of these machine learning
based models is that most of them are unexplainable - it is
difficult for engineers to explain the results of these models

and gain insights into the anomalies. The approach Invariants
Miner (IM) [6] is able to identify explainable invariants from
the logs. In this model, the mined invariants describe the
numerical relations among the log events that should hold true
during the normal running of the system. The invariants are
human understandable and explainable so that they can help
engineers understand the behavior of the system and may point
to the reason for the observed anomalies [6]. However, IM has
its limitations too. Firstly, it only supports linear invariants,
therefore other important types of non-linear relations are
ignored. Secondly, IM employs a search-based method to look
for invariants and it cannot ensure to find all available invariants.
Besides, it suffers from performance problems when the number
of log events increases. For example, in a comparative study [7],
the researchers had to manually set a stopping criteria to speed
up the search process by avoiding searching for linear invariants
that involved too many events.

In this paper, we propose ADR (an acronym that stands for
Anomaly Detection by workflow Relations), a novel approach
to mine numerical relations from logs and use the relations
for anomaly detection. ADR first transforms the log data
into a sequence of log events, counts the occurrences of the
events, and constructs an extended event-count-matrix. Then,
ADR calculates the nullspace of the matrix, which covers
relations in both simple workflows (such as sequential or
conditional workflows) and complex workflows (combinations
of simple workflows). The observed violated relations can be
used to detect anomalies and provide insightful information
for explaining the anomalies.

The highlights of our approach include:

• ADR requires a very small size of training data yet it is
able to produce comparable results with the state-of-the-art
approaches.

• For training, ADR only requires the logs that are produced
when the system is running normally. Such normal logs
are easy to collect in practice.

• By searching a proper window size using PSO (Particle
Swarm Optimization), ADR can group consecutive log
entries to sliding windows and perform online anomaly
detection. That is, as soon as a new log entry is generated,
ADR can determine if an anomaly has emerged.

We have evaluated the proposed approach ADR on log
data collected from two industrial distributed system, HDFS
(Hadoop Distributed File System) [8] and BGL (IBM Blue

Fig. 1. A snippet of HDFS (Hadoop Distributed File System) logs

Gene/L supercomputers system) [9]. ADR discovered 87 and
669 relations from the HDFS and BGL log data. It achieved
high precision and recall scores (all greater than 0.9) for offline
anomaly detection and outperforms the state-of-the-art methods.
For online anomaly detection, ADR takes advantages of the
event-count-matrix’s rank and employs PSO to find the optimal
window size to split the logs. On the BGL dataset, ADR
achieves the F1 score of 0.97 and returns the detection result
quickly (within 11ms in average).

The main contributions of this paper are as follows:
1) We propose ADR to mine numerical relations from the

logs’ event-count-matrix and construct extra elements for
the matrix to cover more types of relations.

2) We propose a PSO-based method to find the optimal
window size to split the logs.

3) We evaluate ADR on public log datasets in both offline
and online manner. The results confirm the effectiveness
of ADR in log-based anomaly detection.

The organization of the paper is as follows. In Section II,
we introduce the background information on log analysis and
anomaly detection. In Section III, we describe the relationship
between workflows and their numerical relations. Then we
describe our proposed approach in detail in Section IV. The
experiment design and results are presented in Section V and
VI. The threat to validity is summarized in Section VII. We
introduce the related work to our research in Section VIII and
conclude the paper in Section IX.

II. BACKGROUND

Many software systems generate logs for troubleshooting
purposes. The logs record the system events that can help
engineers maintain or diagnose the systems. Figure 1 shows
a snippet of raw logs produced by HDFS. It can be seen
that the raw logs are often unstructured texts. To facilitate
log analysis, several log parsers (e.g. Drain [10], AEL [11],
Spell [12], IPLoM [13]) have been proposed to parse the raw
logs into structured log events. Then each raw log entry can
be regarded as a certain event with specific parameters. For
example, in Figure 1, the first and second log entries belong to
two different log events while the third and fourth log entries
belong to the same event ”Receiving block 〈∗〉 src: 〈∗〉 dest:
〈∗〉”.

Afterwards the log entries are usually grouped to log
sequences. There are three common types of grouping strategies,
i.e. sessions, fixed windows, and sliding windows. Grouping by
sessions is to classify the log events by certain identifiers, such
as TaskID, InstanceID, or BlockID [14], [15], [7]. Grouping
by fixed or sliding windows are based on the timestamps of
the log entries. For each log sequence (obtained by sessions
or fixed/sliding windows), the occurrences of the events are
counted, resulting in an event-count-matrix. For example, the
following is an event-count-matrix for sessions:

Event 1 Event 2 ... Event n


session 1 c11 c12 .. c1n
session 2 c21 c22 .. c2n

...
session m cm1 cm2 .. cmn

(1)

where cmn indicates the number of occurrences of Event n in
session m.

Over the years, many machine learning based methods have
been proposed to employ the event-count-matrix to detect
system anomalies [14], [16], [17], [18], [19], [20], [21], [22],
[23]. Some of these methods use supervised learning techniques
such as Logistic Regression [1], Decision Trees [2], and Support
Vector Machines (SVMs) [3], while others employ unsupervised
approaches such as Log Clustering [4], Principal Compo-
nent Analysis [5], and the previously mentioned Invariant
Miner (IM) [6]. Among them, the Logistic Regression based
method [1] uses labelled instances to train a logistic function
to estimate the probability of the system being abnormal. SVM
based method [3] tries to construct a hyperplane to separate
normal and abnormal instances in high-dimensional space.
IM [6] employs a greedy search method to discover linear
relations between the occurrences of system events and the
instances that violate the invariant relationships are considered
as the anomalies.

In a comparative study, He et al. [7] found that supervised ap-
proaches usually perform better than unsupervised approaches
when detecting anomalies. However, the supervised approaches
require labelled logs to train the models, for which the labelling
work is very time-consuming and requires domain expertise on
the subject system. Another concern for the current approaches

2

is that although they can identify system anomalies, explainable
information for follow-up troubleshooting are often hard to
be provided because the original events information is usually
transformed to a feature space. Among the related approaches,
IM is able to find human-understandable invariants, which can
help locate the causes of the anomalies [6]. However, IM only
supports linear invariants and cannot ensure to find a complete
set of available invariants [7]. Besides, it assumes an ad hoc
support ratio for the invariants (e.g. in [6], [7] a threshold of
98% was used for the computational experiments, i.e. it is
implicitly assuming the proportion of anomalies lower than
2%), which is not always true. Moreover, IM suffers from
performance issues when multiple events are involved in the
target invariants.

III. NUMERICAL RELATIONS IN LOGS

As logs are usually generated at critical points during
system runtime, different sequences of log events are inherently
related to the system’s workflows. Table I presents three
basic workflows: sequence, condition, and loop. Here we use
count(Event) to denote the number of occurrences of Event.
For Workflow 1, if this workflow is normally executed several
times, we will see that the occurrences of the events must
comply with count(A) = count(B). Similarly, for Workflow 2,
we can infer that count(C) = count(D) + count(E) because
every normal execution of this workflow can ensure an event
C must be followed by either an event D or an event E. For
Workflow 3, which contains a loop, it can be inferred that
count(G) = k×count(F) where k is an integer related to the
terminating condition of the loop. Moreover, we can consider
some complex workflows which are composed of the basic
flows. For example, a combination of Workflows 2 and 3 could
result in a relation that count(C) = count(D)+k×count(F).
Another complex combination is shown in Figure 2, which
produces the relation that count(G) = count(H)× count(F),
where the number of loops is determined by the occurrence of
another event. Note that, even if some intermediate statements
are not logged, the other events can still comply with certain
relations. Figure 3 shows a combination of Workflow 1 and 2
in which some statements in-between are not logged, but the
relation count(A) = count(D) + count(E) still holds if the
system is running normally.

Fig. 2. A workflow that contains a variable-length loop

IV. PROPOSED APPROACH

A. Overview
In this paper, we propose an anomaly detection approach

based on numerical relations mined from logs. The overview

TABLE I
BASIC WORKFLOWS

Fig. 3. A relation holds though some intermediate statements are not logged

workflow of the proposed approach is shown in Figure 4.
It starts by parsing the raw logs into structured log events.
Several state-of-the-art tools such as Drain [10], Spell [12] are
employed to complete this task. Then the parsed log events
are grouped into sequences by sessions or sliding windows. In
step 3, for each session or window, the occurrences of its log
events are counted, resulting in the event-count-matrix. Then
the available numerical relations are extracted from the event-
count-matrix by evaluating its nullspace. Finally, the extracted
relations are used to detect abnormal log sequences in the
offline or online manner. We describe the details of offline
anomaly detection at session level in Section IV-B and online
anomaly detection at entry level in Section IV-C.

B. Offline anomaly detection at session level

To perform offline anomaly detection, the first step is to
parse the raw logs to structured log events. Several log parsers
including Drain [10], AEL [11], Spell [12], IPLoM [13] have
been proposed and can be integrated with ADR. For anomaly
detection at session level, the log events are grouped by certain
session identifiers, such as BlockID for HDFS system, NodeID
for BGL system. Then our approach requires a number of
normal session logs to the model and extract the numerical
relations among the events. For training, the occurrences of
the events in each session are counted and we can obtain
its event-count-matrix. In this paper, we propose to extend
the original event-count-matrix P by constructing additional
elements to cover more relation types. For example, given an
event-count-matrix P (as Equation 1), we can construct another

3

Fig. 4. An overview of ADR

matrix P ′ as follows:
1 c11 c12 .. χ(c11) χ(c12) .. c11c12 c11c13 ..
1 c21 c22 .. χ(c21) χ(c22) .. c21c22 c21c23 ..
..
1 cm1 cm2 .. χ(cm1) χ(cm2) .. cm1cm2 cm1cm3 ..


In general, P ′ consists of three more types of extended terms

compared with P :

1) The constant terms (the first column in P ′), which will
capture the events that occur a constant number of times.

2) The χ(cmn) terms, which will equal to 0 when the event
count cmn is zero (never occurs) and otherwise 1, meaning
the event occurs at least once. The χ terms will enable
us to cover more relations in workflows. For example,
if a workflow consists of both module A and B but in
different sessions module A calls module B different times,
the occurrences of A is loaded and B is called will not
comply with a linear relation. But with the help of χ
terms, such a workflow can be captured by the relation
χ(A is loaded) = χ(B is called).

3) The combinatorial terms (such as c11c12), which consist of
the products of the event counts and enable us to capture
the relations in some complex workflows, such as the
nested loop in Figure 2.

With the extended event-count-matrix, we find that the
numerical relations of the events are in essence the relationship
among the matrix’s linearly dependant columns. Moreover, a
matrix’s linearly dependant columns are essentially related to
its nullspace [24]. The nullspace of the matrix P ′ consists of
all vectors v such that:

P ′ · v = 0, (2)

Therefore, the complete set of the linearly dependant columns
has an one-to-one correspondence with the nullspace of P ′

(denoted as ns(P ′)).
Based on the analysis of relationship between the extended

event-count-matrix’s nullspace and the events’ relations, each
column of ns(P ′) will depict one numerical workflow relation.
For example, assume that we have an event-count-matrix and
extended it as:

1 A B C χ(A) χ(B) χ(C) AB AC BC[]
session 1 1 1 1 0 1 1 0 1 0 0
session 2 1 2 0 2 1 0 1 0 4 0
session 3 1 4 2 2 1 1 1 8 8 4

By using Gaussian elimination [25], we can transform the
event-count-matrix to its row echelon form and evaluate its
nullspace (presented as its transposed form):

1 A B C χ(A) χ(B) χ(C) AB AC BC


0 −1 1 1 0 0 0 0 0 0
−1 0 0 0 1 0 0 0 0 0
−2 1 −3 0 0 4 0 0 0 0
..

Each vector in the nullspace represents a numeri-
cal workflow relation. For example, the first vector is[
0 −1 1 1 0 0 0 0 0 0

]
and along with the cor-

responding events it shows that −count(A) + count(B) +
count(C) = 0. This equation indicates the conditional work-
flow shown ass Workflow 2 in Table I. The second relation is
−1 + χ(A) = 0, which indicates that event A should occur at
least once. The third relation is −2+count(A)−3count(B)+
χ(B) = 0, which indicates a more complex relation between
that the occurrence of event A and B.

Because the above-mentioned relations are extracted from
the log sequences which are produced when the system behaves
normally, we deem that they should hold true if the system
is in normal status. If something wrong emerges with the
system, one or several of the relations would probably be
broken. Therefore, we can determine whether an unknown
session is normal by verifying its log sequence against each
vector of ns(P ′). If the session’s log sequence satisfies the
whole nullspace, we deem it a normal session. Otherwise, the
session is an anomaly and the violated relations can provide
insightful information for diagnosis.

4

Fig. 5. Online grouping strategy

C. Online anomaly detection at entry level

In the offline manner, each log sequence consists of events
from a session’s start to its end, so we cannot determine the
session’s status when it is still running. Such an offline manner
is similar to the state-of-the-art tools collected in [7]. In this
paper, we further develop our model to enable the anomaly
detection in the online manner, i.e. as soon as a new log entry
is generated, the system’s status can be evaluated. To achieve
the goal, we propose a novel grouping strategy which differs
from the existing ones. As shown in Figure 5, the log entries
in each session are further grouped by windows. Each window
contains a fixed number of log entries but has a sliding step
of one entry. More specifically, a number of consecutive log
entries are grouped as a window. Then the next window is
formed by moving the current window forward with the step
size of one. The events in each window are counted, forming
an event-count-matrix, where its rows represent the windows
and columns represent the events’ counts. The step size of one
entry ensures that as soon as a new log entry is generated by
the system, a new window will be formed and evaluated.

Obviously, a proper window size is the key to capture
the numerical relations when using the window grouping
strategy. In previous studies [7], [17], time windows are often
used and the window sizes are chosen in an ad hoc manner,
such as 30 minutes, 6 hours, 9 hours. Instead of using ad
hoc time windows, in this paper we employ an optimization
algorithm, named PSO (Particle Swarm Optimization) [26],
to determine the best size of the windows. PSO is a widely-
used swarm intelligence optimization algorithm where each
candidate solution is called a particle, and multiple particles
coexist and optimize cooperatively to search for the optimal
solution. To enable the optimization process, we propose a
novel fitness function (Formula 3), which can quickly evaluate
the performances of different window sizes. As we intend
to mine more relations, we have found that the existence of
more relations indicates a higher nullity and a lower rank of
the event-count-matrix (rank-nullity theorem: nullity + rank
= number of columns of the matrix [24]). So, we propose
that the rank of the extended event-count-matrix can be used
as an indicator for the fitness of the window size. A bigger
rank difference between the abnormal and normal event-count-
matrices is better because it suggests that the window size will
capture more relations in normal logs rather than in abnormal
logs. In Formula 3, the matrices IAN and IN are the event-

count-matrix for the abnormal and normal logs when adopting
the window size found by the particle.

fitness(particle) = rank(IAN)− rank(IN) (3)

The PSO process starts with randomly generating an initial
population of particles (each particle is a candidate value that
defines the size of the windows). We use sti, v

t
i to denote

the location and velocity of ith particle at the moment of t.
Generally speaking, the location of a particle is determined by
its previous position, the best position it has reached and the
global best position all particles have reached. Formula 4 and
5 show how we update the positions of the particles. In the
formulas, ω is a positive number referred to as inertia weight
and ε1 and ε2 are acceleration factors. r1 and r2 are two random
numbers between 0 and 1. sti best is the optimum position si has
ever reached until moment t, stg best is the optimum position
that all particles have reached until moment t. The initial
positions and velocities of the particles are randomly generated
and their performances are evaluated to decide the global
best position. After that the particles are updated according to
Formula 4 and 5 until reaching a termination threshold. In the
end of search the best position all particles have ever reached
is returned.

st+1
i = sti + vti (4)

vti = ωvt−1i + ε1r1(s
t−1
i best− s

t−1
i)+ ε2r2(s

t−1
g best− s

t−1
i) (5)

ωt = ωs − (ωs − ωe)(t/T)
2 (6)

After determining the size of the windows, we can obtain
the nullspace of IN , denoted as ns(IN) and use it to evaluate
unknown log sequences. For online detection, our approach
will keep collecting log entries until they can form a window.
Then the window is checked against each vector of ns(IN) to
determine whether it breaches the relations. Then, as soon as
a new log entry is generated, the window will slide to form
a new window and it will be checked. The response of the
detection can be very fast because the detection is essentially
no more than one operation of matrix dot product calculation.

V. EXPERIMENTAL DESIGN

A. Subject datasets
In our experiments, we use two public log datasets that

contain a large number of log events to evaluate the proposed
approach. One is the HDFS dataset [5], [27], which contains
11,175,629 log entries collected from a Hadoop Distributed
File System on Amazon EC2 platform. The other is the BGL
dataset [9], [27], which contains 4,747,963 log entries collected
from the BlueGene/L supercomputer system. Each log entry
in BGL dataset is labelled as normal or abnormal, while the
HDFS dataset are labelled at session level identified by BlockId.
Table II presents the information of the two subject datasets.
The experiments are run on a server with Windows Server
2012 R2, Intel Xeon E5-2609 CPU, and 128GB RAM.

5

TABLE II
SUBJECT DATASETS

Dataset Size #Log Entries #Log Events #Total
Sessions

#Abnormal
Sessions

HDFS 1.5 G 11,175,629 48 575,061 16,838
BGL 743 M 4,747,963 384 69,252 31,375

B. Research Questions

We design three research questions (RQs) to evaluate the
proposed approach ADR.

1) RQ1: Can the proposed approach extract numerical
relations from logs?: For each dataset, firstly we use Drain [27]
to parse the raw logs to structured logs. Then the structured logs
are grouped by session identifiers, which is BlockID for HDFS
logs and NodeID for BGL logs. Then the event-count-matrix for
the sessions is extended to include the constant terms, χ terms
and combinatorial terms (quadratic combinations). After that,
we evaluate whether ADR can extract the numerical relations
from the extended event-count-matrix and compare the results
with those of Invariants Miner (IM).

2) RQ2: How effective is the proposed approach for offline
anomaly detection?: To answer this RQ, we investigate the
capacity of the extracted relations to detect system anomalies.
The structured logs are grouped by session identifiers and
split into two parts, i.e. training set and testing set. We use
different ratios to split the training and testing sets to investigate
the impact of training size on the results. For supervised
methods, a smaller training size is better because it will
reduce the efforts spent on labelling the data. We compare
ADR with some state-of-the-art approaches including Invariants
Miner (IM) [6], Logistic Regression (LR) [1], Support Vector
Machine (SVM) [2]. The detection performance is measured
using precision, recall, F1, and Matthews correlation coefficient
(MCC) [28]. Precision measures how many reported anomalies
are correct, Recall measures how many real anomalies are
detected and F1 is the harmonic mean of Precision and
Recall. MCC is in essence a correlation coefficient between
the observed and predicted binary classifications.

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(7)

F1 =
2× Precision×Recall
Precision+Recall

(8)

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(9)

3) RQ3: Can PSO find an optimal window size for online
anomaly detection?: This RQ is to evaluate whether we can
automate the selection of window size by PSO rather than
the previous ad hoc manner [7]. As the BGL dataset contains
labels for each log entry, we use it to evaluate ADR’s capacity
for online anomaly detection. Firstly we employ PSO to search
for the optimal window size for the dataset. Following some

previous work on PSO [29], the two acceleration factors (i.e. ε1
and ε2 in Formula 5) are set to 1.494, the number of particles
is set to 20, and the total number of iterations is set to 350.
The inertia weight (i.e. ω in Formula 5) is a changing value
which is determined by Formula 6. In the formula, ωt is the
inertia weight for the tth iteration, ωs is the inertia weight in
the start of PSO and set to 0.9, and ωe is the inertia weight
in the end and set to 0.4 [29]. After obtaining the optimal
window size, the normal sessions from the BGL training set
in RQ2 are further split into windows and we obtain the event-
count-matrix. Then ADR extracts the numerical relations from
the logs by calculating the event-count-matrix’s nullspace. To
test the anomalies in the online manner, the sessions in testing
set are continuously fed to form windows and checked against
the nullspace. The metrics including precision, recall, F1 are
calculated. As speed is vital to online detection, we also record
the time to detect an instance.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

A. Results of RQ1

We employ ADR and IM to mine the relations from
HDFS and BGL logs and compare the number of discovered
relations and their time performance on the two datasets. The
experimental results are shown in Figure 6. It can be seen
that ADR discovered more relations in less time than IM. For
HDFS logs, the ADR found 87 relations in less than 1 second
while IM found 43 relations in more than 47 minutes. Example
1 in Table III is a relation found by ADR. The relation is
count(E1) = χ(E7) + 3, which involves two events, E1 and
E7. E1 records the event of receiving a block from a source
to a destination and E7 shows that a block is transmitted. The
corresponding workflow means that if E7 occurs E1 will occur
4 times (1+3), otherwise E1 will occur 3 times (0+3).

Fig. 6. Number of discovered relations and the time spent

For BGL logs that have 384 events, ADR discovered 669
relations in 4.9 seconds while IM discovered 316 relations in
30 minutes. We also sampled and verified some of the relations
manually.Example 2 in Table III shows a discovered relation
from BGL logs. It is a conditional workflow involving three
events. From the relation, we know that E115 and E171 may
be two statements in two branches of a conditional statement

6

and are executed before E113 (e.g. {if ... : E115; else: E171};
E113).

TABLE III
EXAMPLES OF DISCOVERED RELATIONS BY ADR

To check the correctness of the mined relations, we sampled
some of the relations and manually verified their correctness.
Moreover, the high precision and recall scores achieved by
the follow-up anomaly detection experiments (answers to RQ2
and RQ3) also confirmed the correctness of these relations.
The reasons why ADR can discover more relations than IM
could be as follows: firstly ADR extends the event-count-
matrix by including the constant terms, the χ terms, and the
combinatorial terms. Therefore more types of relations can be
covered. Secondly, IM uses a brute force method combined
with greedy search to mine the relations. When dealing with a
large number of events (e.g. 384 events in BGL), the search
space is very large so that IM is set to ignore some complex
relations to speedup the search process [7]. As a comparison,
ADR discovers the relations by using the property of the
matrix’s nullspace, which is a fast operation offered by common
mathematical packages [30], [31], [32]. Moreover, the nullspace
is a complete set of the available relations for the extended
event-count-matrix and it ensures the absence of duplicates.

B. Results of RQ2

Table IV shows the precision, recall, F1, and MCC scores
achieved by the comparative approaches on HDFS logs (size
of training set : size of testing set = 0.05% : 99.95%) and
BGL logs (size of training set : size of testing set = 0.5% :
99.5%). The MCC scores of the approaches are in consistency
with their F1 scores, which is reasonable because both of
them are based on the precision and recall scores. For HDFS

logs, ADR obtains the best recall and F1, which are 0.929
and 0.925, respectively. The precision of ADR on HDFS is
0.931, which is just slightly lower than the highest precision
obtained by Logistic Regression (0.936). However, the recall of
Logistic Regression is only 0.795, which indicates that though
its predictions are precise, a large number of anomalies cannot
be identified. Our proposed approach also performs well on
BGL logs. Its F1 score is as high as 0.967, which is very close
to the highest score (0.988 by SVM). It is also worth noting
that the recall scores of ADR on both HDFS and BGL logs
are the highest (0.929 and 1), which means that it can identify
nearly all the anomalies at high precision.

TABLE IV
RESULTS OF LOG-BASED ANOMALY DETECTION

Moreover, ADR obtains consistent accuracy on the two
different datasets (0.944 for HDFS dataset and 0.967 for
BGL dataset) while the metric values for other approaches
vary a lot. For example, IM has a high F1 score on HDFS
dataset (0.870), but it has a very poor F1 score on BGL logs
(0.319). Though SVM achieves the best F1 score on BGL
dataset (0.988), it performs much poorly on HDFS dataset. By
comparison, ADR achieves good precision and recall scores
on both datasets, which could be attributed to the correctness
and the completeness of its discovered relations.

We also investigate how the size of the training set affects
the anomaly detection results of ADR and other tools. Figure
7 shows the F1 scores on the testing sets when using different
percentage of sessions to train the approaches. ADR can achieve
high accuracy with small training sets on both HDFS and BGL
datasets. For example, the F1 score achieved by ADR on HDFS
logs reaches 0.9 when using less than 0.01% of the sessions
for training. ADR’s F1 score remains the highest among all
the compared approaches as the training size increases. For
BGL dataset, the F1 score achieved by ADR is also one of
the highest when using different training sizes. The other two
supervised methods, Logistic Regression (LR) and SVM, also
achieve higher F1 scores as more training sessions are provided.
As a contrast, the unsupervised method IM has a much lower
F1 score (lower than 0.3). This is because the sizes of training
sets are far from enough for the unsupervised methods. It is
worth noting that IM has the F1 scores around 0.8 on HDFS
but quite lower scores on BGL (around 0.4). The reason is that
the proportion of abnormal sessions for BGL logs is 45.3%,
which makes it very difficult for IM to produce the correct
invariants from the search results by using an assumed support
ratio [33].

The distribution of the violated relations can also provide
insightful information about the anomalies. Figure 8 presents

7

Fig. 7. F1 scores under different training sizes on HDFS and BGL datasets

Fig. 8. Distribution of violated relations in HDFS

how often each discovered relation from HDFS is violated
by the anomalies. The relations are sorted by their violation
rates from high to low. As shown in Formula 10, we define a
relation’s violation rate as the percentage of the anomalies that
violate this relation. It can be seen that some relations have
much higher violation rates than others. For example, 64.9%
of the abnormal sessions violated the same 18 relations. One
example of the relation is c(E1) = c(E2) where E1 is ”Deleting
block 〈∗〉 file 〈∗〉” and E2 is ”BLOCK 〈∗〉 NameSystem.delete:
〈∗〉 is added to invalidSet of 〈∗〉”. Also, some of the discovered
relations are only violated by a very few anomalies. The
discrepancy between the high and low violation rates suggests
that some workflows may be more vulnerable and should be
paid more attention to.

violation rate =
anomalies violating the relation

total detected anomalies
(10)

Overall, we have found that ADR has a strong capacity to
extract the relations from log data and use them to detect
anomalies even when the training set is small. This also
increases the applicability of log-based anomaly detection
because labelling the log data manually is tedious and time-
consuming.

Fig. 9. F1 scores for anomaly detection on testing set when adopting different
window sizes

C. Results of RQ3

We used BGL log entries for the PSO-based optimization
process. PSO found that the optimal window size to split
the BGL logs was 53. In other words, the rank difference
between the abnormal and normal event-count-matrices is the
biggest when each sliding window consists of 53 log entries.
To investigate whether this window size improves the anomaly
detection efficiency, we used the PSO returned window size as
well as several other window sizes to split the log entries and
detect the anomalies in the remaining testing set. The F1 scores
achieved by different window sizes are shown in Figure 9. It
can be seen that there does exist an optimal window size for
which the anomalies can be detected more efficiently. This can
be attributed to the reason that several numerical relations are
missed when adopting an improper window size. In a previous
study [7], the authors manually chose several time window sizes
and also found that some of them resulted in better anomaly
detection results. Therefore, using the optimization approaches
such as PSO could be a promising idea to tune the parameters
in log analysis.

As the sliding windows are used for online anomaly
detection, the response time for detecting a new window is

8

very important. For online detection, as soon as a new log
entry is generated by the system, the current window will
slide forward to include the new log entry and will be checked
against the numerical relations. In the experiments, we observed
that the average time to determine whether a new window was
abnormal or not was only 11ms, which was nearly a real-time
response. The reason is that checking the new window against
the numerical relations is actually to calculate the product
of two matrices, which is a very fast operation in common
mathematical packages [34], [30].

VII. THREATS TO VALIDITY

We have identified the following threats to validity:
• Subject datasets. In this paper we use the logs collected

from the Hadoop Distributed File System (HDFS) and
a supercomputer system (BGL). Although both of the
datasets come from real systems and contain millions of
logs, the number of the subjects is still limited. In the
future, we will try to collect the logs from various systems
and conduct experiments on them.

• Noise in log data. In this study, we use matrix nullspace
to extract the event relations, which achieved high preci-
sion and recall scores in the experiments. However, the
nullspace strictly satisfies the training set. Therefore, if the
training set contains some errors (e.g. log parsing errors
and label errors), the nullspace will shrink dramatically.
In our future work, we will introduce a tolerance measure
so that the relations are not strictly required to fulfil all
the training set.

• Correspondence between relations and workflows. In this
paper, each discovered relation is considered to correspond
to a workflow, but there exists a possibility that several
workflows share the same relation. Though the relations
have shown strong capacity to identify the anomalies,
they could provide more information for diagnosis if
the workflows can be precisely determined. In future
work we will utilize more information in the logs (e.g.
the timestamps of events) to precisely determine the
workflows.

VIII. RELATED WORK

The research on automatic log analysis mainly focuses
on two problems: the first is how to accurately parse the
unstructured logs to structured logs and the second is to
automatically determine the system status from logs. There
have been several log parsers addressing the first problem, such
as IPLoM [35], LKE [23], Spell [12], Drain [10]. A compre-
hensive comparison of their mechanisms and performances are
systematically summarized in an ICSE’19 paper [27].

There are many automatic log-based anomaly detection
methods, including supervised approaches (such as Logistic
Regression, Decision Tree [2], Support Vector Machine [2],
Deep Learning [15]) and unsupervised approaches (such as Log
Clustering [4], Principle Component Analysis [5], Invariants
Mining [6]). Logistic Regression based method [1] uses labelled
instances to train a logistic function to estimates the probability

of the system being abnormal. SVM-based method [3] tries
to construct a hyperplane to separate normal and abnormal
instances in high-dimensional space. PCA-based method [5]
generates two sub-spaces, named normal space and anomaly
space, and the distance to normal space is used to identify
the anomalies. IM [6] employs a brute force combined with
greedy search method to discover linear relations between the
occurrences of system events and the instances which violate
the invariants are considered as anomalies. Log Clustering [4]
groups normal log instances into clusters and new instances
that do not fall into any clusters are considered as anomalies.
He et al. [21] proposed Log3C to identify impactful system
problems by utilizing both log sequences and system KPIs (Key
Performance Indicators). It designs a fast cascading clustering
algorithm for iteratively sampling, clustering, and matching log
sequences and then identifies the problems by correlating the
clusters with system KPIs. To identify and handle unstable log
events and sequences, LogRobust [14] was proposed, which
can extract semantic information of log events and then detects
anomalies by utilizing an attention-based Bi-LSTM model.

Though He et al. [7] has found that supervised approaches
usually achieve better performances than unsupervised ap-
proaches, the biggest concern for the supervised approaches is
that they require labelled logs to train the models. However,
labelling the logs requires expertise of the subject system and
tedious manual work, especially if the approach needs a lot
of training data. Another drawback of the current approaches
is that the approaches can identify the anomalies but cannot
provide extra information for troubleshooting, because the
original logs are usually transformed in the models. The
approach Invariants Mining could find meaningful invariants
in the logs, which are human understandable so as to help
operators to find the cause of the anomalies [6]. But Invariant
Mining suffers from performance problems when the size of
the logs grows because of the expansion of the search space [7].
ADR proposed in this paper requires a small number of logs
produced by a normally running system, so it alleviates the
pain of labelling. Moreover, the numerical relations mined by
ADR correspond to certain workflows of the system so that
they could provide hints for diagnosing the anomalies.

IX. CONCLUSION

In this paper, we propose ADR, which can automatically
extract relations among log events and detect system anomalies
in both offline and online manners. The experimental results
on two public log datasets show that ADR can discover 87
and 669 relations from HDFS and BGL logs within just a few
seconds. It can achieve high precision and recall scores (all
greater than 0.9) in anomaly detection using a small training set
and outperforms the state-of-the-art methods. Moreover, ADR
employs an optimization approach, PSO, to find the optimal
window size to split the log entries. By examining the violated
relations of the log sequences, engineers can achieve a better
understanding of the system anomalies.

Our experimental tool and data are publicly available at
https://github.com/bolzzzz/ADR.

9

https://github.com/bolzzzz/ADR

In the future, we will evaluate ADR on more log datasets
from a variety of systems. We will also extend the proposed
approach to support anomaly detection with noisy log data.

ACKNOWLEDGMENT

This work is supported by Australian Research Council
(ARC) Discovery Project DP200102940.

REFERENCES

[1] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Andersen,
“Fingerprinting the Datacenter: Automated Classification of Performance
Crises,” in Proceedings of the 5th European Conference on Computer
Systems, ser. EuroSys ’10. Paris, France: ACM, 2010, pp. 111–124.

[2] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer, “Failure
diagnosis using decision trees,” in International Conference on Autonomic
Computing, 2004. Proceedings., May 2004, pp. 36–43.

[3] Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo, “Failure Prediction in IBM
BlueGene/L Event Logs,” in Seventh IEEE International Conference on
Data Mining (ICDM 2007), Oct. 2007, pp. 583–588.

[4] Q. Lin, H. Zhang, J. Lou, Y. Zhang, and X. Chen, “Log Clustering Based
Problem Identification for Online Service Systems,” in 2016 IEEE/ACM
38th International Conference on Software Engineering Companion
(ICSE-C), May 2016, pp. 102–111.

[5] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
Large-scale System Problems by Mining Console Logs,” in Proceedings
of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles,
ser. SOSP ’09. Big Sky, Montana, USA: ACM, 2009, pp. 117–132.

[6] J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, “Mining Invariants from
Console Logs for System Problem Detection,” in Proceedings of the
2010 USENIX Conference on USENIX Annual Technical Conference, ser.
USENIXATC’10. Berkeley, CA, USA: USENIX Association, 2010, pp.
24–24.

[7] S. He, J. Zhu, P. He, and M. R. Lyu, “Experience Report: System
Log Analysis for Anomaly Detection,” in 2016 IEEE 27th International
Symposium on Software Reliability Engineering (ISSRE), Oct. 2016, pp.
207–218.

[8] A. S. Foundation, “Apache Hadoop,” https://hadoop.apache.org/, 2019.
[9] A. Oliner and J. Stearley, “What Supercomputers Say: A Study of Five

System Logs,” in 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’07), Jun. 2007, pp. 575–584.

[10] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An Online Log Parsing
Approach with Fixed Depth Tree,” in 2017 IEEE International Conference
on Web Services (ICWS), Jun. 2017, pp. 33–40.

[11] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “An automated
approach for abstracting execution logs to execution events,” Journal of
Software Maintenance and Evolution: Research and Practice, vol. 20,
no. 4, pp. 249–267, 2008.

[12] M. Du and F. Li, “Spell: Streaming Parsing of System Event Logs,” in
2016 IEEE 16th International Conference on Data Mining (ICDM), Dec.
2016, pp. 859–864.

[13] A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “A Lightweight
Algorithm for Message Type Extraction in System Application Logs,”
IEEE Transactions on Knowledge and Data Engineering, vol. 24, no. 11,
pp. 1921–1936, Nov. 2012.

[14] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,
Q. Cheng, Z. Li, J. Chen, X. He, R. Yao, J.-G. Lou, M. Chintalapati,
F. Shen, and D. Zhang, “Robust Log-based Anomaly Detection on
Unstable Log Data,” in Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2019. Tallinn,
Estonia: ACM, 2019, pp. 807–817.

[15] M. Du, F. Li, G. Zheng, and V. Srikumar, “DeepLog: Anomaly
Detection and Diagnosis from System Logs Through Deep Learning,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’17. Dallas, Texas, USA: ACM,
2017, pp. 1285–1298.

[16] L. Mariani and F. Pastore, “Automated Identification of Failure Causes
in System Logs,” in 2008 19th International Symposium on Software
Reliability Engineering (ISSRE), Nov. 2008, pp. 117–126.

[17] T. Li, Y. Jiang, C. Zeng, B. Xia, Z. Liu, W. Zhou, X. Zhu, W. Wang,
L. Zhang, J. Wu, L. Xue, and D. Bao, “FLAP: An End-to-End Event
Log Analysis Platform for System Management,” in Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ser. KDD ’17. Halifax, NS, Canada: ACM, 2017,
pp. 1547–1556.

[18] C. Kruegel and G. Vigna, “Anomaly Detection of Web-based Attacks,”
in Proceedings of the 10th ACM Conference on Computer and Commu-
nications Security, ser. CCS ’03. Washington D.C., USA: ACM, 2003,
pp. 251–261.

[19] M. Farshchi, J. Schneider, I. Weber, and J. Grundy, “Experience report:
Anomaly detection of cloud application operations using log and cloud
metric correlation analysis,” in 2015 IEEE 26th International Symposium
on Software Reliability Engineering (ISSRE), Nov. 2015, pp. 24–34.

[20] J. Breier and J. Branišová, “A Dynamic Rule Creation Based Anomaly
Detection Method for Identifying Security Breaches in Log Records,”
Wireless Personal Communications, vol. 94, no. 3, pp. 497–511, Jun.
2017.

[21] S. He, Q. Lin, J.-G. Lou, H. Zhang, M. R. Lyu, and D. Zhang, “Identifying
Impactful Service System Problems via Log Analysis,” in Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2018. Lake Buena Vista, FL, USA: ACM, 2018, pp.
60–70.

[22] H. Hamooni, B. Debnath, J. Xu, H. Zhang, G. Jiang, and A. Mueen,
“LogMine: Fast Pattern Recognition for Log Analytics,” in Proceedings
of the 25th ACM International on Conference on Information and
Knowledge Management, ser. CIKM ’16. Indianapolis, Indiana, USA:
ACM, 2016, pp. 1573–1582.

[23] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution Anomaly Detection in
Distributed Systems through Unstructured Log Analysis,” in International
Conference on Data Mining (Full Paper). IEEE, Dec. 2009.

[24] G. Strang, Linear Algebra and Its Applications, 4th Edition, 4th ed.
Belmont, CA: Cengage Learning, 2006.

[25] I. Wikimedia Foundation, “Gaussian elimination,” Wikipedia, Oct. 2019.
[26] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-

ings of the 1995 IEEE International Conference on Neural Networks,
vol. 4. IEEE, 1995, pp. 1942–1948.

[27] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu, “Tools
and Benchmarks for Automated Log Parsing,” in Proceedings of the 41st
International Conference on Software Engineering: Software Engineering
in Practice, ser. ICSE-SEIP ’10. Montreal, Quebec, Canada: IEEE
Press, May 2019, pp. 121–130.

[28] B. Matthews, “Comparison of the predicted and observed secondary
structure of T4 phage lysozyme,” Biochimica et Biophysica Acta (BBA)
- Protein Structure, vol. 405, no. 2, pp. 442–451, 1975.

[29] J. Zhang, J. Chen, D. Hao, Y. Xiong, B. Xie, L. Zhang, and H. Mei,
“Search-based Inference of Polynomial Metamorphic Relations,” in Pro-
ceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering, ser. ASE ’14. New York, NY, USA: ACM, 2014,
pp. 701–712.

[30] The SciPy community, “SciPy,” https://www.scipy.org/, 2019.
[31] The SymPy Development Team, “SymPy,” https://www.sympy.org, 2018.
[32] I. The MathWorks, “MATLAB 2019b,” https://www.mathworks.com.
[33] J.-G. Lou, Q. Fu, S. Yang, J. Li, and B. Wu, “Mining Program Workflow

from Interleaved Traces,” in Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ser.
KDD ’10. Washington, DC, USA: ACM, 2010, pp. 613–622.

[34] N. D. Team, “NumPy,” http://www.numpy.org, 2019.
[35] A. A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “Clustering

Event Logs Using Iterative Partitioning,” in Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, ser. KDD ’09. Paris, France: ACM, 2009, pp. 1255–1264.

10

	Introduction
	Background
	Numerical Relations in Logs
	Proposed Approach
	Overview
	Offline anomaly detection at session level
	Online anomaly detection at entry level

	Experimental Design
	Subject datasets
	Research Questions
	RQ1: Can the proposed approach extract numerical relations from logs?
	RQ2: How effective is the proposed approach for offline anomaly detection?
	RQ3: Can PSO find an optimal window size for online anomaly detection?

	Experimental Results and Discussion
	Results of RQ1
	Results of RQ2
	Results of RQ3

	Threats to Validity
	Related Work
	Conclusion
	References

