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Abstract

We propose a new iterative detection and decoding algorithm for multiple-input multiple-output (MIMO) based on expectation

propagation (EP) with application to massive MIMO scenarios. Two main results are presented. We first introduce EP to

iteratively improve the Gaussian approximations of both the estimation of the posterior by the MIMO detector and the soft

output of the channel decoder. With this novel approach, denoted by double-EP (DEP), the convergence is very much improved

with a computational complexity just two times the one of the linear minimum mean square error (LMMSE), as illustrated by the

included experiments. Besides, as in the LMMSE MIMO detector, when the number of antennas increases, the computational

cost of the matrix inversion operation required by the DEP becomes unaffordable. In this work we also develop approaches of

DEP where the mean and the covariance matrix of the posterior are approximated by using the Gauss-Seidel and Neumann

series methods, respectively. This low-complexity DEP detector has quadratic complexity in the number of antennas, i.e., the

same as the low-complexity LMMSE techniques. Experimental results show that the new low-complexity DEP achieves the

performance of the DEP as the ratio between the number of transmitting and receiving antennas decreases

1
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A Low-Complexity Double EP-based Detector for
Iterative Detection and Decoding in MIMO
Juan José Murillo-Fuentes, Irene Santos, José Carlos Aradillas and Matilde Sánchez-Fernández

Abstract—We propose a new iterative detection and decoding
algorithm for multiple-input multiple-output (MIMO) based on
expectation propagation (EP) with application to massive MIMO
scenarios. Two main results are presented. We first introduce EP
to iteratively improve the Gaussian approximations of both the
estimation of the posterior by the MIMO detector and the soft
output of the channel decoder. With this novel approach, denoted
by double-EP (DEP), the convergence is very much improved with
a computational complexity just two times the one of the linear
minimum mean square error (LMMSE), as illustrated by the
included experiments. Besides, as in the LMMSE MIMO detector,
when the number of antennas increases, the computational cost
of the matrix inversion operation required by the DEP becomes
unaffordable. In this work we also develop approaches of DEP
where the mean and the covariance matrix of the posterior are
approximated by using the Gauss-Seidel and Neumann series
methods, respectively. This low-complexity DEP detector has
quadratic complexity in the number of antennas, i.e., the same
as the low-complexity LMMSE techniques. Experimental results
show that the new low-complexity DEP achieves the performance
of the DEP as the ratio between the number of transmitting and
receiving antennas decreases.

Index Terms—Expectation propagation, MMSE, low-
complexity, iterative detection and decoding (IDD), massive
MIMO, Gauss-Seidel, Neumann series.

I. Introduction

With multiple-input multiple-output (MIMO) strategies in
wireless communication systems we may, among others, bet-
ter face fading or provide an increased spectral efficiency,
allowing for higher data rates [1], [2]. This technology is
present in well-known standards such as LTE and Wi-Fi and
has also been included in 5G. As the number of antennas
is increased, larger multiplexing and/or diversity gains are
attained. However, increasing the number of antennas poses
challenging problems, one of them being the computational
complexity associated to the detection of the transmitted
symbols.

A MIMO detector provides an estimation of the transmitted
symbols given the received signal and channel state informa-
tion (CSI). This estimation is improved at the channel decoder.
In iterative detection and decoding (IDD) schemes [3], [4],
the output of the channel decoder is fed back to the MIMO
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detector, further improving the estimation of the transmitted
symbol through iterations.

For a large number of antennas, e.g. in massive MIMO
[5]–[7], or high-order modulations, in LTE, 5G or Wi-Fi
6, optimal detection is unfeasible. The computation of the
maximum a posteriori (MAP) or maximum likelihood (ML)
criterion requires evaluating a huge number of probabilities to
retain the largest one. Hence, its computational complexity
grows exponentially with the number of antennas and the
order of the constellation. In this scenario, approximate linear
solutions, such as the zero forcing (ZF) or the linear minimum
mean square error (LMMSE) [8], are a good tradeoff between
complexity and performance [1], and also LMMSE based IDD
has been proved to achieve capacity [9], [10].

In recent research it has been shown that expectation prop-
agation (EP) [11]–[16] greatly outperforms LMMSE detection
for high order discrete modulations, such as M-QAM for large
M, increasing its computational complexity by just a few
times, being of the same order. As developed in [11]–[15],
an EP-based detector can be casted as a LMMSE algorithm
where priors are replaced by some to be estimated Gaussian
probability density function (pdf), given the observation. In
particular, in [12], [14] EP is introduced to improve the
detection performance for high-order constellations. EP is
iteratively applied within the MIMO detector by using a
damping approach and no feedback is provided from the
decoder to the detector. These approaches assume perfect CSI.
The extension of [14] to consider imperfect CSI is proposed
in [13].

Despite EP and LMMSE approaches for Nr ˆ Nt MIMO
detection aim to reduce complexity from exponential to poly-
nomial, both need to invert a NtˆNt matrix, which requires a
complexity of OpNt

3q, even if we resort to efficient inversion
algorithms such as the Cholesky decomposition [4] or the
Gauss-Jordan method [17]. This inversion is needed to obtain
the mean and variance of the approximate posteriors at the
output of the detector. Therefore, when the number of antennas
increases, again the associated computational cost becomes
excessively high.

In the literature we can find approximate detectors based on
iterative methods to avoid the exact inverse computation, such
as Neumann series expansion (NSE) [18]–[21], Gauss-Seidel
(GS) [22], [23] or conjugate gradient (CG) [24]. Proposals in
[18], [19] rely on NSE to compute an approximate inverse
and then perform LMMSE detection and [21] approximates
the inverse for an EP-based detector for massive MIMO. The
GS-based LMMSE [23], hereafter denoted by LMMSE-GS,
provides approximations to the mean values of the LMMSE
by solving an associated linear system. It exhibits better
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performance compared to NSE or CG in terms of convergence
and complexity and for this reason we will use LMMSE-GS as
a benchmark for comparison purposes. Up to our knowledge,
GS has not been applied to EP MIMO detection, since it does
not provide the estimation of the needed covariance matrix.
Other approaches to approximate the inverse using EP are
proposed in [25], [26], however, reported complexities scale
as OpNt

3q.
All these low-complexity approaches focus on the approx-

imate computation of the inverse, but furthermore they share
the need for the Gram matrix to be computed in advance,
involving in most of the cases a complexity that scales with
Nt

2Nr. Indeed, in [20] an NSE-based detection, hereafter
denoted by LMMSE-NSE, is achieved with overall quadratic
complexity in the number of antennas.

The EP-based techniques in [12]–[14], [23], [25], [26]
describe solutions for standalone detection where EP is ex-
clusively applied within the detector. A first version of EP-
based IDD for MIMO is proposed in [11]. In the following this
approach is denoted by EP-IC. In [15] the block expectation
propagation (BEP) IDD is proposed by using damping as in
[14] but redefining the EP parameters. The BEP exhibits much
lower bit error rate (BER) than EP-IC. The computational
complexity of the BEP is twice the one of the EP-IC and four
times the one of the LMMSE. Both EP-based IDD approaches
[11], [15] project into Gaussians pdf the information that
is fed back from the channel decoder to the detector. EP
was proposed in [27] to better approximate the information
feedback from the channel decoder. In [16] this is idea is
exploited for MIMO. Similar approaches, not using EP but
where some iterative approach is used in the detection and
then feedback from the channel decoder is used to improve it,
can be found in the literature [28].

In this work, it is first proposed to apply EP both in the
detection and in the feedback from the channel decoder to the
MIMO detector. The proposed detector iteratively applies EP
algorithm twice: over an inner loop to obtain a more accurate
posterior estimation at the output of the detector and within
an outer loop to better approximate the discrete output of the
channel decoder that is fed back to the detector to, in the next
iteration, initialize the inner loop. This novel double-EP (DEP)
MIMO IDD approach converges faster and reduces the number
of iterations needed. As a result, it improves the BER of the
BEP exhibiting the computational complexity of the EP-IC,
i.e., twice the one of the LMMSE.

Second, low-complexity DEP approaches for large-scale
MIMO, are explored. Scenarios with low ratios between the
number of transmitting and receiving antennas, i.e., ρ “

Nt{Nr ! 1, are faced, where the matrices to be inverted are
diagonally dominant and low-complexity approaches can be
applied. It is highlighted that the accuracy in the estimation of
the posterior mean has a greater impact in the performance.
Therefore, the GS method is introduced to estimate it, as
it achieves better approximation than the NSE or the CG.
Besides, since this approach does not provide an estimation
for the needed covariance matrix, NSE with two terms for
its estimation is used. Furthermore, we found that for ρ ! 1
the inner EP can be spared, while the EP in the outer loop

improves the BER at no extra computational cost. Accordingly,
this new low-complexity DEP MIMO detector, denoted by
approximate DEP based on GS (DEP-GS), has the same
computational complexity order as the one of other LMMSE
approximate methods.

By using the DEP-GS complexity scales as OpNt
2q for the

computation of the inverse, but still the Gramm matrix is
needed. To avoid the cubic dependence of the complexity
of the Gram matrix with the number of antennas, a novel
EP approach is also proposed borrowing from [20], the low-
complexity DEP based on NSE (DEP-NSE), with overall
complexity scaling with the square of the number of antennas.

In the included experiments, DEP outperforms BEP and EP-
IC IDD in scenarios where matrices cannot be easily inverted,
i.e., iterative low-complexity approximations for the inverse
of the covariances matrices do not converge. As the channel
matrix becomes orthogonal, the DEP-GS converges for ρ ď
1{4, while the DEP-NSE achieves the BER of the DEP for
ρ ď 1{8. Remarkably, these low-complexity DEP proposals
are able to achieve the performance of the DEP detector, even
for high-order constellations.

II. SystemModel

The information bit vector, a, is encoded into the codeword
vector, b, which is the input to the modulator. Blocks of Q
bits are interleaved and Gray-mapped into constellation A,
with |A| “ 2Q complex-valued symbols of mean energy Es.
The mapped symbols are demultiplexed into Nt substreams,
one per antenna. The pth set of consecutive Nt symbols,
uppq “ ru1ppq, ..., uNtppqs

J P CNtˆ1, is sent over the channel.
We denote by bk, jppq, with j “ 1, ...,Q, the bits mapped into
the symbol transmitted by the kth antenna, ukppq. Hereafter,
and for the sake of simplicity, index p will be omitted.

The received signal, y “ ry1, ..., yNr s
J P CNrˆ1, is given by

y “ Hu` w (1)

where H P CNrˆNt is the channel matrix and w „

CN
`

w : 0, σ2
wI
˘

P CNrˆ1 is a circular complex-valued additive
white Gaussian noise (AWGN) vector with, respectively, mean
and covariance matrix µw “ 0 and Σw “ σ2

wI. The noise
variance, σ2

w, and the channel matrix are known to the receiver.
A soft detector computes the posterior probability of the
transmitted symbol vector, u, i.e.,

ppu|y,Hq 9 CN
`

y : Hu, σ2
wI
˘

Nt
ź

k“1

ppukq, (2)

where the true prior, ppukq, with k “ 1, ...,Nt, can either be set
to equiprobable distributions, ppukq “ 1{|A|, in a standalone
detection, i.e., when no information from the channel decoder
IDD is available, or can be set to the information fed back by
the decoder in an IDD scenario.

Optimal standalone detectors need to compute all possible
probabilities, |A|Nt . Note that these computations become
unfeasible for large number of antennas and/or high-order
modulations. Then, the soft detector outputs an extrinsic dis-
tribution that is demapped and fed to the decoder as extrinsic
log-likelihood ratio (LLR), LEpbk, jq, and the soft–decoding
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Fig. 1: Double EP-based IDD receiver diagram.

is performed. In IDD, the output of the channel decoder
is furthermore mapped back to the detector to update the
priors ppukq. This process is repeated iteratively for a given
maximum number of iterations, T , or until convergence.

III. Double EP IDD

The proposed IDD technique, the DEP, implements a double
loop where both detector and decoder apply EP, a Bayesian
technique to estimate an approximation, within the exponential
family, to a non-tractable distribution [29], [30].

The DEP performs two nested loops, see Fig. 1, one
exclusively at the MIMO detector level (inner loop) and one
comprising both the detector and decoder (outer loop). The
inner loop (EP1 in Fig. 1) is first used to approximate, after S
iterations, the symbol posterior. Subsequently, the outer loop
(EP2 in Fig. 1) uses the extrinsic information at the output
of the inner loop to soft–decode and further feed the soft–bit
information back to the MIMO detector inner loop. The outer
loop is run for T iterations.

A. DEP: Inner EP Loop

In MIMO, EP [14], [15] is applied to iteratively approximate
the discrete priors in (2), ppukq, with Gaussians,

grssk pukq “ CN

´

uk : µrssgk , σ
2rss
gk

¯

, (3)

where rss indicates the iteration number of the EP. This yields
a Gaussian approximation to the posterior in (2),

qrsspuq 9 CN
`

y : Hu, σ2
wI
˘

Nt
ź

k“1

grssk pukq“CN

´

u : µrss,Σrss
¯

(4)

where

Σrss “

´

σ´2
w HHH` Λrssg

¯´1
, (5)

µrss “ Σrss
´

σ´2
w HHy` Λrssg µ

rss
g

¯

, (6)

Λ
rss
g “ diag

´

r1{σ2rss
g1 , ..., 1{σ2rss

gNt
s

¯

and µ
rss
g “ rµ

rss
g1 , ..., µ

rss
gNt
sJ.

Note that (4) resembles the LMMSE estimator but for the
mean and covariance, that are iteratively updated by EP, given
the observation.

Factors grssk pukq are iteratively updated as follows in [15].
The extrinsic distributions are obtained,

qrssE pukq “ qrsspukq{g
rss
k pukq “ CN

´

uk : µrssEk
, σ

2rss
Ek

¯

, (7)

Algorithm 1 Moment Matching (MM)
Given inputs: ε, ppukq and qEpukq,

1) Compute the moments µ
ppk

, σ2
ppk,aux

of pppukq“ qEpukqppukq.
Set a minimum allowed variance, σ2

ppk
“ maxpε, σ2

ppk,aux
q.

2) Run moment matching: set the mean and variance of the
unnormalized Gaussian distribution

qEpukq ¨ CN
`

uk : µgk ,new, σ
2
gk ,new

˘

(9)

equal to µ
ppk

and σ2
ppk

, to get the solution

µgk ,new “ pσ
2
Ek
µ
ppk
´ σ2

ppk
µEk
q{pσ2

Ek
´ σ2

ppk
q, (10)

σ2
gk ,new “ σ2

ppk
σ2

Ek
{pσ2

Ek
´ σ2

ppk
q. (11)

Output: µgk ,new, σ2
gk ,new.

Algorithm 2 Moment Matching and Damping (EP1)

Given inputs: β, grssk pukq, ε, ppukq and qrssE pukq,

1) Compute Alg. 1 (MM) with ε, ppukq and qrssE pukq to
provide µrssgk ,new, σ2rss

gk ,new.
2) Run damping: update the values as

σ
2rs`1s
gk “

´

β{σ
2rss
gk ,new ` p1´ βq{σ

2rss
gk

¯´1
,

µ
rs`1s
gk “ σ

2rs`1s
gk

´

βµ
rss
gk ,new{σ

2rss
gk ,new ` p1´ βqµ

rss
gk {σ

2rss
gk

¯

.

3) Control of negative variances:
if σ2rs`1s

gk ă 0 then σ
2rs`1s
gk “ σ

2rss
gk , µ

rs`1s
gk “ µ

rss
gk .

Output: µrs`1s
gk , σ2rs`1s

gk .

where qrsspukq are the marginals of the posterior in (4). Then,
the EP computes grs`1s

k pukq by matching the moments (MM)
of the discrete posterior,

pprsspukq “ qrssE pukqppukq, (8)

with the ones of the new approximate posterior,
qrssE pukqg

rs`1s
k pukq. The MM is described in Alg. 1, where a

minimum allowed variance, ε, is set. After MM, a damping
procedure by means of parameter β is performed, checking
for negative variances. Parameters β and ε control the
convergence and instabilities of the algorithm. The whole
procedure is summarized in Alg. 2. This algorithm is repeated
over S iterations in the inner loop, see Fig. 1, to obtain the
final extrinsic distributions, qrS 1̀s

E pukq, that are sent to the
channel decoder.

In the computation of (5) and (6) an Nt ˆ Nt matrix is
inverted. The initial computation of the Gram matrix HHH
involves, approximately, Nt

2Nr{2 multiplications. The compu-
tational complexity of the inner EP loop (EP1), including the
cubic complexity of the matrix inversion, yields OpNt

2Nr `

pS`1qNt
3q.

B. DEP: Outer EP Loop

We denote by superindex rt,ss the sth iteration of the inner
loop within the tth iteration of the outer loop. At the tth
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Algorithm 3 DEP detector
Inputs: H, σ2

w and y
1) Initialization: set pr0spukq “

1
|A|

ř

uPA δpuk ´ uq, ε “

10´8, µr0,1sgk “ 0 and σ
2r0,1s
gk “ Es for k “ 1, ...,Nt.

for t “ 0, ...,T do
2) β “ minpexp pt{1.5q{10, 0.7q.
EP at the inner loop:
for s “ 1, ..., S do

3) Obtain Σrt,ss and µrt,ss from (5)-(6) with µ
rt,ss
gk and

σ
2rt,ss
gk .

for k “ 1, ...,Nt do
4) Compute the kth extrinsic distribution, qrt,ssE pukq,
as in (7).
5) Run Alg. 2 (EP1) with β, grt,ssk pukq, ε, prtspukq and
qrt,ssE pukq to obtain µ

rt,s̀ 1s
gk , σ

2rt,s̀ 1s
gk .

end for
end for
6) Compute qrt,S 1̀s

E pukq as in (7), demap the extrinsic
distribution and compute the extrinsic LLR, LrtsE pbk, jq.
7) Run the channel decoder to output prt`1spukq.
EP at the outer loop:
if t ă T then

8) Run Alg. 1 (MM) with ε, prt`1spukq and qrt,S 1̀s
E pukq

to obtain µ
rt`1,1s
gk , σ2rt`1,1s

gk .
9) Control of negative variances:
if σ2rt`1,1s

gk ă 0 then
Set µrt`1,1s

gk “ Eprtsruks and σ
2rt`1,1s
gk “ Eprtsrpuk ´

µ
rt`1,1s
gk q2s.

end if
end if

end for
Output: Deliver LrTsE pbk, jq to the decoder for k=1, ...,Nt and
j=1, ...,Q. Then provide the information bit estimates â.

iteration of the outer loop, after S iterations the inner loop
provides the extrinsics qrt,S 1̀s

E pukq in (7) as input to the
channel decoder. These extrinsics are used by the decoder
to obtain prt`1spukq, that are discrete probabilities. To map
these probabilities back to the inner loop we need them to
be Gaussian approximated. While in [11] these outputs are
projected into Gaussians, here it is proposed to use EP instead,
see EP2 in Fig. 1. This EP2 block uses Alg. 1 (MM) to
match the moments of p̂rt`1spukq “ qrt,S 1̀s

E pukqprt`1spukq and
qrt,S 1̀s

E pukqg
rt`1,1s
k pukq.

If the variances lead to negative values we replace them by
the ones of the Gaussian projection. The resulting probabili-
ties, grt`1,1s

k pukq, are used to initialize the inner EP.
The procedure is repeated over t “ 0, ...,T , with overall

computational complexity of OpNt
2Nr ` KNt

3q, where K “

pT`1qpS `1q. The detailed implementation of this algorithm,
referred to as DEP, is described in Alg. 3.

IV. Gauss-Seidel and Neumann methods for EP Detection
The mean and covariance matrix computation of the EP

posterior in (5)-(6) lead to a computational complexity of

Algorithm 4 Low-complexity GS-NSE Detection
Inputs: A, b and P
1) Compute D “ diagpdiagpAqq, E “ A ´ D and L “

trilpEq.
2) Run NSE to obtain Σrt,ss2 as in (13).
3) Compute the initial solution µrt,ss,p0q as in (15).
for i “ 1, ..., P do

4) Run GS to obtain µrt,ss,piq as in (14).
end for
Output: µrt,ss,pPq and Σrt,ss2 .

the DEP cubic in the number of antennas, due to the matrix
inversion needed. To reduce it, we propose to develop low-
complexity versions of the DEP based on the GS and NSE
approaches. These methods converge if the matrix to invert,
say A, satisfies some characteristics. Specifically, the NSE
requires A to be diagonally dominant, while GS needs A to
be Hermitian positive definite. In our case of study, at a given
iteration of the DEP, the inverse of A “ σ´2

w HHH ` Λ
rt,ss
g

yields (5). In large-scale MIMO with Nr ąą Nt, the columns
of H are asymptotically orthogonal [1], [31], which guarantees
that the Gram matrix HHH is symmetric positive definite
and diagonally dominant. Since σ2

w is positive and Λrt,ssg is
a diagonal matrix with positive entries, A is also symmetric
positive definite and diagonally dominant. This fact enables
the convergence of both NSE and GS methods when applied
to MIMO detection.

These techniques use A expressed as A “ D ` E, where
D “ diag pdiag pAqq is a diagonal matrix with the diagonal
entries of A. The NSE can approximate the inversion of A as
[19]

pAq´1
«

R´1
ÿ

n“0

´

´pDq´1 E
¯n
pDq´1 , (12)

where R indicates the number of terms of (12). Note that if
R Ñ8, then (12) yields the exact inverse. The computational
complexity of (12) is of OpNt

2q for R ď 2 and OpNt
3q (or

higher) for R ą 2. For this reason, hereafter it is used (12)
with R “ 2 to approximate the matrix inversion in (5), yielding

Σrt,ss « Σ
rt,ss
2 “ pDq´1

´ pDq´1 E pDq´1 . (13)

Also, the GS method solves a linear system of equations,
Ax “ b, that can be used to obtain an approximation of
the mean, bypassing the need of matrix inversion. We exploit
this technique to estimate µrt,ss in (6) by setting x “ µrt,ss,
A “ σ´2

w HHH`Λrt,ssg and b “ σ´2
w HHy`Λrt,ssg µ

rt,ss
g . The GS

iteratively estimates it as

µrt,ss,piq “ pD` Lq´1
´

b´ pLqH µrt,ss,pi´1q
¯

(14)

where i “ 1, ..., P, with P the number of iterations of the
GS algorithm and L “ trilrEs, i.e., the lower triangular part
of E. The computational complexity of (14) is dominated by
the inversion of a lower triangular matrix that requires OpNt

2q

[22].
Here it is proposed to use GS to better estimate the mean

values of the approximation of the EP posterior, keeping in
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Algorithm 5 Low-complexity DEP-GS IDD
Inputs: P, H, σ2

w and y
Run Alg. 3 with Step 3 replaced by:
3) Run Alg. 4 with A “ σ´2

w HHH`Λrt,ssg , b “ σ´2
w HHy`

Λ
rt,ss
g µ

rt,ss
g and P, to obtain µrt,ss “ µrt,ss,pPq and Σrt,ss “

Σ
rt,ss
2 .

Output: Deliver LrTsE pbk, jq to the decoder for k=1, ...,Nt and
j=1, ...,Q. Then provide the information bit estimates â.

mind that errors on the approximation of the mean have a
great impact on the BER. Since GS does not provides the
low-complexity estimation of the inverse of the matrix, just
solves the associated linear system, we propose to use NSE
with two terms for the covariance matrix estimation. Hence,
the overall complexity scales as OpNt

2q.
GS initialization in (14), µrt,ss,p0q, has an important role in its

convergence. Also, it has a direct impact on the computational
complexity, since the faster the convergence is achieved, the
lower the value of P needed. Following the guidelines in [23],
we exploit the NSE-based inverse approximation in (12) with
R “ 2 to obtain an initial value for the GS iteration process,

µrt,ss,p0q “ Σ
rt,ss
2 b. (15)

The whole procedure of the proposed GS-NSE approxima-
tion of the mean and covariance matrix of the EP posterior
in (5)-(6) is described in Alg. 4. When this approximation
is combined with the DEP explained in Section III, it yields
the low-complexity DEP-GS detector. Its implementation is
detailed in Alg. 5.

The overall complexity, that includes the computation of
(15), scales as OpNt

2Nr ` KpP ` 2qNt
2q, where typically

P ď 3. Note that the second term of the computational cost is
significantly lower than KNt

3 in the exact DEP.
At this point it is important to remark that DEP-GS with

P “ 0, S “ 0 and T “ 0 is the approximate LMMSE
detection via NSE with two terms proposed in [18], [19].
Also, if P ą 0, S “ 0 and T “ 0 then it yields the
LMMSE-GS in [23]. The DEP-GS with P “ 0, S ą 0
and T “ 0 is the approximate EP standalone detection via
NSE with two terms proposed in [21]. Finally, the DEP-GS
with P “ 0 and T “ 0 yields an improved version, with
the results in [15], of the NSE-based EP method proposed in
[21]. The EP method in [21] needs S “ 20, involving a high
computational complexity. Besides, by numerical simulation
we found that, as expected, the DEP-GS with P “ 1 or
P “ 2 improves its performance, with the same complexity
for the inverse computation, scaling as OpNt

2q. Accordingly,
we do not include [21] in the comparisons. In [20] it is
proposed an LMMSE NSE-based MIMO detection different
to the one described in (12). The authors introduce further
approximations for the covariance matrix and rewrite (12)
to avoid the initial computation of the Gram matrix. We
extend the proposal in [20] to DEP by replacing the a priori
mean and covariance matrix of the symbol transmitted in
[20] with, respectively, the EP mean and covariance matrix
approximations µ

rt,ss
g and pΛrt,ssg q´1. We use NSE therein to

TABLE I: Order of the computational complexities.

Algorithm Complexity Complexity in Sec. Section V

LMMSE Nt
2Nr ` T 1Nt

3 Nt
2Nr ` T 1Nt

3

EP-IC [11] Nt
2Nr ` T 12Nt

3 Nt
2Nr ` T 12Nt

3

BEP [15] Nt
2Nr ` KNt

3 Nt
2Nr ` T 14Nt

3

DEP Nt
2Nr ` KNt

3 Nt
2Nr ` T 12Nt

3

LMMSE-GS [23] Nt
2Nr ` T 1pP` 2qNt

2 Nt
2Nr ` T 14Nt

2

DEP-GS Nt
2Nr ` KpP` 2qNt

2 Nt
2Nr ` T 14Nt

2

DEP-NSE-I Kp4` 2RqNtNr T 110NtNr
DEP-NSE-II Nt

2Nr ` KpP` 2qNt
2 Nt

2Nr ` T 14Nt
2

20 22 24 26 28 30 32 34
10´4

10´3

10´2

10´1

SNR

B
E

R

LMMSE
EP-IC
BEP
DEP

Fig. 2: A comparison of the BER vs. SNR for growing Nt “ Nr: 4
(solid), 8 (dash-dotted), 64 (dashed) and 128 (dotted) for the LMMSE,
the EP-IC with S =1 [11], BEP with S =3 [15] and DEP with S =1
with a 256-QAM.

estimate the covariance matrix in (5) and the mean in (6). We
will refer to this approach as DEP-NSE-I. The computational
complexity of DEP-NSE-I scales as OpKp4` 2RqNtNrq where
R is the number of iterations of the NSE. This DEP-NSE
can be run, with the same result, changing the order in the
multiplication of matrices, leading to the complexity order of
the GS approximations. This other development is denoted
hereafter by DEP-NSE-II. Following the guidelines in [15],
the proposed parameters the DEP, DEP-GS and DEP-NSE are
set to ε “ 10´8 and β “ minpexppt{1.5q{10, 0.7q.

The computational complexity of the proposed algorithms
and the benchmark algorithms is detailed in Tab. I. In the
second column the complexity is given in terms of the tunable
parameters for a trade-off between performance and complex-
ity: K “ pT ` 1qpS ` 1q, T 1 “ T ` 1, the number of iterations
of the GS algorithm, P, and the number of terms of the
NSE approximation, R. The third column (Complexity in Sec.
Section V) reflects the complexity given the parametrization
used in next section, in terms of T 1 and replacing the values
of inner iterations, S , P and R used in the experiments.

V. Experimental Results

In this section we analyze the performance of IDD strategies
with the proposed DEP (�), its low-complexity versions, DEP-
GS (˝) and DEP-NSE (˚), LMMSE (O), LMMSE-GS with
P “ 2 [23] (Ÿ) and the inner loop EP approaches BEP [15]
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0 2 4 6 8 10 12 14

10´4

10´3

10´2

T

B
E

R

EP-IC
BEP S“0
DEP S“0
BEP S“1
DEP S“1
BEP S“3
DEP S“3
BEP S“10
DEP S“10

Fig. 3: BER versus the number of outer iterations T at SNR=30 dB,
with a 256-QAM, 6ˆ6 antennas and S = 0, 1, 3, 10, for the BEP and
DEP. EP-IC BER is also depicted.

(ˆ) and EP-IC [11] (˛). The number of iterations for the
DEP-GS and DEP-NSE were set to P “ 2 and R “ 3 [20].
Unless otherwise indicated, S “ 1 for the EP-IC, S “ 3 for
the BEP, S “ 1 for the DEP and S “ 0 for the DEP-GS
and DEP-NSE. The value of S “ 1 for DEP leads to the
same computational complexity as EP-IC and doubles the one
of the LMMSE. These parameters were selected to minimize
the BER while reducing the computational complexity, after
intensive simulation studies and in view of the experiments
shown in this section. In Tab. I, third column, we include the
order of the computational complexity for the methods in these
experiments.

We depict the BER for several scenarios. In the experiments,
unless otherwise indicated, results are averaged over 102

random encoded words of length V “ 4096 using low-density
parity-check (LDPC) codes of rate r “ 1{2, sent trough 102

random channel samples. The number of outer iterations was
set to T “ 10. Each complex valued channel coefficient is
independent and identically Gaussian distributed with zero
mean and unit variance. The absolute value of LLRs given
to the decoder is limited to 3 in order to avoid very confident
probabilities. In some of the figures, the BER at the waterfall
for the SIMO case with equal ρ as in the given experiment is
depicted as reference, in dashed thick black line.

A. Non-orthogonal MIMO Scenarios

In an uncorrelated MIMO scenario, as Nt tends to Nr

the Gram matrix HHH losses the property of orthogonality
between columns. Other sources of MIMO orthogonality loss
in ρ “ Nt{Nr ăă 1 is spatial correlation in the propagation
scenario, due either both to low scattering or compact antenna
designs, and here again the Gram matrix HHH is not diagonal
dominant anymore. To analyze the effect of this orthogonality
loss in DEP and its low-complexity approaches we focus in
MIMO scenarios where ρ “ Nt{Nr 3 1 with no spatial
correlation. In Fig. 2 we depict the BER versus SNR for
square (ρ “ 1) configurations, i.e., N “ Nt “ Nr systems,
and some of the proposed solutions. We did not depict the

approximations, as they exhibited poor results in the square
case. As N grows, from 4 to 128, the DEP and BEP perform
equally good. For large N, N “ 64 and N “ 128, the
solutions provide the same BER. Here the EP-IC exhibits a
good performance but 2 dB far from the DEP/BEP solutions.
As the number of antennas decreases, the probability of the
channel matrix to be singular increases as well. Accordingly,
for a low number of antennas the BER increases and DEP/BEP
approaches exhibit even larger gains with respect to the EP-IC.

The computational complexity of the DEP, with S “ 1,
is half the one of BEP with S “ 3 as in [15], and similar
to the one of EP-IC, with S “ 1, see Tab. I. In Fig. 3 we
include the convergence versus the number of outer iterations
T with different values of S for the BEP and the DEP in the
Nt “ Nr “ 6 scenario. Note that the BEP with S “ 0 yields
the LMMSE. It can be observed how with just the outer EP,
for S “ 0, the DEP outperforms the BEP with S “ 3. Also,
with S “ 1, the DEP exhibits a good performance in terms
of BER while the computational complexity is half the one of
the BEP.

Fig. 4 includes the study of the state evolution [10], [16] for
the DEP focusing on different points of the IDD scheme. We
compute the MSE between the true values of the symbols and
the ones estimated at the output of the EP based detector (EP1
in our proposed IDD scheme) (˝), the output of the channel
decoder (input to the EP2 in our proposed IDD scheme) (˛)
and the output of a LMMSE detector whose priors have been
initialized with the output values of the channel decoder, or
equivalently, in our proposed IDD scheme, the input to the
EP detector (EP1) (�). The constellation, a 256-QAM, is
normalized to unit energy. It can be observed, for different
SNR and from top to bottom, how the estimations are being
refined. We set S “ 10 to better observe the improvement of
the inner EP loop.

The proposed solutions present a robust behaviour regard-
less of the rate of the code. In Fig. 6 we depict the BER for

23 24 25 26 27 28 29 30 31
10´6

10´5

10´4

10´3

SNR

M
SE

In Det.
Out Det.
Out Dec.

Fig. 4: MSE vs. SNR for the DEP in the 128 ˆ 128 antennas and
256-QAM scenario after T “ 1 (dotted), T “ 2 (solid), T “ 3
(dashed) and T “ 4 (dash-dotted) iterations at the output of the
channel decoder, the input to the detector and the output of the
detector.
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4.5 5 5.5 6 6.5 7
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10´1
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E

R

LMMSE
LMMSE-GS
EP-IC
BEP
DEP
DEP-GS
DEP-NSE

(c)

Fig. 5: BER for a) 16ˆ32, b) 16ˆ64 and c) 16ˆ128 antennas, 64-
QAM, with LMMSE and its GS approximation with P=2, EP-IC
with S =1 [11], BEP with S =3 [15], DEP with S =1 and T=10 and
DEP-GS, DEP-NSE approximations with S =0 and T=10.

N “ 128 as in Fig. 2 but with larger code words, V “ 64800,
and rates r “ 1{4, 1{3, 1{2 and 3{4. As the rate increases,
the impact of the EP-based detector in the inner loop is
emphasized, with higher gains with respect to the EP-IC.

15 20 25 30 35
10´4

10´3

10´2

10´1

SNR

B
E

R

LMMSE
LMMSE-GS
EP-IC
BEP

Fig. 6: BER vs. SNR in the 128 ˆ 128 antennas scenario for V “

64800 and rates 1/4 in (solid), 1/3 (dash-dotted), 1/2 (dashed) and
3/4 (dotted) for the LMMSE, the EP-IC, DEP and BEP. A 256-QAM
was transmitted and T “ 5.

For Nt ă Nr MIMO channel matrices with ρ “ 1
2 3 1,

see Fig. 5.a and Fig. 8.a, low-complexity techniques might
enhance with respect to the squared case but are still far from
the solution of the DEP, BEP or EP-IC. It can be observed
that for ρ “ 1{2, DEP-GS provides some useful output just
for the 64-QAM scenario. Besides, BEP and DEP exhibit a
similar performance, slightly better than the one of the EP-IC.

B. Orthogonal MIMO Scenarios

As ρ decreases the columns of the Gram matrix HHH
become more diagonal, since the columns of H are more
orthogonal, favouring detection. In Fig. 5.b-c and Fig. 8.b-
c where ρ ď 1{4 the DEP, BEP or EP-IC achieve the same
BER, with 0.5 dB gain compared to the LMMSE. Furthermore,
low-complexity approaches can be used as conditions for their
convergence are met. It can be observed in Fig. 5.b and Fig. 8.b

0 2 4 6 8 10

10´3

10´2

T

B
E

R

EP-IC
LMMSE-GS
DEP-GS
BEP S “0
DEP S “0
BEP S “1
DEP S “1
BEP S “3
DEP S “3
BEP S “10
DEP S “10

Fig. 7: BER versus the number of outer iterations T at SNR=6 dB,
for a 64-QAM and 16ˆ128 antennas and S = 0, 1, 3, 10, for the BEP
and DEP. EP-IC BER is also depicted.
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how the IDD with the DEP-GS detector achieves a good result,
even slightly better than the one of the DEP. Note that in
previous works, see [20, Fig. 1] where T “ 0, this effect can
be observed, here is further enhanced by the IDD process. As

15.5 16 16.5 17 17.5 18 18.5 19 19.5
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B
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R
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LMMSE-GS
EP-IC
BEP
DEP
DEP-GS
DEP-NSE

(a)

12 12.5 13 13.5 14 14.5 15
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R
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LMMSE-GS
EP-IC
BEP
DEP
DEP-GS
DEP-NSE

(b)

9 9.5 10 10.5 11 11.5
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R
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EP-IC
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DEP
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DEP-NSE

(c)

Fig. 8: BER for a) 16ˆ32, b) 16ˆ64 and c) 16ˆ128 antennas, 256-
QAM, with LMMSE and its GS approximation with P=2, EP-IC
with S =1 [11], BEP with S =3 [15], DEP with S =1 and T=10 and
DEP-GS, DEP-NSE approximations with S =0 and T=10.

4 6 8 10 12 14 16 18 20
10´4
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E

R
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Fig. 9: BER vs. SNR in the 16 ˆ 64 antennas scenario for V “

64800 and rates 1/4 in (solid), 1/3 (dash-dotted), 1/2 (dashed) and
3/4 (dotted) for the LMMSE , LMMSE-GS, the EP-IC, DEP, BEP,
and DEP-GS and DEP-NSE. A 256-QAM was transmitted and T “ 5.

ρ decreases, for ρ “ 1{8 in Fig. 5.c and Fig. 8.c the DEP-NSE
provides the same BER as the one of the DEP-GS with a much
lower complexity.

The proposed solutions present a robust behaviour regard-
less of the rate of the code. In Fig. 9 we depict the BER for the
same scenario as in Fig. 8.b, i.e., 16ˆ64 antennas, V “ 64800
bits as code length and rates r “ 1{4, 1{3, 1{2 and 3{4. As the
rate decreases, the feedback from the channel decoder very
much reduces the BER. For low values, even the LMMSE-GS
provides quite a good result. As the rate is increased, e.g.,
r “ 3{4, the LMMSE-GS becomes unavailable, while non
approximating solutions exhibit a gain of 0.5 dB.

In Fig. 7 we depict the BER versus the number of outer it-
erations. It can be concluded that as the Gram matrix becomes
diagonal, the DEP provides approximately the same BER
regardless of the number of inner iterations S . Accordingly, we
used S “ 0 for the low-complexity EP approaches. This BER
is similar to the BER of the EP-IC. The BEP needs S ą 3
to achieve this error. Besides, the DEP-GS method has not
the lowest BER for T “ 0, however, after a couple of outer
iterations it has slightly outperformed the other approaches.

C. Computational complexity

First, it is important to remark that EP itself involves a
computational complexity linear in the number of unknowns.
Hence, the complexity of these novel proposals is not driven
by the EP technique, but by the computation of the inverse of
the matrix associated to the MIMO detection in the inner loop.
While in a LMMSE stand-alone solution we need to invert
a matrix once, in the inner loop of our IDD scheme, DEP
and BEP need S ` 1 inversions to refine the solution with EP.
Hence, the DEP and the BEP involve S`1 times the equivalent
computational complexity of computing a linear MMSE. In the
outer loop, in the feedback from the channel decoder, there is
no inversion associated and the computational complexity of
the EP is again linear with the number of variables.
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This is evidenced in Tab. I, where we present the complexity
for the parameter values used in this section. LMMSE has
complexity order of N3

t with the number of outer iterations,
T 1, while BEP, with S “ 3, has 4N3

t . The EP-IC has 2N3
t but

worse performance, see the square case in the experiments. In
this paper we investigate a new detector with the performance
of the BEP and the computational complexity of the EP-IC,
i.e., 2N3

t . Introducing EP in the outer loop quite improves the
BEP, allowing for similar performance with much less inner
iterations. Note that the computational complexity order of the
DEP in Table I, for S “ 1, is twice the one of the LMMSE.

If conditions are good enough, for ρ ă 1, inner iterations
could be avoided, with S “ 0. For S “ 0 the DEP has the
same computational complexity as the LMMSE. In Fig. 7 it
can be observed that DEP solutions for S “ 0 to S “ 10 in
(�) are quite similar. The BEP would need S ě 1 to achieve
the performance of the DEP. In addition, the approximations
to compute the inverse can be introduced, further reducing
the computational complexity, as in Fig. 5 or Fig. 8, where
the DEP with S “ 0 and approximations for the inverse are
analyzed. In these scenarios, the DEP-NSE-II in Tab. I might
have a lower computational complexity than the DEP-NSE-I.

VI. Conclusions
The novel DEP IDD MIMO detector applies the EP algo-

rithm twice: to obtain a more accurate Gaussian approximation
at the output of the detector and to better approximate with
Gaussians the discrete output at the channel decoder. This
novel detector greatly outperforms the LMMSE and the EP-IC
approaches with a complexity that is just two times the one of
the LMMSE. However, this complexity, that scales with Nt

3,
can be excessively high for large number of antennas. To avoid
this drawback, we also propose a low-complexity DEP detector
based on the NSE and GS methods to approximate, respec-
tively, the covariance matrix and the mean of the EP solution.
In the experimental results included, the low-complexity DEP
approaches the BER of the DEP as the ratio ρ decreases, with
quadratic complexity in the number of antennas.

Although the DEP with S “ 1 is presented as a robust
solution with a good compromise between complexity and
performance, in scenarios where detection is not challeng-
ing, S can be set to zero, with similar complexity as the
LMMSE. Besides, approximate solutions can also be applied,
with further reduced computational complexity and similar
performance.
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