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Abstract

The binary32 and binary64 floating-point formats provide good performance on current hardware, but also introduce a rounding

error in almost every arithmetic operation. Consequently, the accumulation of rounding errors in large computations can cause

accuracy issues. One way to prevent these issues is to use multiple-precision floating-point arithmetic. This preprint, submitted

to Russian Supercomputing Days 2020, presents a new library of basic linear algebra operations with multiple precision for

graphics processing units. The library is written in CUDA C/C++ and uses the residue number system to represent multiple-

precision significands of floating-point numbers. The supported data types, memory layout, and main features of the library

are considered. Experimental results are presented showing the performance of the library.
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Abstract. The binary32 and binary64 floating-point formats provide
good performance on current hardware, but also introduce a rounding
error in almost every arithmetic operation. Consequently, the accumula-
tion of rounding errors in large computations can cause accuracy issues.
One way to prevent these issues is to use multiple-precision floating-point
arithmetic. This paper presents a new library of basic linear algebra oper-
ations with multiple precision for graphics processing units. The library
is written in CUDA C/C++ and uses the residue number system to
represent multiple-precision significands of floating-point numbers. The
supported data types, memory layout, and main features of the library
are considered. Experimental results are presented showing the perfor-
mance of the library.

Keywords: Multiple-precision computation · Floating-point arithmetic
· BLAS · CUDA · Parallel algorithm

1 Introduction

It is no surprise that floating-point operations have rounding errors that occur
during calculations. Such errors are natural due to the limited length of the
significand in the binary32 and binary64 formats from the IEEE 754 standard [1].
For many applications, these errors do not prevent obtaining the correct results.
Moreover, for some applications such as deep learning, the best option is to
use lower precision formats, e.g., the 16-bit (half-precision) format [2]. However,
for a rapidly growing number of scientific computing applications the natively
supported IEEE 754 formats are not enough and a higher level of precision
is required [3–6]. For such applications, multiple-precision libraries are used,
which allow one to perform arithmetic operations on numbers represented with
hundreds and thousands of digits.

This paper describes a library that provides new parallel algorithms and im-
plementations for a number of basic linear algebra operations, like the BLAS
routines [7], with multiple precision. The library, called MPRES-BLAS, is de-
signed to be used on high-performance computing systems equipped with modern
graphics processing units (GPUs). The library uses the residue number system

Preprint submitted to Russian Supercomputing Days 2020
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Fig. 1. Performing arithmetic operations in RNS

(RNS) [8,9] to represent multiple-precision numbers. In the RNS, a set of moduli
are given which are independent of each other. A number is represented by the
residue of each modulus and the arithmetic operations are based on the residues
individually as shown in Fig. 1. This introduces parallelism in arithmetic with
multiple precision and makes RNS a promising number system for many-core
architectures such as GPUs.

2 Related Work

One approach to get greater precision and accuracy is to use floating-point ex-
pansions, when an extended-precision number is represented as an unevaluated
sum of several ordinary floating-point numbers. An example of such an expan-
sion is the double-double format, capable of representing at least 106 bits of
significand. Each double-double number is represented as an unevaluated sum
of two binary64 numbers. In turn, the quad-double format is capable of repre-
senting 212 bits of significand by using four binary64 numbers. Algorithms for
computing floating-point expansions are called error-free transformations [10].
Double-double arithmetic is used in the XBLAS [11] and QPBLAS [12] packages
for CPUs, as well as in the QPBLAS-GPU package for GPUs [13].

The ExBLAS package [14] contains a number of optimized implementations
of accurate and reproducible linear algebra operations for parallel architectures
such as Intel Xeon Phi and GPUs. Reproducibility is defined as the ability to
obtain a bit-wise identical result from multiple runs of the code on the same
input data. To ensure reproducibility, ExBLAS uses error-free transformations
and long fixed-point accumulators that can represent every bit of information
of the input floating-point format (binary64). The use of long accumulators
provides the replacement of non-associative floating-point operations with fixed-
point operations that are associative.

The paper [15] presents highly optimized GPU implementations of the DOT,
GEMV, GEMM, and SpMV operations, which are included in the BLAS-DOT2
package. In these implementations, internal floating-point operations are per-
formed with at least 2-fold the precision of the input and output data precision,
namely, for binary32 data, the computation is performed using the binary64 for-
mat, whereas for binary64 data, the computation is performed using the Dot2
algorithm [16], which is based on error-free transformations.
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Nakata et al. proposed MPACK (aka MPLAPACK) [17], a package of multiple-
precision linear algebra routines. It consists of two modules, MBLAS and MLA-
PACK, which are multiple-precision versions of BLAS and LAPACK for CPUs,
respectively. MPACK supports several libraries like GMP, MPFR, and QD for
underlying multiple-precision arithmetic. In addition, MPACK provides double-
double implementations of the GEMM and SYRK routines for GPUs.

There are also a number of extended- and multiple-precision arithmetic li-
braries for GPUs. Support for double-double and quad-double is implemented in
GQD [18], which allows one to perform basic arithmetic operations and a num-
ber of mathematical functions with extended precision. GQD mainly uses the
same algorithms as the QD library for CPUs. To represent extended precision
numbers, GQD uses the vector types double2 and double4 available in CUDA.

CAMPARY [19] uses n-term floating-point expansions (generalization of the
double-double and quad-double formats to an arbitrary number of terms) and
provides flexible CPU and GPU implementations of multiple-precision arith-
metic operations. Both the binary64 and the binary32 formats can be used
as basic blocks for the floating-point expansion, and the precision (expansion
size) is specified as a template parameter. Generally, each addition and multi-
plication of n-component expansions in CAMPARY requires 3n2 + 10n− 4 and
2n3 + 2n2 + 6n− 4 standard floating-point operations.

GARPREC [18] and CUMP [20] support arbitrary precision on GPUs us-
ing the so-called “multi-digit” format. This format stores a multiple-precision
number with a sequence of digits coupled with a single exponent. The digits
are themselves machine integers. The GARPREC algorithms are from David
Bailey’s ARPREC package for CPUs, whereas CUMP is based on the GNU MP
Bignum library (GMP). In both GARPREC and CUMP, each multiple-precision
operation is implemented as a single thread and an interval memory layout is
used in order to exploit the coalesced access feature of the GPU.

In [21], we have proposed new multiple-precision arithmetic algorithms us-
ing the residue number system and adapted them for efficient computations
with multiple-precision vectors on GPUs. Similar algorithms for dense multiple-
precision matrices were then proposed and implemented. All these algorithms
are used in the MPRES-BLAS library, which is discussed in this paper.

Table 1 summarizes the software packages considered in this section.

Table 1. Software for accurate and/or higher precision computations

Library Platform Source code Ref.
XBLAS CPU https://www.netlib.org/xblas [11]
QPBLAS CPU https://ccse.jaea.go.jp/software/QPBLAS [12]
QPBLAS-GPU GPU https://ccse.jaea.go.jp/software/QPBLAS-GPU [13]
ExBLAS CPU, Phi, GPU https://github.com/riakymch/exblas [14]
BLAS-DOT2 GPU http://www.math.twcu.ac.jp/ogita/post-k/results.html [15]
MPACK CPU https://github.com/nakatamaho/mplapack [17]
GQD, GARPREC GPU https://code.google.com/archive/p/gpuprec [18]
CAMPARY CPU, GPU http://homepages.laas.fr/mmjoldes/campary [19]
CUMP GPU https://github.com/skystar0227/CUMP [20]
MPRES-BLAS GPU https://github.com/kisupov/mpres-blas [21]

https://www.netlib.org/xblas
https://ccse.jaea.go.jp/software/QPBLAS
https://ccse.jaea.go.jp/software/QPBLAS-GPU
https://github.com/riakymch/exblas
http://www.math.twcu.ac.jp/ogita/post-k/results.html
https://github.com/nakatamaho/mplapack
https://code.google.com/archive/p/gpuprec
http://homepages.laas.fr/mmjoldes/campary
https://github.com/skystar0227/CUMP
https://github.com/kisupov/mpres-blas
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3 Data Types and Conversions

In MPRES-BLAS, a floating-point number is an object consisting of a sign, a
multiple-precision significand, an integer exponent, and some additional infor-
mation about the significand. We denote such an object as follows:

x = 〈s,X, e, I(X/M)〉, (1)

where s is the sign, X is the significand, e is the exponent, and I(X/M) is the
interval evaluation of the significand (additional information).

The significand is represented in the RNS by the residues (x1, x2, . . . , xn)
relative to the moduli set {m1,m2, . . . ,mn} and is considered as an integer in
the range of 0 to M− 1, where M =

∏n
i=1mi. The residues xi = X mod mi

are machine integers. The binary number X corresponding to the given residues
(x1, x2, . . . , xn) can be derived using the Chinese remainder theorem [8] as X =∣∣∑n

i=1Mi |xiwi|mi

∣∣
M, where Mi and wi are the RNS constants, namely Mi =

M/mi and wi is the modulo mi multiplicative inverse of Mi. Hence, one can
compute the value of a floating-point number (1) using the following formula:

x = (−1)s ×
∣∣∣∑n

i=1
Mi |xiwi|mi

∣∣∣
M
× 2e.

Unlike the addition, subtraction, and multiplication operations that are based
on the residues individually, comparison, sign determination, overflow detection,
scaling, and general division are time-consuming operations in the RNS, since
they require estimating the magnitude of numbers. These operations are called
non-modular operations. The classic technique to perform these operations is
based on the Chinese remainder theorem and consists in computing binary rep-
resentations of numbers with their subsequent analysis. In large dynamic ranges
this technique becomes slow. MPRES-BLAS uses an alternative method for im-
plementing non-modular operations, which is based on computing the interval
evaluation of the fractional representation of an RNS number [22]. This method
is designed to be fast on modern massively parallel general-purpose comput-
ing platforms such as GPU. The interval evaluation I(X/M) is defined by two
bounds, X/M and X/M, that localize the value of X scaled byM. The bounds
are represented in a working precision floating-point format with an extended
exponent in order to avoid underflow when M is large. To compute X/M and
X/M, only modulo mi operations and standard floating-point operations are re-
quired. Using interval evaluations, efficient algorithms have been developed for
implementing a number of non-modular operations in the RNS [22].

In [21], basic algorithms are proposed for performing arithmetic operations
with numbers of the form (1) and the following rounding error bound is given:
if fl(x ◦ y) is the rounded result of an operation ◦ ∈ (+,−,×), then

fl(x ◦ y) = (x ◦ y)(1 + δ), |δ| < u,

where u < 4/
√
M and M is the RNS moduli product. Hence, the user can set

arbitrary arithmetic precision by changing the used set of RNS moduli.
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The C data type corresponding to a multiple-precision number of the form
(1) is mp float t, defined as the following structure:

typedef struct {

int digits[n];

int sign;

int exp;

er_float_t eval[2];

} mp_float_t; /* Single multiple-precision value */

where er float t is the C data type representing a working precision floating-
point value with an extended exponent.

The mp float t type is used mainly in the host code, and MPRES-BLAS
provides a set of functions for converting data between mp float t and double,
and also between mp float t and the mpfr t type from the GNU MPFR library3.

To store an array of multiple-precision numbers in the GPU memory, MPRES-
BLAS uses the data type mp array t, defined as the following structure:

typedef struct {

int * digits;

int * sign;

int * exp;

er_float_t * eval;

int4 * buf;

int * len;

} mp_array_t; /* Array of multiple-precision values */

The fields of this structure are as follows, where n is the precision (size of the
RNS moduli set) and L is the length of the multiple-precision array:

– digits are the digits (residues) of significands (an integer array of size n×
L); all digits belonging to the same multiple-precision number are arranged
consecutively in the memory;

– sign are the signs (an integer array of size L);
– exp are the exponents (an integer array of size L);
– eval are the interval evaluations of significands (an array of size 2L, where

the first L elements represent the lower bounds of the interval evaluations,
and the second L elements represent the upper bounds);

– buf is the buffer (an array of size L used in arithmetic operations to transfer
auxiliary variables between CUDA kernels);

– len is the number of items that the array holds, i.e. L; for a vector of length
N , the array must contain at least (1 + (N − 1)× |incx|) items, where incx
specifies the stride for the items; for a matrix of size M ×N , the array must
contain at least LDA×N items, where LDA specifies the leading dimension
of the matrix; the value of LDA must be at least max (1,M).

3 https://www.mpfr.org

https://www.mpfr.org
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Using the mp array t structure instead of an array of mp float t structures
allows ensuring coalesced memory access when dealing with multiple-precision
vectors and matrices; details can be found in [21]. MPRES-BLAS provides the
following helper functions for working with mp array t instances:

– mp array init: allocate a multiple-precision array in the GPU memory;
– mp array clear: release the GPU memory occupied by an array;
– mp array host2device: convert a regular multiple-precision array allocated

on the host (with elements of type mp float t) to an mp array t instance
allocated on the GPU;

– mp array device2host: convert an mp array t instance allocated on the
GPU to a regular multiple-precision array allocated on the host.

Multiple-precision array (mp_array_t)

a11. x1 a11. x2 a11. x3 a11. x4 a21. x1 a21. x2 a21. x3 a21. x4 a31. x1 a31. x2 a31. x3 a31. x4

a12. x1 a12. x2 a12. x3 a12. x4 a22. x1 a22. x2 a22. x3 a22. x4 a32. x1 a32. x2 a32. x3 a32. x4

digits:

a11. s a21. s a31. s a12. s a22. s a32. s

sign:
a13. s a23. s a33. s a14. s a24. s a34. s

a11. e a21. e a31. e a12. e a22. e a32. e

exp:
a13. e a23. e a33. e a14. e a24. e a34. e

a11. lo a21. lo a31.  lo a12.  lo a22.  lo

a11. up

eval:
a32.  lo a13.  lo a23.  lo a33.  lo a14.  lo a24.  lo a34.  lo

a21. up a31. up a12. up a22. up a32. up a13. up a23. up a33. up a14.up a24. up a34. up

a11. b a21. b a31. b a12. b a22. b a32. b

buf:
a13. b a23. b a33. b a14. b a24. b a34. b

a13. x1 a13. x2 a13. x3 a13. x4 a23. x1 a23. x2 a23. x3 a23. x4 a33. x1 a33. x2 a33. x3 a33. x4

a14. x1 a14. x2 a14. x3 a14. x4 a24. x1 a24. x2 a24. x3 a24. x4 a34. x1 a34. x2 a34. x3 a34. x4

16

len:

a11 a12 a13

a21 a22 a23

a31 a32 a33

a14

a24

a34

Matrix A

N

M

LD
A

a11 a21 a31 a12 a22 a32

a13 a23 a33 a14 a24 a34

Column major order

Fig. 2. Storage layout of a multiple-precision matrix in MPRES-BLAS
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4 Data Layout

The BLAS routines in MPRES-BLAS follow the Fortran convention of storing
matrices using the column major data format. Thus, for an M by N matrix A,
the address of the kth digit of the element aij in 0-based indexing is given by

address = k + (i+ j × LDA)× n,

where n is the size of the RNS moduli set, 0 ≤ k < n, 0 ≤ i < M , and 0 ≤ j < N .
Figure 2 illustrates the column major layout of a 3 × 4 multiple-precision

matrix using the mp array t data type. In this example, n = 4, i.e. the signifi-
cand of each element aij consists of four digits: X = (x1, x2, x3, x4). We use the
dot symbol (.) to access the parts of a multiple-precision number. The symbols
lo and up denote the lower and upper bounds of the interval evaluation so that
lo := X/M and up := X/M. Note that we use 1-based indexing in this example.

5 Functionality

The current version of MPRES-BLAS (ver. 1.0) provides 16 GPU-based multiple-
precision BLAS functions listed in Table 2. All the functions support the stan-
dard BLAS interface, except that some functions have additional arguments that
are pointers to auxiliary buffers in the global GPU memory.

Table 2. Multiple-precision linear algebra operations supported by MPRES-BLAS.

ASUM — Sum of absolute values GEMV — Matrix-vector multiplication
DOT — Dot product of two vectors GEMM — General matrix multiplication
SCAL — Vector-scalar product GER — Rank-1 update of a general matrix
AXPY — Constant times a vector plus a vector GE ADD — Matrix add and scale
AXPY DOT — Combined AXPY and DOT GE ACC — Matrix accumulation and scale
WAXPBY — Scaled vector addition GE DIAG SCALE — Diagonal scaling
NORM — Vector norms GE LRSCALE — Two-sided diagonal scaling
ROT — Apply a plane rotation to vectors GE NORM — Matrix norms

Implementation details, performance data, and accuracy of the ASUM, DOT,
SCAL, and AXPY functions are given in [21]. Table 3 show the forward error
bounds for the GEMV, GEMM, GE ADD, and GER routines. In this table it is
assumed that each matrix is a square N by N matrix.

We note that not all of the functions listed in Table 2 can be ill-conditioned
and require higher numeric precision. For example, as shown in [21], the SCAL
and ASUM functions have relative forward error bounds of u and u(N −1)/(1−
u(N − 1)), respectively. However, support for such functions allow one to elimi-
nate time-consuming conversions between the IEEE 754 formats and the multiple-
precision format (1) in the intermediate steps of a computation.

To achieve high performance, GPU kernels must be written according to
some basic principles/techniques, stemming from the specifics of the GPU ar-
chitecture [24]. One such technique is blocking. The idea is to operate on blocks
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Table 3. Error bounds for the functions from MPRES-BLAS. According to [23], the
quantity γN is defined as γN := Nu/(1−Nu).

Absolute error bound Relative error bound

GEMV γN+2 ·
∥∥|αA| · |x|+ |βy|∥∥ γN+2 ·

∥∥|αA| · |x|+ |βy|∥∥ / ∥∥αAx+ βy
∥∥

GEMM γN+2 ·
∥∥|αA| · |B|+ |βC|∥∥ γN+2 ·

∥∥|αA| · |B|+ |βC|∥∥ / ∥∥αAB + βC
∥∥

GE ADD γ2 ·
∥∥|αA|+ |βB|∥∥ γ2 ·

∥∥|αA|+ |βB|∥∥ / ∥∥αA+ βB
∥∥

GER γ3 ·
∥∥|αxyT |+ |A|∥∥ γ3 ·

∥∥|αxyT |+ |A|∥∥ / ∥∥αxyT +A
∥∥

of the original vector or matrix. Blocks are loaded once into shared memory
and then reused. The goal is to reduce off-chip memory accesses. However, when
working with multiple-precision numbers, shared memory is the limiting factor
for occupancy, since the size of each number may be too large. Another problem
is that the multiple-precision arithmetic algorithms contain serial and parallel
sections, and while one thread computes the exponent, sign, and interval evalu-
ation, all other threads are idle. This results in divergent execution paths within
a warp and can lead to significant performance degradation. In order to resolve
this problem, MPRES-BLAS follows the approach proposed in [21], according
to which multiple-precision operations are split into several parts, each of which
is performed by a separate CUDA kernel ( global function). These parts are

– computing the signs, exponents, and interval evaluations;

– computing the significands in the RNS;

– rounding the results.

Thus, each BLAS function consists of a sequence of kernel launches. In some
cases, such a decomposition may increase the total number of global memory
accesses, since all intermediate results should be stored in the global memory.
However, this eliminates branch divergence when performing sequential parts of
multiple-precision operations. Furthermore, each kernel has its own execution
configuration which makes it possible to use all available GPU resources.

As an example, Fig. 3 shows a flowchart of the multiple-precision GE ADD
operation (C ← αA + βB). Other BLAS operations have a similar structure.
An exception is reduction operations, in which each operation with multiple
precision is performed as a single thread, and communication between threads
is performed using shared memory.

In MPRES-BLAS, multiple-precision vectors are processed on the GPU with
1-dimensional grids of 1-dimensional thread blocks, whereas matrices are pro-
cessed with 2-dimensional grids of 1-dimensional or 2-dimensional thread blocks.
Each BLAS operation has template parameters that specify the execution con-
figuration of the kernels. For computations with multiple-precision significands,
the number of threads per block is precision dependent and is configured auto-
matically so as to ensure maximum occupancy of a streaming multiprocessor.
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DeviceHost

mp_mat2scal_mul_esi_kernel
(BUF, M, A, LDA, �, M, N)

mp_mat2scal_mul_digits_kernel
(BUF, M, A, LDA, �, M, N)

mp_matrix_round_kernel
(BUF, M, M, N)

mp_mat2scal_mul_esi_kernel
(C, LDC, B, LDB, �, M, N)

mp_mat2scal_mul_digits_kernel
(C, LDC, B, LDB, �, M, N)

mp_matrix_round_kernel
(C, LDC, M, N)

mp_matrix_add_esi_kernel
(C, LDC, C, LDC, BUF, M, M, N)

mp_matrix_add_digits_kernel
(C, LDC, C, LDC, BUF, M, M, N)

mp_matrix_round_kernel
(C, LDC, M, N)

Kernel #1
(grid1 × block1)

Kernel #2
(grid2 × numThreads)

Kernel #3
(grid3 × block3)

Kernel #4
(grid1 × block1)

Kernel #5
(grid2 × numThreads)

Kernel #6
(grid3 × block3)

Kernel #7
(grid1 × block1)

Kernel #8
(grid2 × numThreads)

Kernel #9
(grid3 × block3)

BUF ← � × A
Computations with exponents, signs, interval evaluations

BUF ← � × A
Computations with multiple-precision significands in the RNS

BUF ← � × A
Rounding

C ← � × B
Computations with exponents, signs, interval evaluations

C ← � × B
Computations with multiple-precision significands in the RNS

C ← � × B
Rounding

C ← C + BUF
Computations with exponents, signs, interval evaluations

C ← C + BUF
Computations with multiple-precision significands in the RNS

C ← C + BUF
Rounding

Kernel execution configuration:

dim3 block1 (blockDim1x, blockDim1y);
dim3 grid1 ((M + block1.x - 1) / block1.x, (N + block1.y - 1) / block1.y);
dim3 grid2 (gridDim2x, gridDim2y);
dim3 block3 (16, 16);
dim3 grid3 ((M + block3.x - 1) / block3.x, (N + block3.y - 1) / block3.y);

Fig. 3. Flowchart of the multiple-precision GE ADD operation. Here blockDim1x,
blockDim1y, gridDim2x, and gridDim2y are tunable parameters that are passed to
the function as template arguments, whereas numThreads is automatically configured
depending on the precision and hardware specification.

6 Performance Evaluation

In this section, we evaluate the performance of the GEMV, GE ADD and GEMM
functions from MPRES-BLAS for various problem sizes and levels of numeric
precision. In the experiments, we used the NVIDIA GeForce GTX 1080 GPU.
The host machine was equipped with an Intel Core i5-7500 and 16 GB of RAM
and run Ubuntu 18.04.4 LTS. The GPU codes were compiled by nvcc 10.2.89 with
options -O3 -use fast math -Xcompiler=-O3,-fopenmp,-ffast-math. For compar-
ison, we also evaluated the GARPREC (only for GEMV), CUMP, and CAM-
PARY libraries; see Section 2 for details. The input vectors, matrices, and scalars
were initialized with random numbers over [-1, 1]. Our measurements do not in-
clude the time spent transferring data between the CPU and the GPU, as well
as time of converting data into internal multiple-precision representations.

Figure 4 shows the experimental results. In many cases, MPRES-BLAS has
better performance than implementations based on existing multiple-precision li-
braries for GPUs. Increasing the precision of computations increases the speedup
of MPRES-BLAS. At 106-bit precision, the performance of MPRES-BLAS is on
average 6 times lower than that of CAMPARY. This is because the RNS-based
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algorithms implemented in MPRES-BLAS are designed for arbitrary (mostly
large) precision and have overhead associated with calculating interval evalua-
tions and storing intermediate results in the global memory. On the other hand,
MPRES-BLAS is less dependent on precision than CAMPARY and with 848-bit
precision, MPRES-BLAS performs on average 9 times better than CAMPARY.
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Fig. 4. Performance of multiple-precision GEMV, GE ADD and GEMM on GeForce
GTX 1080 as a function of problem size.
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7 Conclusion

In this paper, we presented MPRES-BLAS, a new library of basic linear algebra
operations with multiple precision for CUDA compatible GPUs based on the
residue number system. The current version of MPRES-BLAS (ver. 1.0) supports
16 multiple-precision operations from levels 1, 2, and 3 of the BLAS. Some
operations such as SCAL, NORM and ASUM typically do not require precision
higher than the one provided by the natively supported floating-point formats.
Nevertheless, support for such functions allow one to eliminate time-consuming
intermediate conversions between the natively supported formats and the RNS-
based multiple-precision format used.

In addition to the linear algebra kernels, MPRES-BLAS implements basic
arithmetic operations with multiple precision for CPU and GPU (through the
mp float t data type), so it can also be considered as a general purpose multiple-
precision arithmetic library. Furthermore, the library provides a number of op-
timized RNS algorithms, such as magnitude comparison and power-of-two scal-
ing, and also supports extended-range floating-point arithmetic with working
precision, which prevents underflow and overflow in a computation involving ex-
tremely large or small quantities. The functionality of MPRES-BLAS will be
supplemented and improved over time.
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