
P
os
te
d
on

29
J
u
n
20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
25
78
71
4
.v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
ot

b
..
.

A Study of Software Testing: Categories, Levels, Techniques, and

Types

Mubarak Albarka Umar 1

1Changchun University of Science and Technology

October 30, 2023

Abstract

Software Testing is the process of evaluating a software program to ensure that it performs its intended purpose. Software

testing verifies the safety, reliability, and correct working of software. The growing need for quality software makes software

testing a crucial stage in Software Development Lifecycle. There are many methods of testing software, however, the choice

of method to test a given software remains a major problem in software testing. Although, it is often impossible to find all

errors in software, employing the right combination of methods will make software testing efficient and successful. Knowing

these software testing methods is the key to making the right selection. This paper presents a comprehensive study of software

testing methods. An explanation of Testing Categories was presented first, followed by Testing Levels (and their comparison),

then Testing Techniques (and their comparison). For each Testing Levels and Testing Techniques, examples of some testing

types and their pros and cons were given with a brief explanation of some of the important testing types. Furthermore, a clear

and distinguishable explanation of two confused and contradictory terms (Verification and Validation) and how they relate to

Software Quality was provided.

1

 1

A Study of Software Testing: Categories, Levels, Techniques, and
Types

Mubarak Albarka Umar

School of Computer Science and Technology,
Changchun University of Science and Technology,

7186 Weixing Road, Jilin, China
Email: 2018300037@mails.cust.edu.cn

ABSTRACT
Software Testing is the process of evaluating a software program to ensure that it performs its intended purpose.
Software testing verifies the safety, reliability, and correct working of software. The growing need for quality
software makes software testing a crucial stage in Software Development Lifecycle. There are many methods of
testing software, however, the choice of method to test a given software remains a major problem in software
testing. Although, it is often impossible to find all errors in software, employing the right combination of methods
will make software testing efficient and successful. Knowing these software testing methods is the key to making
the right selection. This paper presents a comprehensive study of software testing methods. An explanation of
Testing Categories was presented first, followed by Testing Levels (and their comparison), then Testing
Techniques (and their comparison). For each Testing Levels and Testing Techniques, examples of some testing
types and their pros and cons were given with a brief explanation of some of the important testing types.
Furthermore, a clear and distinguishable explanation of two confused and contradictory terms (Verification and
Validation) and how they relate to Software Quality was provided.

Keywords: Software Testing, Testing Categories, Testing Levels, Testing Techniques, Testing Types, Software
Quality, Verification and Validation.

1. INTRODUCTION
Software testing is an integral phase in Software Development Life Cycle (SDLC) process [1], it involves many
technical and non-technical aspects (such as specification, design, implementation, installation, maintenance and
management issues) in software engineering [2]. Around 50% of software projects’ development time and effort
are put in software testing [3], [4], [2]. Software testing is defined as the process of evaluating a software program
with the intent of finding fault or errors in software. Testing is done to; ensure that a software performs its intended
purpose correctly [3], access, achieve and preserve quality of a software [4], [5], and thereby verify that the
software is fit for use [2]. In SDLC, a software is not considered finished until it has passed its testing [6] and the
earlier an error is detected, the cheaper it is to fix it. The overall purpose of testing is not to demonstrate that
software is free of errors but to give confidence that the software is working well before installation.

The “software we write [develop] today potentially touches millions of people” [3] across various walks of life
and has become an integral part of our routines, this indicates the need for safe and reliable software.
Unfortunately, humans are prone to err, and so the fundamental facts of humans’ core involvement in software
development makes errors an inevitable inclusion in a software [4]. Software errors (bugs) can cause serious effects
in live operation [4] and even death [7]. It is important to treat such errors early because they get costlier with
progress in the development phase. For instance; a report released by the National Institute of Standards and
Technology (NIST) estimated that software bugs are costing the USA economy $59.5 billion annually [8], Jones
also highlighted in his survey [9] that $500 billion is lost annually due to poor software quality and the cost be
reduced through testing the software. The eminent and massive effects of software bugs cannot be overestimated
and hence, the need for software to be tested before delivered.

In the context of Software Quality, Verification and Validation (V&V) are often confusing terms. However, testing
help in achieving quality software through Verification and Validation (V&V) methods. Verification is a Quality
Control (QC) process that is concerned about building the software right, and Validation is a Quality Assurance
(QA) process that is concerned with building the right software. Thus, Verification checks the conformity to the
standard of software by verifying the correctness of one life cycle’s deliverable transformation to the next while
Validation checks back against the requirements of the customers. Verification is an internal process which
involves set of activities to ensure that software correctly implements specific functions, it is usually done by the
development team while, Validation requires some external process and involves set of activities to ensure that
the developed software is traceable to customer requirements [10], its mostly done with the stakeholders to provide
degree of software assurance. Verification usually begins before Validation and then they run in parallel until the
release of the software. The use of V&V methods during software development helps in early detection of error,
and hence, it can be fixed at a low cost [4].

 2

There are two testing categories (approaches): Static and Dynamic [2], [11], [12]. There are generally three main
software testing techniques which are all under dynamic testing approach [12]: White-box, Black-box and Grey-
box testing [13], [14], [15]; each of the dynamic testing can be performed at different testing levels and they
comprise of several types of testing. There are four general software testing levels: unit testing, integration testing,
system testing, and acceptance testing [6], [2], [14],[16] and various types of testing comes under these levels [17].

The remaining part of this paper is organized as follows; Section Two presents the software testing approaches,
followed by software testing levels, how they relate to the SDLC process, and their comparison in Section Three.
Then in Section Four software testing techniques were thoroughly discussed, their comparison was also provided.
Section Five provided a brief explanation of some of the most important types of testing and finally, conclusion
was made in Section Six.

2. TESTING CATEGORIES (APPROACHES)
Static and Dynamic testing are the two testing approaches that are occasionally inseparable, but are mostly
discussed separately [2]. The Static testing approach is done without executing the program and is called
“verification activities”, while the Dynamic testing approach involves executing the program with real inputs,
most of the current literature refer to the dynamic testing as “testing” [11].
Static Testing Approach: involves source code only and it deals with program and symbolic analysis, model
checking, error handling, and code inspection to ensure functional requirements, design and coding standards are
observed and estimate software quality without any reference to actual executions [2]. Desk checking, Code
walkthrough, and Formal inspections are the commonly used techniques here [18], [19].
Dynamic Testing Approach: involves actual code executions [11] to ascertain and/or approximate software quality
and it deals with a combination of inputs, use of structurally dictated testing procedures, and automation of testing
environment generation [2] to test the internal design of software. Most of the testing we perform are in this
category as seen in Figure 1.

Figure 1: Software Testing Categories

3. SOFTWARE TESTING LEVELS

Unit testing: This testing emphases on individual unit or module in isolation. It is a testing in which the smallest
testable portion of a software is tested to verify its functionality against its specification. The unit can be a
constructor or destructor at class level in object-oriented environment [20] and a structure in procedural
programming paradigm. Control-flow testing and data flow testing are some of the types of Unit testing. Unit
testing is usually done by developers [6].

 3

Integration Testing: involves testing two or more combined units that must work together to ensure an error-free
flow of control and data (such as consistency of parameters, file format and soon) among combined units and their
overall correct design and integration. User interface, use-case, interaction, and big bang (integrate and test all
modules at once) are some of integration testing types. This kind of testing is performed by testers [6].
System Testing: involves testing an integrated complete software to check against its compliance with its
requirements. It verifies the overall interaction of components to ensure unanimous working of all modules and
programs without error. It involves various types of both functional (tests functionality of software) testing and
non-functional (tests quality of software) testing such as performance, reliability, usability, and security testing.
System testing is performed by the testing team [6].
Acceptance Testing: This testing is performed to validates the software against customer requirements. This
testing is done to ensure that the software does what the customer wants it to do and check the acceptability of the
system. User Acceptance Testing (UAT), as sometimes called, comprises of two testing types: Alpha testing: is a
testing performed by both development team and users using made-up data, and Beta testing in which users start
using the software with real data and carefully observer the software for errors [6].

Figure 2: Software Testing Levels

Table 1: The Software Testing Levels compared [12].
Criteria Unit Integration System Acceptance

Purpose Correct working of
unit/module

Correct working
of integrated units

Whole system works
well when integrated

Customer’s
expectations are met

Focus Smallest testable part
Interface and
interaction of

modules

Interaction and
working of all
modules as one

Software working in
accordance with given

specifications

Testing time Once new code is
written

Once new
components are

added

Once software is
complete

Once software is
operationally ready

Performed by Developer Development
team Testing team Development team and

End-users
Testing

techniques
Usually Whitebox,

and Greybox
Whitebox, and

Blackbox
Usually Blackbox,

and Greybox Black-box testing

Automation
Automatable using

JUnit, PHPUnit,
TestNG etc.

Automatable
using Soap UI,
Rest Client etc.

Automatable using
Webdriver

Automatable using
Cucumber

Scaffolding Complex (require
drivers and/or stubs)

Moderate (may
require drivers
and/or stubs)

No drivers/stubs
required

No drivers/stubs
required

4. SOFTWARE TESTING TECHNIQUES

These are the various techniques that are used in testing software to ensure it performs as expected. Testing
techniques specifies the strategy used in developing test cases for conducting the testing and in analyzing test
results [2] while increasing test coverage (since exhaustive testing is not possible) to achieve more effective testing.
They help identify test conditions that are otherwise difficult to recognize. There are several testing techniques
with each technique covering different aspects of software to reveal its quality. Utilizing all the testing techniques
in testing a given software is not possible, but the tester can select and use more than one technique depending on
the testing requirements, software type, budget and time constraint. The higher the number of testing techniques
combines, the better the testing result, coverage and quality [21]. There are three essential testing techniques [13]:
White-box, Black-box, and Grey-box testing.

 4

Figure 3: Software Testing Techniques

4.1. WHITE-BOX TESTING
This is a testing technique in which internal structure and implementation of software being tested are known to
tester. In white box testing, full knowledge of source code is required because test cases selection is grounded on
implementation of the software entity; internal view of the system, and tester’s programming skills are used to
design test cases [18]. Tester selects inputs to exercise program paths and compare the output with the expected
output. White-box testing is also called Structural, Transparent Box, Glass Box, Clear Box, Logic Driven, Open
Box Testing. White-box testing, although usually done at unit level, is also performed at integration and system
levels of software testing process [13]. Some white-box testing types include: Control Flow, Data flow, Branch,
Loop, Path Testing [13]. Some commonly used structural testing types are discussed below.

Figure 4: White-box Testing [22]

Table 2: Pros and Cons of White-box Testing

Advantages Disadvantages
Code optimization can be performed Specialized tools are required such as debugging

tools and code analyzers.
Easy to identify data and cover more test cases due
to tester’s knowledge of the code.

It’s often expensive and difficult to maintain

Errors in hidden codes are revealed Impossible to find and test all the hidden error and
deal with them without going out of time

 5

SOME COMMON WHITE-BOX TESTING TYPES
4.1.1. CONTROL-FLOW TESTING

Control flow testing is a type of white-box testing in which control flow graph (CFG) paths, nodes and conditions
are selected, test cases are written for executing these paths, and each path, node or statements are traversed at
least once to check the flow of control and determine order of execution. By examining the control structure, tester
can select and design test cases [23]. Typically, a test case is an entire path from entry to exit nodes of the CFG.
The selected set of paths is used to achieve a certain degree of testing thoroughness. Control-flow testing is most
applicable to new software for unit testing [24].

A typical CFG of a program comprises of a set of nodes and edge, with each node representing a set of statements.
There are five types of CFG nodes, viz.: unique entry and exit nodes, decision node (containing conditional
statement that can have minimum of 2 control branches (such as switch or if statements)), then merge node (which
mostly represent a point where multiple control branches merge), and statement node having a sequence of
statements. The control must flow from the first statement and exit from the last statement, and the CFG may have
an additional edge between nodes for the reverse order flow of control (i.e. from the last to the first statement)
[25]. There are several conventions for flow graph models with subtle differences (e.g., hierarchical CFGs,
concurrent CFGs). Control-flow testing support the following test coverage criteria [25]:

• Statement/Node Coverage: Executes each statement in the program at least once
• Edge Coverage: Executes each statement in the program at least once using all possible outcomes at least

once on every decision in the program.
• Condition Coverage: Executes each statement in the program at least once using all possible outcomes at

least once on every condition in each decision.
• Path Coverage: Executes each complete path in the program at least once. Except for loops, which usually

has an infinite number of complete paths.
Table 3: Pros and Cons of Control-Flow Testing

Advantages Disadvantages
Catches 50% of all bugs caught during unit testing [24] Cannot detected specification errors as well as

Interface mismatches and mistakes
Very effective testing method for code that follows
unstructured programming

Cannot catch all initialization mistakes

Enable experienced testers to bypass drawing CFG by
doing path selection on the source

Time consuming and required programing
knowledge

4.1.2. DATA FLOW TESTING

Data-flow testing is a type of white-box testing in which Control flow graph (CFG) paths are used to detect
inappropriate definition or usage of data in predicates, computations, and termination (killing). It examines patterns
in which a piece of data is used to identifies potential bugs [23]. Data flow testing searches for the unreasonable
things that can happen to data. Data flow anomalies are identified based on the associations between variables and
values (unused initialized variables or uninitialized used variables). Data flow testing focuses on variables
definition, use occurrence, and both predicate and computational use at different points within the program. There
are two main data flow testing forms:: (1) define/use testing, uses some simple rules and test coverage metrics; (2)
program slices - uses segments of a program [26]. Data flow testing uses the following Test Coverage Criteria in
creating test cases for the test [23]:

• All-defs (AD) coverage: Has a path from every definition to at least one use of that definition
• All-uses (AU) coverage: For every use of variable, there is atleast one path from the definition to its use.
• All-c-uses (ACU) coverage: For every variable, there is a path from each of its definition to each of its c-

use. Any defined variable with no subsequent c-use is dropped from contention.
• All-c-uses/some-p-uses (ACU+P) coverage: For every variable, there is a path from each of its definition

to each of its c-use. If there is any defined variable with no c-use following it, then p-use is considered.
• All-p-uses (APU) coverage: For every variable, there is a path from each of its definition to each of its p-

use Any defined variable with no subsequent p-use is dropped from contention.
• All-p-uses/some-c-uses (APU+C) coverage: For every variable, there is a path from each of its definition

to each of its p-use. If there is any defined variable with no p-use following it, then c-use is considered.
• All-du-paths (ADUP) coverage: For each def-use pair, all paths between definitions and uses must be

covered. It is the strongest data-flow testing strategy since it is a superset of all other data flow testing
strategies. Moreover, this strategy requires greatest number of paths for testing.

 6

Table 4: Pros and Cons of Data-Flow Testing

Advantage Disadvantage
Can define intermediary Control flow analysis criteria
between all-nodes and all-paths testing

Unscalable Data-Flow Analysis algorithm for large
real-world programs

Handles variable definition and usage Test case design difficulties compared with control
flow testing.

It spans the gap between all paths and branch testing Infeasible test objectives which might lead to wastage
of time on testing in vain [27].

Identify multiple variable declarations Can have an infinite number of paths due to loops

4.2. BLACK-BOX TESTING
This is a software testing technique in which the internal structure/ implementation of software being tested is not
known to the tester. It can be functional (such as integration testing) or non-functional (such as performance
testing), though usually functional. Test cases are built around requirement specifications. In Black-box testing,
emphasis is given on evaluating fundamental aspects of software using thorough test cases, and generally, on
maintaining the integrity of external information [13]. For a given test case, tester verifies proper acceptance of
inputs and correct production of outputs against test oracle. This testing can be applied at all levels of software
testing processes such as Unit, Integration, System and Acceptance Testing levels, although done mostly on
System testing and Integration testing. Black-box testing is also called Opaque, Functional, Specification-based,
Close-box, Behavioral, and Input-Output testing. Some Black-box testing types include: Equivalence Partitioning,
Cause-Effect Graph, Fuzzing, Boundary Value Analysis, Decision Table, State Transition, Orthogonal Array, and
All Pair Testing [22]. Some common black-box testing types are discussed below.

Figure 5: Black-box Testing [22]

Table 5: Pros and Cons of Black-box Testing

Advantages Disadvantages
Code knowledge is not required, tester’s perception
is very simple

Limited coverage, few test scenarios are
designed/performed.

User’s and developer’s view are clearly separate Some parts of the backend are not tested at all.

Access to code is unrequired, quicker test case
development

Inefficient testing due to the limited knowledge of
code possess by tester.

Efficient and suitable for large parts of code Test cases are difficult to design without clear
specification

SOME COMMON BLACK-BOX TESTING TYPES

4.2.1. EQUIVALENCE PARTITIONING TESTING (EP)
The testing technique of dividing input domain of a program into different equivalence classes to reduce the
number of test cases. One element from each equivalence class (EC) is then selected as test cases. This method is
used to avoid test redundancy and give a sense of complete testing. EC Testing can be weak or strong. In Weak
Equivalence Class Testing (WECT), number of test cases is defined by chosen one variable value from each
equivalence class and then taking the maximum value from the chosen variables, while test cases in Strong
Equivalence Class Testing (SECT) is based on cartesian product of partition class, i.e., testing all interactions of
all equivalence classes [28].

 7

Table 6: Pros and Cons of Equivalence Partitioning Testing

Advantages Disadvantages
Provide sense of complete testing and eradicates the
need for exhaustive testing

Suitable only for range-wise and discrete values input
data

Enables large domain of inputs or outputs coverage
with a smaller subset selected from an equivalence
class

Assumes that the data in the same equivalence class is
processed in the same way by the system

Avoid test redundancy by selecting a subset of test
inputs from each class.

Can’t handle boundary value errors. Need to be
supplemented by boundary value analysis

4.2.2. BOUNDARY VALUE ANALYSIS TESTING (BVA)

This is a black box test selection technique that aims at finding software errors at boundaries of equivalence classes.
Unlike the Equivalence Partitioning technique (uses only input domain), BVA uses both input and output domains
in creating test cases. BVA complements EP in such that while EP selects tests from within equivalence classes,
BVA focuses on tests at and near the boundaries of equivalence classes [28]. Tests derived using either of the two
techniques may overlap.
Table 7: Pros and Cons of Boundary Value Analysis Testing

Advantages Disadvantages
Complements Equivalence Partitioning testing by
handling equivalence class boundary errors.

Generate high number of test cases

Works well with variables that represent bounded
physical quantities

Can’t be used for Boolean and logical variables

Can be used at unit, integration, system and
acceptance test levels

Function nature and variable meaning are not
considered

Computationally less costly in creating test cases Not that useful for strongly-typed languages

4.3. GREY-BOX TESTING
Grey-box (translucent) testing technique that takes the straightforward technique of black-box testing and
combines it with the code-targeted systems in white-box testing. Some knowledge of the internal working of the
software is required (usually of the part to be tested) in designing tests at black-box level. More understanding of
internals of software is required in grey-box testing than in black box testing, but less compared to white box
testing [13]. Gray box testing is much more effective in integration testing and is best approach for functional or
domain testing, also a perfect fit for Web-based applications [29]. Some grey-box testing types include: Orthogonal
Array, Regression, Pattern and Matrix Testing. Some of these testing are discussed.

Figure 6: Grey-box Testing [22]

Table 8: Pros and Cons of Grey-box Testing

Advantages Disadvantages
Provides combined benefits of both white-box and
black-box testing

Complete white-box testing cannot be done due to
inaccessible source code/binaries

Can handle design of complex test scenario more
intelligently

Defect association is difficult in distributed systems.

Maintain boundary between independent testers and
developers

Gray box testing is not suitable for algorithm testing.

 8

SOME COMMON GREY-BOX TESTING TYPES
4.3.1. REGRESSION TESTING

Regression testing is a grey-box testing strategy that is performed every time changes are made to the software to
ensure that the changes behave as intended and that the unchanged part is not negatively affected by the
modification. Errors that occurred at unchanged parts of software are called regression errors. Regression testing
starts with a (possibly modified) specification, a modified program, and an old test plan (which requires updating)
[30].
Table 9: Pros and Cons of Regression Testing

Advantages Disadvantages
Tests can be automated thereby saving time and
improving quality of software.

Tedious and time consuming if done without
automated tools

It ensures that a fix doesn't adversely affect the
working functionality.

Testing is required even on making slight changes to
program

Improves and maintain software quality One of the main causes of software maintenance
expensiveness.

4.3.2. ORTHOGONAL ARRAY TESTING (OAT)

This is a type of testing that uses pair-wise combinations of data or entities as test input parameters to increase the
scope. The selected pairs of parameters should be independent of one another. OAT is handy when maximum
coverage is required with minimum test cases and a huge number of test data having many permutations and
combinations. It’s extremely valuable for testing complex applications and e-comm products [31].
Table 10: Pros and Cons of Orthogonal Array Testing (OAT)

Advantages Disadvantages
Test pair-wise combinations of all the selected
variables

Increase in Test case complexity as input data
increases

Creates fewer Test cases which cover the testing of all
the combination of all variables.

Tedious and time consuming if done manually.

Improves productivity because of reduced test cycles
and testing times.

COMPARISON OF SOFTWARE TESTING TECHNIQUES
There is no one particular technique that is better, however, depending on the testing requirements and needs
one technique can have some advantages over others and vice. In testing any software, exploring and
combining many testing techniques helps in eliminating more bugs thereby increasing the overall quality of
the software than sticking to one technique. The table below presents comparisons of the three discussed
testing techniques using some criteria.
Table 11: Comparison of Testing Techniques

Criteria White-box Black-box Grey-box
Required
knowledge

Full knowledge of internal
working of software.

Knowledge of internal
working of software is not
required.

Limited knowledge of the
internal workings of software.

Performed by Usually testers and
developers.

End-users, developers, and
testers

End-users, developers, and
testers

Testing focus Internal workings, coding
structure, and flow of data
and control.

Evaluating fundamental
aspects of the software

High-level database diagrams
and data flow diagrams.

Granularity High Low Medium
Time
consumption

Very exhaustive and time-
consuming

Exhaustive and the least
time-consuming.

Partly time-consuming and
exhaustive.

Data domain
testing

Data domains and internal
boundaries can be better
tested.

Can be performed through
trial-and-error method.

Can be done on identified
Data domains and internal
boundaries

Algorithm
testing

Suitable for testing
algorithms.

Unsuitable for testing
algorithm.

Inappropriate for testing
algorithms.

Also known as Transparent-box, Open-box,
Logic-driven, or code-based
testing.

Closed-box, data-driven,
functional, or Specification-
based testing.

Translucent testing

 9

5. SOFTWARE TESTING TYPES
Testing Types: are the various testing that are performed at a particular test level based on a proper test technique
to address testing requirements in the most effective manner [12]. There are many types of testing each serving
different purposes. In a survey conducted by International Software Testing Qualifications Board (ISTQB) [32],
some of the most important types of testing are:
Table 12: Software Testing Types

Testing Type Object Technique Type Testing Level
Functional Testing Test functions of software Blackbox testing Acceptance

and System level
Performance Testing Testing software responsiveness

and stability under a particular
workload

Blackbox testing Any level

Security Testing Protect data and maintain
software functionality

Whitebox testing Any Level

Usability Testing Check ease of use of software Blackbox testing Acceptance
and System level

Use case Testing Checking that path used by user
is working as intended

Blackbox testing Acceptance, System
and Integration level

Exploratory Testing Validate experience of user Ad-hoc testing Acceptance
and System level

6. CONCLUSION

Delivering quality software is the main goal of any software project. Software Testing has been widely used and
remains the truly effective means of assuring the quality of software. In this paper, some important software testing
concepts, their advantages and disadvantages are discussed, comparisons of software testing techniques and
software testing levels are presented. Learning about and successful usage of these software testing methods in
software development will help testers carry out software testing in a more effective manner thereby improving
software quality.

REFERENCES
[1] A. Dennis, B. H. Wixom, and D. Tegarden, Systems Analysis and Design with OOP Approach with UML

2.0, 4th Editio. USA: John Wiley & Sons, Inc., 2009.
[2] L. Luo, ‘A Report on Software Testing Techniques’, Pittsburgh, USA.
[3] G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing 3rd Edition, Third Edit. Canada.:

John Wiley & Sons, Inc., 2012.
[4] D. R. Graham, ‘TESTING, VERIFICATION AND VALIDATION’, Int. J., vol. XVI, pp. 1069–1101,

1979.
[5] E. Miller, Software testing & validation techniques. [Washington D.C.]: IEEE Computer Society Press,

1981.
[6] A. Dennis, B. H. Wixom, and R. M. Roth, Systems Analysis and Design 5th Edition, 5th Editio. USA:

John Wiley & Sons, Inc., 2012.
[7] S. Rogerson, ‘The Chinook Helicopter Disaster’, 2002. [Online]. Available:

https://www5.in.tum.de/~huckle/chinook_software.pdf.
[8] N. I. of S. andTechnology (NIST), ‘Software Errors Cost U.S. Economy $59.5 Billion Annually: NIST

Assesses Technical Needs of Industry to Improve Software-Testing’, Web.archive.org, 2002. [Online].
Available:
https://web.archive.org/web/20090610052743/http://www.nist.gov/public_affairs/releases/n02-10.htm.
[Accessed: 11-May-2019].

[9] C. Jones, ‘Software Quality in 2012: a Survey of the State of the Art’, 2012.
[10] B. W. Boehm, Software engineering economics. Englewood Cliffs, N.J.: Prentice-Hall, 1981.
[11] P. Ammann and J. Offutt, Introduction to Software Testing. Cambridge University Press, 2008.
[12] Altexsoft, ‘Quality Assurance - Quality Control and Testing: The Basics of Software Quality

Management’, Kharkiv, Ukraine, 2016.
[13] E. Khan, ‘Different Forms of Software Testing Techniques for Finding Errors’, Int. J. Comput. Sci. Issues,

vol. 7, no. 3, pp. 11–16, 2010.
[14] K. Sneha and G. M. Malle, ‘Research on software testing techniques and software automation testing

tools’, 2017 Int. Conf. Energy, Commun. Data Anal. Soft Comput. ICECDS 2017, pp. 77–81, 2017.
[15] M. A. Jamil, M. Arif, N. Sham, A. Abubakar, and A. Ahmad, ‘Software Testing Techniques : A Literature

Review’, no. November, 2016.
[16] P. Borba, Testing techniques in software engineering : Second Pernambuco Summer School on Software

Engineering, PSSE 2007, Recife, Brazil, December 3-7, 2007, Revised Lectures. Springer-Verlag, 2010.

 10

[17] C. Padmini, ‘1- Beginners Guide To Software Testing’, pp. 1–41, 2013.
[18] S. Nidhra and J. Dondeti, ‘Black Box and White Box Testing Techniques’, Int. J. Embed. Syst. Appl., vol.

2, no. 2, pp. 29–50, 2012.
[19] ‘Software Testing - Wikipedia’. [Online]. Available: https://en.wikipedia.org/wiki/Software_testing.

[Accessed: 05-May-2019].
[20] R. V. Binder, Testing Object-Oriented Systems: Objects, Patterns, and Tools. Addison-Wesley

Professional, 1999.
[21] I. Jovanovic, ‘Software Testing Methods and Techniques’, IPSI BgD Trans. Internet Res., vol. 5, no. 1,

pp. 30–41, 2009.
[22] Mohd. Ehmer Khan and Farmeena Khan, ‘A Comparative Study of White Box , Black Box and Grey Box

Testing Techniques’, Int. J. Adv. Comput. Sci. Appl., vol. 3, no. 6, pp. 12–15, 2012.
[23] J. Badlaney, R. Ghatol, and R. Jadhwani, ‘An Introduction to Data-Flow Testing’, Control, pp. 1–8, 2006.
[24] S. Mancoridis, ‘CS576 Dependable Software Systems - Topics in Control-Flow Testing’. [Online].

Available: https://www.cs.drexel.edu/~spiros/teaching/CS576/slides/2.control-testing.pdf. [Accessed: 05-
May-2019].

[25] N.-W. Lin, ‘Software Testing (CS5812) - Control Flow Testing’. [Online]. Available:
https://www.cs.ccu.edu.tw/~naiwei/cs5812/st4.pdf.

[26] M. New, ‘Data Flow Testing Swansea University UK’.
[27] T. Su et al., A Survey on Data-Flow Testing, vol. 50, no. 1. 2017.
[28] L. Briand, ‘Software Verification and Validation - WBT’, 2010. [Online]. Available:

https://www.uio.no/studier/emner/matnat/ifi/nedlagte-
emner/INF4290/v10/undervisningsmateriale/INF4290-WBT.pdf. [Accessed: 03-May-2019].

[29] ‘Software Testing Class - Grey box’. [Online]. Available: https://www.softwaretestingclass.com/gray-
box-testing/.

[30] L. Briand, ‘Software Verification and Validation (INF4290) - Regression Testing’, 2010. [Online].
Available: https://www.uio.no/studier/emner/matnat/ifi/nedlagte-
emner/INF4290/v10/undervisningsmateriale/INF4290-RegTest.pdf.

[31] Alex Samurin, ‘Explore the World of Gray Box Testing’, 2003. [Online]. Available:
http://extremesoftwaretesting.com/Articles/WorldofGrayBoxTesting.html. [Accessed: 19-May-2019].

[32] ISTQB, ‘Worldwide Software Testing Practices Report’.
International Software Testing Qualifications Board (ISTQB) (2017). Worldwide Software Testing
Practices Report. [online] ISTQB, pp.1-40. Available at: https://www.istqb.org/documents/ISTQB 2017-
18_Revised.pdf [Accessed 21 May 2019].

