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Abstract

Visual anomaly recognition (VAR) is the core part of many intelligent systems.

However, vagueness in definitions and lack of a priori knowledge about the dis-

tribution of anomalies, makes VAR a challenging problem. Supervised solutions

often fail to work in such scenarios due to lack of ability to adapt with con-

cept drifts. To this end, we have studied the effect of temporal derivatives over

differential manifolds for designing a zero-shot (label agnostic) VAR solution.

Rationale behind this work is leveraging the genericity and discriminative repre-

sentation available in the geometric-structure of motion-tensors. Our approach

proceeds by drawing segments of temoral-derivatives from raw image-sequences

and projecting them over Grassmann product space before clustering. Suitabil-

ity of the proposed approach is corroborated with extensive experiments and

comparisons with other arts.

Keywords: Unsupervised learning, Temporal derivatives, Multilinear algebra,

Visual anomaly recognition

1. Introduction

Large number of CCTV cameras are being deployed at public places and

transport networks. Camera market is forecasted to grow at a compound rate
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Figure 1: Figure shows sample anomalies from five different anomaly datasets.

of 16.6% annually during the period 2017 – 2025 [1]. According to Security Info

Watch, in just last five years data generated by security cameras has increased5

from 566 petabytes to 2,500 petabytes per day [2]. Another report by Google

and Smart Insights indicates, approximately one million hour of video (mostly

unlabeled) is uploaded on YouTube every day [3]. This indicates about the

availability of large chunks of unlabeled space-time data about crowd behavior.

This can be leveraged (for surveillance purposes) by means of low-shot learn-10

ing systems that do not require any supervision. Present surveillance systems

have human-in-the-loop and are limited by bio-mechanical constraints such as

fatigue and personal biases. For these reasons, Intelligent Surveillance Systems

(ISS) are required that can handle unstructured data, such as surveillance cam-

era streams or offline security scans, at high accuracy and reliability. Video15

Anomaly Recognition (VAR) is an integral task of any ISS and requires swift

recognition of mistrustful events [4, 5]. The purpose of a VAR model is to rec-

ognize outlier patterns like errant behavior or event (in videos) which do not

conform to normal pattern. An anomalous pattern is generally a rare event, it

may include (but not limited to) – accidents, stampedes, wrong driving, physi-20

cal fighting, other abnormal behaviors in public places (few samples are shown

in Fig. 1). Recognizing anomalies may have potential ramifications such as pre-

venting stampedes, intelligent human-machine interaction, old age health care,

defense reconnaissance, transportation systems and so forth.

There are no set definitions for anomalies. The propensity of anomalies being25

sparse and inauthentic, makes the annotation of anomalies challenging. Same

event might behave contradictorily under different contexts. For instance, rapid

traffic might be a normal event at cross-roads, however, same is not true for a
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peaceful public place. Owing to this, an unsupervised approach is more suitable

for handling anomalies. According to no-free-lunch theorem the teacher based30

techniques trained on a labeled dataset may not perform well on data from an

unseen distribution [6]. Suitability of unsupervised algorithms for unstructured

data is propelled by the existence of a huge variation in spatio-temporal data,

the space of labeling anomalies is immense, and an exhaustive training of a

supervised model is not possible. Also, the performance of an unsupervised35

system increases as more unlabeled data is supplied [7].

Conventional methods mainly capture the likelihood of stationarity of active

objects in the scene. For human feature extraction, it is observed that the

focus should be on essential elements in image sequences rather than on RGB

data, since it easily overfits to unessential elements [8]. We have observed that40

anomalies do not always come from distributions modeling humans rather they

can be due to other objects in the scene (as is evident in the experimented

datasets). Hence, a few object related representations cannot account for all

kinds of irregularities. On the other hand, the clustering algorithms cannot

be blamed for unaligned clusters, the major credit goes to the lack of suitable45

feature representations for the latent space. Here, motion can be used as a

strong prior for recognition tasks like segmentation, as shown by [9, 10]. Taking

cue from these observations, we pose VAR as finding irregularities based on the

geometry of motion streams. For this we have employed temporal derivatives

(which are indicators of temporal change in a scene) since they are sparse and50

locally continuous, and can be seen as trajectories in Riemannian space. Unlike

the conventional approaches for anomaly recognition, our approach does not

entirely depend on the dominant motion, which may suffer from perspective

distortions.

Our algorithm begins by pooling all image sequences. These are then pro-55

cessed by SuBSENSE foreground segmentation [11]. It uses local feedback loops

and adaptive sensitivity towards illumination variation. In another approach,

rather than extracting foreground we use deep optical flow from FlowNet2 [12].

Both, SuBSENSE and FlowNet2 provide the required temporal derivatives with
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respect to each image sequence from the pool. These are then split into smaller60

temporal segments. This process is visually explained in Fig. 3 in section

3. Each of these segments can be treated as a tensor of order three. These

tensors are then decomposed using factor-k flattening. Each such factor can

be represented as a point on a Grassmannian. Next, we take the product of

Grassmannians rather than using each Grassmannian in isolation. It has been65

observed that the product of Grassmannians provide better results than individ-

ual factor manifolds. Chordal distance is then employed to measure the geodesic

distances amongst different points on the product of Grassmannians [13]. Fol-

lowing this the similarity matrix, obtained from the pool of geodesic distances

amongst temporal segments, is then clustered using Minimum-Cluster-Variance70

(MCV) based Agglomerative Hierarchical Clustering (AHC). It produces sep-

arate clusters of anomalies from non-anomalies. This works good for offline

scenarios, where the entire data is available before clustering, however, in case

of responsive surveillance it is crucial to have an online processing system. To

this end, we present an unsupervised active learning approach, where we have75

weak-oracle which works on the basis of two parameters – β and γ as its con-

fidence measures. The key idea is to delay the clustering as long as possible

without compromising the confidence in clustering. Using this approach the

data is processed as it arrives. Based on separate approaches for extracting

temporal derivatives, we call SuBSENSE based approach – Unsupervised Seg-80

mentation (US), and FlowNet2 approach – Unsupervised Flow (UF). The results

are compared with state-of-the-art deep models and unsupervised approaches

for anomaly recognition. The main contribution of this work is listed below:

• To the best of our knowledge, we are the first to analyze the space-time

manifolds purely on the basis of temporal derivatives with multi-linear85

motion representations. It allowed us to assert that the quality of anomaly

recognition is not due to appearance or illumination rather owing to the

inherent motion biases.

• We have studied the challenges of anomaly recognition and formulated
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a simple yet generic approach for offline zero-shot anomaly recognition.90

Additionally, a novel unsupervised active learning approach is presented,

which takes help of weak oracles in order to lay down the context. This

extends our framework to online learning regime.

• We have conducted extensive empirical study with five publicly available

anomaly recognition benchmarks, having coarse-to-fine level of anomalies.95

Further, the robustness and genericity of the proposed technique is ex-

amined under variety of problem domains such as action recognition and

gesture analysis.

This paper is organized as follows – in section two, related work is provided.

Following this, section three presents methodology, where we discuss the details100

of the proposed offline and online approaches. Section four, covers the experi-

ments, results, ablations and analysis. Lastly, section five concludes this paper

along with future research directions.

2. Related Work

The features learned by unsupervised techniques are more generalizable [14].105

Bag-of-Visual Words (BoW) is a famous model and has surfaced in many zero-

shot classification works [14, 15, 16]. Wang et al. have used spatio-temporal

local features and have clustered them with k-means algorithm [14]. Similarly,

Niebles et al. have used generative modeling of spatio-temporal features [16].

Chen et al. have used force fields to model crowd behavior in terms of size,110

position and orientation [17].

The problem of abnormality recognition (VAR) is usually formalized as an

outlier recognition problem. An outlier can be detected based on the temporal

or spatial data. Some prior arts like [18, 19] have used raw optical flow, [20, 17]

have used pixel based approach, [21, 22, 23] have used particle based approach,115

[24, 25] have employed trajectory based representation to provide paramet-

ric and non-parametric solutions to VAR. These are sophisticated algorithms
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which are sensitive to either local-fluctuations (in appearance) or dominant

motion. However, deep learning (DL) approaches overcome these limitations

by automating feature discovery and transfer learning [26, 27]. Nonetheless,120

it is noticed that feature transferability does not often lead to improved per-

formance unless a model incorporates essential elements of representation [8].

Semi-supervised techniques have been proposed to leverage large unlabeled data

[5, 28, 29, 30, 31, 32], however, they still depend on large labeled datasets and

easily deviate with a concept drift [33, 34]. Additionally, they are a little tricky125

to train, which is not in the spirit of a generic solution. Our approach avoids this

by employing genericity of Riemannian structure without needing any labeled

data.

Few unsupervised non-visual anomaly recognition arts [35, 36, 28] have used

autoencoders for feature extraction. However, these cannot directly fit on to130

spatio-temporal data. Moreover, these do not define any trainable objective and

thus fail to extract differential representation for anomalies. To avoid this, weak-

supervision models based on representation learning have been proposed [5, 30].

Representation learning assumes that if the set of regular events is known a

priori then a generative or discriminative model can be trained. Generally, these135

models learn the latent space distribution of the regular events by minimizing

a reconstruction loss. Higher approximation error values indicate anomalous

event. These approaches get self-constrained by the a priori assumption on the

event distribution.

Sequential DL models like RNNs have been leveraged in an encoder-decoder140

fashion for learning representations and frame prediction [30, 31]. Yuan et al.

have shown how multiple LSTMs can be spatially stretched for analysis of het-

erogeneous input data [29]. Cho et al. have shown how a variational autoencoder

can model video latent space [31]. Many deep learning methods have been pro-

posed for solving VAR related problems [5, 37, 30, 4, 31, 32, 28]. However, the145

deep models suffer from class-imbalance since anomalies are very sparse and

spurious, and the use of binary labels for weak-supervision makes the system

not-fully-automated which leads to increased label bias [38].
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On the other hand, it has been proved that data for many vision problems lies

on low-dimensional manifolds [39]. For example, covariance matrix of an image150

lies as a point on a manifold of symmetric positive definite matrix. Similarly, an

image set can be considered as a point on a Grassmannian [40]. These manifolds

are generally structured using multilinear algebra. Multilinear algebra is used in

tensor decomposition for subspace analysis of factors and their interactions. In

this regard, many manifold learning strategies have been explored in the recent155

past for spectral decomposition of mode-2 or mode-3 tensors [41, 42, 43, 44].

Motivated by the above discussion, we pose VAR as finding irregularities

based on the geometry of motion streams. Our approach employs a Rieman-

nian metric for projecting the raw space-time data onto a manifold of temporal

derivatives that leverages the temporal shape of the objects which does not get160

captured by trajectory based approaches or raw flow analysis. This is explained

in detail in next section.

3. Approach

Our approach tries to solve the problem of video anomaly recognition (VAR)

in a zero-shot way. Given the openness of criteria for defining anomalies, it is165

generally harder to get appropriate representations. Even the supervised models

can not be trained exhaustively. In this situation one option is to use either few-

shot or a zero-shot learning model. This work proposes a data driven zero-shot

learning solution whose performance goes up as more and more data is added.

With the zero-shot models, representation of data is the key attribute in the170

context of learning. We have noticed that, clustering algorithms alone cannot

be blamed for unaligned clusters.

Anomalies are often a rare event. Anomaly agents leave peculiar marks in

the spatio-temporal space. Our idea is to discriminatively capture these marks

by leveraging the Riemannian structure present in their geometry. In such a175

setting the space-time anomalies can be seen as a trajectory on a non-linear

manifold. An image sequence can be seen as a 3D hyperplane with H,W, T

7



(a) Non-anomalous instance (b) Anomalous instance

Figure 2: Energy diagram showing 2D projection of temporal segments corresponding to two
different anomalous and non-anomalous instances.

representing the height, width, time axes respectively. The displacement of

each agent in the image sequence leads to the evolution of different geometric

structures in the hyperplane. In such a setting, each anomaly can be perceived180

to have individual geometry. This geometry is effected by the attributes of the

anomaly agent on the H,W, T axes in the hyperplane. For visually motivating

the reader, we have employed energy diagram (in Fig. 2) to capture the 2D

projection of the temporal-derivatives of the anomalous and non-anomalous

events in the 3D hyperplane. Fig. 2(a) and (b) illustrate the instance of non-185

anomalous and anomalous (a person riding a skating-board) events respectively.

The anomalous event has a different projection in comparison to the normal

event. The stretched out geometry of the person can be noticed in the 2D

projection of the anomalous event.

Similarity 
matrix

Temporal Segments Clusters
Temporal Derivatives

Factor Manifolds 
(M1...3)

Factor Manifolds 
(N1...3)

Product Manifold 
(GN)

Product Manifold 
(GM)

Chordal 
distance, dt1 tn

Figure 3: Framework for offline anomaly recognition.

Fig. 3 explains a high level working of the proposed approach for VAR.190

This approach requires the entire dataset to be available in advance for pro-

cessing it all in a single pass. Hence, it is termed offline-VAR approach. It

starts by creating a pool of image-sequences which are further processed to ex-
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tract the corresponding temporal derivatives with reduced spatial clutter. These

temporal-sequences are then broken down into smaller parts called temporal-195

segments or simply segments. Each segment is a mode-3 tensor. Corresponding

factors are obtained from the factor-3 flattenings of these tensors. These fac-

tor manifolds (M1···3) are multiplied to achieve a Product Manifold (PM), GM ,

which performs better than the individual factor manifolds. This process trans-

forms each segment into a point on a PM. Chordal distance [13], distchordal (in200

Eqn. (4)), is then employed as a geodesic measure between any two points to

form a similarity matrix. This similarity matrix is then clustered into groups,

each having points belonging to anomalous or normal event distributions. This

process is explained in detail in the next few sections. Proposed approach is

generic in the sense that it is data driven and has multiple application as demon-205

strated under section 4.5.

3.1. Grassmann manifold

Unlike many other manifolds which have intrinsic Riemannian structure,

Grassmann manifold (or Grassmannian) has been found to be the most suitable

representation for 3D tensors [45, 46]. Grassmannian is an abstract quotient210

manifold derived from Stiefel manifold, and is used to fit the orthogonality

constraints. A Grassmannian Gn,p with non-zero p and n such that n ≤ p

is the set of all n-dimensional linear subspaces of real p-dimensional space in

Rp. This forms a compact Riemannian manifold of n(p − n) dimension with a

homogeneous space isomorphism to O(p)/(O(n) × O(p − n)). Each point on a215

Grassmannian Gn,p is an n-dimensional linear subspace of Rp. It is spanned by

the linked orthogonal basis Y with dimensions p×n such that Y TY = In, with

In being an identity matrix with size n×n. There can be other orthogonal basis,

however, the selected basis matrix Y acts as the representative of the subspace

span (Y ). Any two points on a Grassmannian are considered equal if a p × p220

orthogonal linear transformation R maps one of these two points to the other

i.e. bRc = RQp : Qp ∈ Op, where the element bRc lies on a Grassmannian Gn,p
and Op is an orthogonal group.
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3.2. Geodesic similarity measure

Geodesic distance (GD) acts as the inter segment similarity measure between225

any two points on a Grassmannian. GD on a Grassmannian Gn,p between two

p-dimensional linear subspaces – P and Q in Rn can be characterized in multiple

ways, however, a well accepted norm is to use the canonical angles θ1, . . . , θm,

between the canonical vectors of the two subspaces. It can be computed recur-

sively as shown below:230

θk = max
x∈bPc,y∈bQc

cos−1(〈x, y〉) = cos−1(〈xk, yk〉) (1)

where 〈x, y〉 is the inner product between x and y. xk is the kth canonical

vector of the n-plane P and similarly yk is the kth canonical vector of the n-plane

Q subject to

〈x, x〉 = 〈y, y〉 = 1

〈x, xj〉 = 0, 〈y, yj〉 = 0, for 1 ≤ j ≤ k − 1235

Chordal distance is used as GD, since it is differential everywhere and works

best for Grassmannians [13]. It is defined as the L2-norm of the sine(s) of

the angles between the corresponding canonical vectors of the two points on a

Grassmannian as shown below:

distchordal(P,Q) = ‖ sin θ ‖2 (2)

Product manifold (PM). PM is a compound object in high dimensional space240

which is composed of factor manifolds (FM). To understand it better, lets con-

sider an example where we have two FMs. One is a line in R1 another is a circle

in R2. The PM of these two FM is an infinite cylinder in R3. In a similar way,

a PM represents the cross-section of its constituent FMs. A GPM is a PM of

Grassmann FMs. Lets consider M1,M2, . . . ,Mj be a set of Grassmann FMs.245

When the topology of this set is same as the product topology then it is called

10



a PM. For this set, the PM can be defined as:

M =M1 ×M2 × . . .×Mj (3)

where × represents the cartesian product. Our experiments revealed that

PM yields better performance than FMs. For this reason, all experiments (in

this work) have been carried out on GPM. GD on a PM M can be calculated250

as the cartesian product of the GDs on the FMsM1,M2, . . . ,Mj [45, 47]. For

two mode-n tensors S and T , GD on a PM can be computed as the chordal

distance with L2-norm of the component-wise sine function as shown below:

distchordal(S, T ) = ‖ sin Φ ‖2 (4)

where Φ = (Θ1,Θ2, . . . ,Θn), and the set of canonical angle Θk ∈ Mk is

separately calculated on each FM.255

.

Algorithm 1: Clustering anomalies on a Grassmannian

Input: Set D of all temporal segments
Output: Clusterer Ψ
foreach T ∈ D do
Ť ← temporal−derivative(T )
A(1), A(2), A(3) ← unfold 3 (Ť )

A(1), A(2), A(3) ← AT(1), A
T
(2), A

T
(3)

Š ×1 V
(1) ×2 V

(2) ×3 V
(3) ← hosvd(A(1), A(2), A(3))

P ←
{
V (1), V (2), V (3)

}
E← {P} ∪ E

end
Σi,j ← dist chordal (Pi,Pj) | ∀(Pi,Pj) ∈ E× E
Ψ← cluster(Σ)

3.3. Subspace representation of anomalies

As explained in Algorithm 1, the ith image-sequence ISi having frames

{f1, f2, . . . , fn} is divided into segment set D = {T1, T2, . . . , Tm}|m < n; with

each segment Ti having length 10 and overlap of 30% with Ti−1. Respective tem-260

poral derivative Ťi is obtained for each segment Ti ∈ D. Temporal derivatives

are obtained from SuBSENSE [11] and FlowNet2 [12] in the form of foreground

segmentation and deep optical flow respectively.
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Figure 4: Factor-k flattening of a three dimensional tensor.

Ťi is a mode-3 tensor, with dimensions H,W, T for height, width and time

respectively. It is decomposed into mode-k matrices – A(1), A(2), A(3), with di-265

mensions (T,HW ), (W,TH), (H,WT ) respectively, using factor-k flattening as

illustrated in Fig. 4. These matrices are decomposed into orthogonal matrices

– V (1), V (2), V (3) along the kth-axis, and one all-orthogonal core tensor Š, using

a higher order singular value decomposition (HOSVD), as described in Algo-

rithm 1. The subspaces defined by these orthogonal matrices can be treated as270

a point on a Grassmannian Gn,p. Thus, three points are obtained on three FMs,

each corresponding to an orthogonal matrix V (k). These FMs constitute a joint

representation, point P, on a GPM. All GPM points are collected in a set E. A

similarity matrix Σ is constructed with one entry per ordered pair of set E×E.

Distance between two segments (Ti, Tj) is equivalent to the chordal distance275

distchordal(Pi,Pj), between two corresponding points (Pi,Pj) on GPM. It is

formulated as the L2-norm of the component-wise sine(s) of the principal an-

gles between the column spaces spanned by the orthogonal matrices of the two

points, as laid out by Eqn. (4). All points in the set E are then clustered using

pairwise chordal distance and similarity matrix Σ.280

3.4. Clustering

For measuring the clustering accuracy, we have employed the concept of

cluster purity (accuracy). Conventionally the objective of a clustering algorithm

is to increase inter-class variance while keeping the intra-class variance as low

as possible. A transparent measure of clustering quality is cluster accuracy.285

Cluster accuracy η (ψk∈Ψ) of the cluster ψk belonging to clustered set (clusterer)

Ψ, having elements with different labels from label set L, is defined as the

12
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Figure 5: Effect of variation in cluster count on the performance of different clustering algo-
rithms. It can be seen that MCV criterion based approach performs best.

ratio of number of instances of the label in majority to the total number of

instances in that cluster, as shown by the Eqn. (5). Here, K is the maximum

number of clusters and J is the number of unique labels. The minimum accuracy290

happens when K = 1, in that case accuracy is the ratio of label having maximum

number of instances to the total number of instances. The maximum accuracy

is achieved when K = N , where N is the total number of instances.

L = {`1, `2, . . . , `J}; Ψ = {ψ1, ψ2, . . . , ψK}

η (Ψ∈ψk) = max
j
|ψk ∩ `j |/|ψk| (5)

where j = 1, 2, . . . , J and |·| denotes set cardinality.

Fig. 5 presents the comparison among the cluster accuracies of spectral,295

minimum spanning tree (MST), and three HCA algorithms (each having differ-

ent criteria viz. single connectivity, complete connectivity and minimum cluster

variance (MCV)). The fluctuation in cluster accuracy is plotted (on Y-axis)

with respect to variation in number of clusters used during clustering. Of all

the compared algorithms, MCV has shown the best results and hence it has300

been used for all further experiments.
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update(S, GFAR) 
for Ck

True

Figure 6: Framework for online anomaly recognition.

3.5. Online VAR

Thus far we have seen the working of offline VAR approach. It assumes entire

data to be available beforehand, however, this assumption cannot be satisfied

in situations where the data generation is a function of time. For example, in305

case of live surveillance, continuous steam of data is broadcasted and anomalies

are required to be detected as they appear in the scene. To this end, we have

designed an unsupervised active learning algorithm (Fig. 6) which leverages the

existing clustered data for assigning an incoming segment to a cluster.

.

Algorithm 2: Online anomaly recognition

Input: Point set E, GPM Point Pi ∈ E | Pi=̂ Temporal segment Ťi
initialize−params()
m← nearest−medoid(Pi) | m ∈ cluster ψk
if |ψk|≥ γ and dist chordal (Pi,m) ≤ β ∗ dist chordal (m,Pfar) then

assign(Pi → ψk)
find−medoid(ψk)
update(Pfar, ψk)

update(Σ,Pi, P̌) ∀ P̌ ∈ ψk
else

recluster(E)
end

310

Algorithm 2 describes the steps involved in online VAR. It begins by one-time

initialization with offline approach, on segment set D̃ | D̃ ⊂ D. This gives a point

set E, a similarity matrix Σ and clustered set or clusterer Ψ. After initialization,

medoids are found for each cluster in Ψ. Upon arrival of a new segment Ti, its315

temporal derivative Ťi is extracted. Tensor Ťi is then transformed into three

14



mode-k matrices with factor-k flattening. After decomposing these matrices

with HOSVD, a GPM point Pi is obtained using Eqn. (3). Two constants – γ

and β are maintained for every cluster in Ψ. These act as confidence measures

for the weak-oracle. γ is the minimum number of elements to be maintained320

by a cluster ψk. β ∈ (0, 1) is used for finding the maximum allowed chordal

distance between medoid m ∈ ψk and the GPM point Pi, beyond this distance

Pi is not assigned to ψk. If the cardinality of ψk, containing the nearest medoid

m of Pi, is not less than γ, and distance between Pi and m is not greater than

β times the distance between m and the farthest element Pfar ∈ ψk, then the325

oracle assigns the point Pi to ψk and updates the similarity matrix Σ and Pfar,

otherwise reclustering is done over the entire point set E including Pi. The

effect of choice of γ and β has been discussed in section 4.3.

4. Experiments

For comparison of our work with recent arts, we have selected three widely330

used deep-learning paradigms for video processing viz. Convolutional LSTM

(ConvLSTM) [5], 3D Convolutional Auto-Encoders (3DConvAE) [30] and Vari-

ational Auto-Encoders (VAE) [31]. These are selected for their novelty and

support for weak-supervision. Two methods with full supervision have also

been selected viz. MRF based probabilistic inference framework called MPPCA335

[19] and mixture of dynamic textures (MDT) [22]. The other two works – AMC

[17] and OADC [24] have been selected for their global feature based unsuper-

vised approach. Due to unavailability of code for these methods, we have used

an in-house implementation. In this section, we proceed by first presenting

VAR datasets, offline and online VAR results and related ablations, followed by340

results analysis and few applications.

4.1. Datasets

We have carefully selected five publicly available datasets in a fine to coarser

way, such that they cover both global and local anomalies. Additionally, we have
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(a) UCSD Ped 1 (b) UCSD Ped 2 (c) Caviar

Normal activity                    Abnormal activity

(d) UMN Crowd (e) UMN Web

Figure 7: Anomaly recognition standard datasets.

modified the caviar dataset by keeping anomaly related data such as fighting,345

slouching on the floor, idling, leaving objects and so on. Datasets used in our

experiments are presented in Fig. 7, each with few samples.

UMN Crowd dataset has three crowd escape scenes comprising of a total

7740 frames, with 1–3 scene-wise frame count as 1450, 4145, and 2145 respec-

tively. The videos start with a normal crowded situation and progresses into350

an abnormal crowd behavior in which the crowd escapes. UMN Web dataset

comprises of videos (collected from internet) corresponding to crowd in differ-

ent urban scenes. It contains 20 video clips from real life scenarios in which

there are eight panic escape scenes representing abnormal behavior like people

clashing, crowd fights and violent protests etc. and twelve video clips depict-355

ing normal crowd behavior scenes such as people walking or running. UMN

datasets were presented by Mehran et al. [48]. UCSD pedestrian dataset was

contributed by [21]. Normal behavior includes – pedestrians walking on the

pathways and no unusual activity is happening. Abnormal behavior includes –

pedestrians walking on surrounding grass, on wheelchairs, non-pedestrians such360
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(b) UMN Web
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Figure 8: Figure describes the effects on performance of the UF and US approach with respect
to variation in cluster count for the UMN Crowd, Web and Caviar datasets

as carts, bikers or skaters. Depending on the sites of recording, the dataset is

divided into – ‘Ped 1’ and ‘Ped 2’. Both jointly contain 50 training and 48

testing image-sequences of length 120-200, however, for our purpose we do not

require training set, hence, we have combined them. Each clip is 120-200 frames

long. Caviar dataset contains clips such as people meeting-and-splitting, people365

fighting, people slumping on ground.

4.2. Results: offline VAR

Cluster accuracy, as defined in section 3.4, refers to segment level accuracy.

Nonetheless, we have used frame level accuracy for comparison of the proposed

approach with other algorithms. Based on the kind of temporal approach used370

viz. foreground segmentation or deep optical flow, we have dubbed the two

proposed variants as US and UF respectively. All experiments have used images

of size 96×64 and a segment length of 10 with 30% overlap. TensorFlow parallel

processing framework has been used with a 1080Ti hardware.

Variation in cluster count. Although there are fixed anomaly kinds in the inves-375

tigated datasets which vary in the range of three to seven, we have considered

cluster accuracy plots to show – the effect of variation in number of clusters

used for clustering, on the cluster accuracy. Cluster accuracy plots provide use-

ful information about the sensitivity of the model to number of clusters. Cluster
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Figure 9: Figure describes the effects on performance of the proposed approaches with respect
to variation in cluster count for UCSD Ped1 and Ped2 datasets

accuracy plots for the US and UF approaches are reported in Fig. 8, 9. Seg-380

ment length for these experiments was kept ten. We can observe that in all of

the plots, performance of the UF approach is better than US. One reason for

this can be that the flow contains variable magnitude at each point in spatio-

temporal space than segmentation. It is also evident from the plots that the

clustering performance starts saturating as we increase the number of clusters385

on X-axis. In general, it can be observed that cluster accuracies are higher

for UMN dataset which contains global anomalies in comparison to UCSD and

Caviar datasets.

Variation in segment length. For the proposed approach, segment length plays

a significant role in controlling the temporal resolution. A smaller value of390

segment length may result in a shorter temporal context while local events

might get squished at larger scales. It was observed under the previous ablation

on cluster count and accuracy, UF approach works better than US. Keeping

this in mind we performed segment length ablations with UF approach. UMN

crowd dataset contains only three occasions of anomalous behavior, hence, it395

was merged with UMN web dataset for augmenting the overall size. Results on

segment length ablations are reported in Fig. 10a. Cluster accuracies of segment
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Figure 10: Experiments for ablation of segment length were carried on the whole UMN dataset
(crowd, web). Fig. (a) shows the performance of UF approach corresponding to segment
lengths – 10, 20, 30 and 60, along with variation in cluster count on X-axis. Fig. (b) shows
the effect of change in segment length on the prediction accuracies. It is observed that increase
in segment length results in marginal increment in cluster accuracy, on the contrary it leads
to significant decrease in frame level accuracy. This shows the suitability of segment length
ten in comparison to others.

lengths – 10, 20, 30 and 60 are plotted against different cluster counts for the UF

approach. It can be noticed that better cluster accuracy is achieved for a higher

segment length, however, the variance in cluster accuracies amongst different400

segment lengths is not very high. To investigate further, Fig. 10b reports the

effect of segment length variation on cluster and frame level accuracy for UF

approach at cluster count five. Here, it is clearly visible that as the segment

length increases, the cluster accuracy does not increase in-proportion. However,

the frame-level accuracy decreases significantly with increase in segment-length.405

This suggests that fine level discrimination reduces as we increase the segment

length.

FlowNet captures variable spatio-temporal magnitude of flow which is not

very good at the edges of a moving object, on the other side, SuBSENSE based

segmentation has crisp edges. This suggests that the information captured by410

the two approaches can be fused together. To explore this idea, we have em-

ployed conjunctive and disjunctive late-fusion approach. In the conjunctive

fusion, a frame is considered anomalous if both UF and US assign the corre-

sponding segment to a cluster with anomalous segments in majority, otherwise

19



Table 1: This table presents the accuracy (%) of proposed US and UF algorithms along with
their combinations (to observe their supplementary effects) on the anomaly recognition task
using the five datasets. Unsupervised learning types are marked with ‘U’. The conjunctive and
disjunctive compositions are marked with ∧ and ∨ respectively. Highest scores are marked in
bold.

Approach Learning UMN
crowd

UMN
web

UCSD
Ped1

UCSD
Ped2

Caviar

US ∧ UF U 46.20 40.51 33.93 34.61 26.43
US ∨ UF U 74.77 65.03 57.53 59.73 48.64
US U 82.72 74.75 69.18 72.67 65.86
UF U 87.81 81.35 75.54 79.16 67.73

Table 2: Table below summarizes the anomaly recognition performance of proposed UF
method in comparison to other arts, over five anomaly datasets in terms of accuracy (%).
Supervised, Weakly-Supervised and Unsupervised learning types are marked with ‘S’, ‘WS’
and ‘U’ respectively. Highest scores are marked in bold.

Approach Learning UMN
crowd

UMN
web

UCSD
Ped1

UCSD
Ped2

Caviar

VAE [31] WS 78.63 68.33 61.21 72.47 58.45
ConvLSTM [5] WS 84.14 70.81 64.73 75.56 63.17
3DConvAE [30] WS 80.23 72.14 71.87 67.58 61.21
MPPCA [19] S 72.83 63.36 58.55 67.40 51.42
MDT [22] S 88.59 76.71 72.69 74.15 59.09
AMC [17] U 86.06 74.51 49.73 53.32 36.52
OADC [24] U 83.19 71.16 59.43 65.78 46.26
UF U 87.81 81.35 75.54 79.16 67.73

it is considered normal. Contrary to this, disjunctive fusion means that a frame415

is considered anomalous if anyone among US or UF assigns the segment, corre-

sponding to the frame, to an anomalous cluster. The frame-level accuracies for

US and UF along with their late fusion schemes are summarized under Table

1. It can be noted that conjunctive scheme performs significantly low, whereas

disjunctive scheme performs slightly better. However, this plain fusion strat-420

egy does not explain the semantics behind low performance, our plan to extend

fusion is discussed in section 4.4 and 5.

Table 2 presents the frame level accuracy results of UF algorithm (at cluster

count five) in comparison to other arts. All compared algorithms have shown

roughly the same trend in their sensitivity towards the level of difficulty of the425
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Figure 11: Sensitivity and specificity plots for comparison of different approaches. Experi-
ments for UF approach were carried out with five clusters.

considered datasets. It can be observed in Table 2, in general, all methods

perform better on the UMN dataset than UCSD or Caviar dataset. Weakly

supervised deep learning methods (VAE, ConvLSTM, 3DConvAE) have shown

comparative performance across datasets. Of these three, ConvLSTM has shown

marginally better accuracy. MDT has shown better results than MPPCA, and430

has attained highest score on the UMN crowd dataset. OADC is implemented

without motion saliency as we think it interferes with natural motion by increas-

ing motion contrast irrespective of knowledge of kind of anomaly it handles. Due

to this OADC has performed better than AMC on local events and compara-

tively on global events. Amongst the unsupervised approaches UF performs best435

followed by OADC. AMC shows worst performance for the UCSD and Caviar

datasets due to its biases towards global events. Performance of the proposed

UF approach has been better than others over all datasets.

Fig. 11 reports the specificity and sensitivity plots of different algorithms.

Sensitivity measures the probability of an anomalous event being recognized as440

anomalous whereas specificity measures the probability of a normal event being

recognized as normal. It is evident from Fig. 11 that UF has better recognition

rates for both anomalies and normal events, whereas MPPCA and AMC have

the lowest average recognition rates for anomalies and normal events.

Fig. 12 presents UF clustering results on the UCSD Ped1 dataset, using445

five clusters. Each row belongs to a cluster and contains images corresponding
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Figure 12: Qualitative result of clustering with UF algorithm, for five number of clusters, is
shown for the UCSD Ped1 dataset. Five medoids are selected from each cluster. Anomalies
are encircled in red. It can be noticed that each cluster tries to capture a different situation
in the scene.

to five medoids from that cluster. Anomalies are marked in red. One can

observe that each cluster tries to identify different aspect of the scene. Anomalies

are concentrated towards the last three clusters while the first two clusters

capture the density of pedestrians. Cluster one has high pedestrian density450

and some anomalies as well. Cluster two has low pedestrian density a few

anomalies. Cluster three and four have bike and skating anomalies. Cluster five

has anomalies involving large size vehicle movement. Fig. 12 shows that each

cluster captures some specific kind of information about the scene.

4.3. Results: online VAR455

Online approach is suitable for streamed data. Out of the five anomaly

datasets, only UMN Crowd contains a long duration, continuous image-sequence

with anomaly instances. Online VAR cluster accuracy results, for US and UF

with five clusters on UMN Crowd dataset, are displayed in the Fig. 13a. For

online VAR experiment, the dataset was split with 70:30 proportion, where460

70% of the data was used for initializing the online approach with offline VAR

(as explained by Algorithm 2), and remaining 30% data was used to test the

performance of online approach. Segment length ten, with 30% overlap, was

used during all experiments.
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Figure 13: Fig. (a) shows how the clustering accuracy changes as new segments are added for
UMN crowd dataset. Fig. (b) reveals how the accuracy and the tendency to recluster varies
with modulation in β.

By the end of image-sequence stream, the online variant – US and UF reach465

almost same performance as their offline variants. Another important observa-

tion about the Fig. 13a hints at the data-driven nature of proposed approach as

the cluster accuracy increases with increase in data. Two important confidence

measures of the online approach are γ and β. γ is empirically determined as

ten. Ablations on β are explained next.470

Relation between accuracy and beta. Oracle uses β as a confidence measure to

decide the maximum allowed distance from the medoid of a cluster to a new

point, before assigning it to that cluster. The relationship of cluster accuracy

and frequency/tendency to recluster with respect to β is reported in Fig. 13b.

The plot contains normalized reclustering and accuracy scores. One can observe475

that frequency of reclustering is inversely proportional to β, which means that

for smaller values of β, reclustering often happens. Accuracy on the other

hand varies proportionately with β and beyond a point it varies inversely. This

fluctuation in accuracy creates a trade-off. We expect our approach to have

higher accuracy even if it incurs some reclustering. Owing to this reason β is480

set to 0.7 for all our experiments with online VAR.
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4.4. Results analysis and discussion

Through above experiments we found that in the absence of any supervision,

inherent biases in the data samples can lead to semantically pronounced clusters.

This makes the proposed approach very suitable for anomaly recognition and for485

other tasks that do not require any supervision. It was observed that anomalies

like people slumping on a floor have negligible temporal signatures and can

easily qualify as a normal event. We think that this can be mitigated by either

jointly modeling the spatial context with temporal derivatives or by introducing

weak binary supervision. It can be addressed in the future works.490

Performance scores from Table 2 indicate that datasets with global scale

anomalies have mean-accuracies – 82.68, 72.29; though, datasets with local level

anomalies have mean accuracies –64.21, 69.42, 55.48. It can be observed that

usually the anomalies at global scale are identified better than the anomalies at

local scale. This is also corroborated by sensitivity rates under Fig. 11a. We495

found that unlike methods which work well for global level anomalies such as

AMC, the proposed approach works well for both global and local kind of anoma-

lies. We found that the proposed approach has best sensitivity and specificity in

comparison to other approaches. The sensitivity scores are slightly higher than

corresponding specificity scores. This implies that the anomalies have higher500

recognition rates and are better discriminated than non-anomalous data.

Qualitative clustering results are being reported in Fig. 12. One can notice

that the anomalies are clustered towards the end while the first two clusters

contain non-anomalous pedestrian movements. However, it should be noted

that cluster one and two differ from each other in terms of population density.505

In Fig. 12, one may examine that the UF approach sometimes fails to distinguish

between the kind of anomaly such as bike or skating.

Due to uncertainty in the types and count of anomalies, we have assessed

the performance of proposed approach by clustering with different number of

clusters. It was discovered that the performance in cluster accuracy curves510

(Fig. 8, 9) normally saturates towards the end; this suggests that if we take

large enough clusters then most of the events can be categorized well. It is
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positive from the cluster accuracy curves that UF performs better than the US

approach. One reason for this could be the additional directional information

captured by the UF approach than US.515

It was observed in section 4.2, variation in segment length does not affect

the cluster accuracy, however, frame level accuracy is affected by it. Owing

to this deduction, segment length of ten was used across all experiments. In

order to enable the proposed approach for streamed data, online UF approach

was proposed. Performance of the online approach was found equivalent to520

the offline approach. Online approach was found to improve its performance

when number of segments were increased with time. These observations make

the online approach a suitable candidate for VAR in online scenarios. Online

approach depends on its confidence measure β. We observed that higher values

of beta resulted in low reclustering rates and better accuracies.525

US and UF variants of the proposed approach were combined in a late fusion

manner to gauge their effectiveness to complement each other. However, as the

results revealed in Table 1, this strategy was not successful. Other direction

could be to have feature level fusion of the two variants, however, this may

prove challenging due to zero-shot learning nature of the algorithms. Further-530

more, the performance of the proposed technique can be enhanced by having a

hierarchical deep learning model for fusion of manifolds with different segment

lengths. Such a model can leverage a variational auto-encoder approach in hi-

erarchical manner for combining long and short term temporal contexts. This

can help in alleviation of decline in frame-level performance by providing finer535

temporal resolutions.

For the sake of analyzing the generalization ability of the proposed approach,

we have experimented on a few similar problems like nearest-neighbor retrieval,

action and gesture recognition. This is covered in the next section.

4.5. Applications540

In the previous sections we have seen that the proposed approach works well

for VAR. In this section we evaluate the performance of the proposed approach,
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Figure 14: ROC curve for nearest-neighbor based anomalous event retrieval on the whole
UMN dataset (crowd, web). AUC values are listed in the legend for each algorithm.

in the context of VAR related problems, to test its suitability for other applica-

tions. More specifically, we have considered the task of media retrieval, action

recognition and gesture recognition.545

4.5.1. Nearest-neighbor retrieval of events

With a view to measure the quality of representations learned by different

techniques we have designed a label based, query-by-example nearest-neighbor

retrieval (NNR) task. Given a query frame fi, at time step i, with database

index id(fi) which belongs to class class(fi) (either normal or anomalous), the550

task of NNR is to retrieve another frame fj from the retrieval database Dbase

such that id(fj) = argminfk∈Dbase(dist(fi, fk)). If class(fi) = class(fj), the

retrieval is considered as true positive. Whole UMN dataset (crowd, web) is

considered for NNR task. The joint dataset is split into two disjoint sets S90

and S10 with 90:10 proportion. Set S90 is used for constructing Dbase, set S10555

is used for query generation. None of the query frames fi ∈ S10 is indexed in

database Dbase.

During NNR task, frame level accuracies are considered and results are evalu-

ated with qualitative and quantitative approach. Fig. 14 shows the quantitative

results with Receiver Operating Characteristic (ROC) curves along with Area560
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Figure 15: Retrieval results corresponding to query by example queries. Top row contains
four different queries, other rows contain unsupervised and semi-supervised retrieval results.
Each query is complemented by two adjacent results, displayed in front of the corresponding
algorithm name.
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Figure 16: Dataset samples are shown in this figure. (a) Weizmann and (c) KTH are used for
action recognition task. (b) Cambridge gesture dataset contains nine classes.

Under Curve (AUC) measure. Proposed approach has the highest AUC value,

followed by MDT. The qualitative results are presented in Fig. 15. Each row

shows the two retrieved nearest-neighbors of a query. We find that our method

outperforms the other arts due to the GPM representation.

4.5.2. Action and gesture recognition565

Other two closely related tasks considered under applications are action

recognition and gesture recognition. We have used KTH and Weizmann datasets,

having six and ten human action classes respectively. Classwise dataset samples

are shown in the Fig. 16. Cambridge gesture data set has nine hand gesture

types depending on rotation and finger pose.570

Experiments have been performed with the proposed offline approach and

cluster accuracy was observed with respect to given number of classes per

dataset. Recognition accuracy values for action dataset are reported through
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Table 3: Accuracy of action recognition on KTH dataset, comparison with other arts. Super-
vised and Unsupervised learning types are marked with ‘S’ and ‘U’ respectively.

Approach Learning Accuracy (%)

Dollar et al. [49] S 81.1
Schuldt et al. [50] S 71.7
Ke et al. [51] S 63.0
Kim et al. [52] S 90.0
STIP [53] S 87.0
STW [16] U 83.0
Niebles et al. [54] U 83.3
UF U 93.6

Table 4: Accuracy of action recognition on Weizmann dataset, comparison with other arts.
Supervised and Unsupervised learning types are marked with ‘S’ and ‘U’ respectively..

Approach Learning Accuracy (%)

Scovanner et al. [55] S 82.8
Kellokumpu et al. [56] S 95.7
Wang et al. [57] S 97.8
Niebles et al. [54] U 72.0
UF U 94.6

Table 3 and 4. Gesture recognition accuracies are reported in Table 5. Confu-

sion matrices are provided for classwise recognition scores, for each of the three575

datasets in Fig. 17. We find that the performance of proposed approach is com-

parable to other supervised and unsupervised works. Consistent performance

of the proposed approach across different multiclass applications demonstrates

that the proposed approach is not biased towards anomaly related binary recog-

nition tasks.580

5. Conclusions and future work

In this work, a zero-shot learning approach for anomaly recognition is pro-

posed by modeling the temporal derivatives as trajectory on Grassmann Prod-

uct Manifold (GPM). GPM is leveraged for discriminative representations and

less room for design choices. Video anomaly recognition problem is comprehen-585

sively studied in terms of coarse-to-fine scale anomalies on five publicly available
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Table 5: Accuracy of gesture recognition on Cambridge gesture dataset, comparison with other
arts. Supervised and Unsupervised learning types are marked with ‘S’ and ‘U’ respectively..

Approach Learning Accuracy (%)

Kim et al. [58] S 81.5
Hu et al. [59] S 80.8
Yan et al. [60] S 78.8
Gu et al. [61] S 77.6
Qiao et al. [62] S 76.0
Wong et al. [63] S 83.5
STW [16] U 70.2
UF U 81.9
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Figure 17: Per class recognition scores are reported with the help of confusion matrix for
action and gesture datasets.

datasets.

Additionally, an online variant is proposed for adapting the offline model

to streamed data. For this, a modified version of active learning is presented

where we have a weak oracle which uses confidence measures to take decisions590

without any help from a strong learner. Performance of the online approach is

found comparable to the offline approach. We found that the ability to lever-

age the inherent bias in the data samples makes the proposed approach very

suitable for anomaly recognition task. The genericity of the proposed approach

is further validated over other multiclass recognition tasks. Despite using any595

label information, the overall performance of the proposed zero-shot approach

is found comparable to other supervised or weakly-supervised works.

We observed that most of the approaches performed well for the UMN
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dataset, however, all approaches had significantly low performance on Caviar

dataset. One reason for this could be the inclusion of spatio-temporal stag-600

nation of objects in the anomaly events and complex multiperson interactions.

Few late fusion strategies have also been explored, however, the fusion showed

significant drop in performance. This revealed the need for further exploration

in the direction of early and feature level fusion schemes. We plan to address

these issues in future. We also plan to adapt the proposed work with other ap-605

plications such as video summarization, content based spatio-temporal search,

automatic concept discovery. Our future work involves exploring metrics on

GPMs with emphasis on large-scale complex human to human interactions.
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