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Abstract

Despite the fact that artificial intelligence boosted with data-driven methods (e.g., deep neural networks) has surpassed human-
level performance in various tasks, its application to autonomous

systems still faces fundamental challenges such as lack of interpretability, intensive need for data and lack of verifiability. In
this overview paper, I overview some attempts to address these fundamental challenges by explaining, guiding and verifying
autonomous systems, taking into account limited availability of simulated and real data, the expressivity of high-level

knowledge representations and the uncertainties of the underlying model. Specifically, this paper covers learning high-level
knowledge from data for interpretable autonomous systems,

guiding autonomous systems with high-level knowledge, and

verifying and controlling autonomous systems against high-level specifications.
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Interpretable, Data-Efficient and Verifiable Autonomy with
High-Level Knowledge

Zhe Xu

1 introduction

Despite the fact that artificial intelligence boosted with data-driven methods (e.g., deep neural
networks) has surpassed human-level performance in various tasks [1], its application to au-
tonomous systems still faces fundamental challenges. Several recent high-profile traffic incidents
involving autonomous vehicles have revealed the serious consequences of current applications
and the imperative need to address these challenges [2].

• Lack of Interpretability: Few of the autonomous systems using data-driven methods can
explain their behaviors and reason over the decision-making process in a way that humans
can understand. In order to work seamlessly with humans, these systems need to commu-
nicate and explain their motivations, strategies and competence in performing various tasks
to humans. Interpretability is especially needed for safety-critical tasks such as autonomous
driving.

• IntensiveNeed forData: Most data-drivenmethods in autonomous systems are data-intensive
and lack commonsense knowledge and reasoning that are natural to humans. For example, re-
inforcement learning tasks often require extensive exploration of the environment to achieve
satisfactory performance. On the other hand, the data available for performing such tasks
are often limited or costly to obtain.

• Lack of Verifiability: The autonomous systems using data-driven methods tend to lack
the deterministic features of traditional software, making the application of standard ver-
ification approaches substantially less effective. The lack of verifiability causes safety and
security concerns, hence it is imperative to build cost-effective tools to verify such systems.

I address these fundamental challenges by explaining, guiding and verifying autonomous sys-
tems, taking into account limited availability of simulated and real data, the expressivity of high-
level knowledge representations and the uncertainties of the underlying model. To that end, my
approaches weave together the theories and techniques in machine learning, formal methods and
control theory.

• Learning High-Level Knowledge from Data for Interpretable Autonomous Systems: I
develop computationally efficient methods to learn high-level knowledge representations
from data generated from autonomous systems with embedded data-driven modules. Such
high-level knowledge representations need to be both understandable and informative to
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humans, and amenable to automated reasoning. For example, I have used various variants
of temporal logics to represent such high-level knowledge. In comparisonwith precise system
identification and coarse sub-goal identification, inference of temporal logic formulas offers
a balance between expressivity and human understanding in characterizing the task speci-
fications. Traditional algorithms for inferring temporal logic representations do not scale to
complex concepts, and the informativeness of the inferred formulas over prior knowledge
is rarely considered. I develop an algorithm to learn informative temporal logic formulas
with polynomial time complexity with respect to the size of the formula. I have also pro-
vided the first set of methods to learn temporal logic formulas to analyze multi-agent group
behaviors, discover spatial-temporal patterns, and detect fault in a cyber-physical system in
a privacy-preserving manner.

• Guiding Autonomous Systems with High-Level Knowledge: High-level knowledge can
provide contextual information for guiding the autonomous systems towards better task per-
formance. I conceptualize and develop a framework that enables a reinforcement learning
agent to reason over its exploration process and distill high-level knowledge for effectively
guiding its future explorations. Such knowledge can also be transferred from an original
well-studied task to a new task, if these two tasks share some logical similarities. The result-
ing performance shows that the high-level knowledge can improve the sampling efficiency
of the learning agent by up to two orders of magnitude.

• Verifying and Controlling Autonomous Systems Against High-Level Specifications: I
provide safety and correctness guarantees for autonomous systems through formal verifi-
cation and provably correct synthesis. While there has been research on verifying physical
systems with neural networks in the decision and control loop, such verification has been
limited to properties without a temporal evolution. I have developed verification and prov-
ably correct synthesis methods with high-level temporal logic specifications for non-linear
hybrid systems, multi-agent systems with intermittent communication, etc. The developed
methods have wide applications in robotic systems, power systems, smart buildings and
biological systems.

2 Learning (inferring) temporal logic formulas from data

With the increasing development of artificial intelligence and machine learning, there has been
a growing interest in learning (inferring) dense time temporal logic formulas from system tra-
jectories. The process of extracting knowledge from data is crucial in reverse engineering. In
comparison with precise system identification and coarse high-level specification inference, tem-
poral logic inference may provide the right amount of precision in characterizing the system be-
haviors. Recently, there has been a growing interest in learning (inferring) dense-time temporal
logic formulas from system trajectories [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

Given two sets of trajectories, I am interested in finding a temporal logic formula that can clas-
sify these two sets of trajectories. If only one set of trajectories are available, I am interested in
identifying a temporal logic formula that best fits the trajectories with respect to certain fitness
measures. Both the classification and identification of temporal logic belong to temporal logic

2



inference from data.

How to utilize a priori information in performing temporal logic inference?

I applied the temporal logic inference algorithm in the classification and identification of robot
arm movements of Phantom Omni haptic devices [15]. The motivation for our work is to enable
robots to learn from human demonstrations and generate temporal logic specifications from the
demonstration data. I inferred STL formulas that can classify different robot arm movements,
predict sequential robot arm movements and identify different goals and obstacles during dif-
ferent time intervals. For these purposes, it is natural to assume that a priori information about
(some of) atomic predicates involved in the formulas is available. For example, we can naturally
assign a set of the state-space to the predicate “the arm is stretched upright”. By including such a
prior information in the inference process, we can ensure that the STL formulas are composed of
atomic predicates with a priori assigned meaning.
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Figure 1: Trajectories generated from Model 1 (left) and
Model 2 (right) with EGF dose of 0.1nM using 20000 tra-
jectories generated from Model 1 and 20000 trajectories
from Model 2.

How to perform temporal logic inference for
model discrimination?

Mathematical models can be used to gener-
ate hypotheses that can guide experiments of
biological systems. How to select better mod-
els and check which model is more represen-
tative of the real biological systems has always
been a challenge. I designed a method for dis-
criminating among competing models for bio-
logical systems by learning temporal logic for-
mulas from data obtained by simulating the

models. I applied the temporal logic inference method in discriminating between two competing
mathematical models of extracellular signal-regulated kinase (ERK) responses to epidermal growth
factor (EGF) stimulation [4] (see Fig. 1).

How to perform temporal logic inference for classification with spatial and temporal uncer-
tainties?

Besides classifying finitely many trajectories in different sets, I can also classify infinitely many
trajectorieswith initial state variations anddisturbances, which accounts for the spatial uncertain-
ties; I also consider the time variations when the switching events occur in a switched system,
which accounts for the temporal uncertainties. I designed observationmaps in the form of tempo-
ral logic formulas for fault detection and privacy preservation of cyber-physical Systems with
temporal and spatial uncertainties in a provably correct fashion (see Fig. 2). I implemented the
method on the simulationmodel of a smart building testbed for detecting the open window fault
while preserving multiple privacy conditions of the room occupancy [16, 17]. The approach can
also be applied to distinguish the infinitely many trajectories in different locations of a hybrid
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system to improve the observability of the system [18].
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Figure 2: A compact set of infinitely many trajectories can
be approximatedwith a finite set and the observationmap
Π can project the system behaviors into an observation
space where the images of the normal behaviors and the
faulty behaviors are separate while for privacy preserva-
tion the images of the behaviors with privacy conditions
σi and σj have to be close.

How to extend the inference approach to
multi-agent systems?

I defined a new type of signal tempo-
ral logic specifically for multi-agent systems:
census signal temporal logic (CensusSTL)
[19]. The CensusSTL consists of an “in-
ner logic” formula that characterizes a con-
sistent, frequent and specific task and an
“outer logic” formula that characterizes the
pattern of the number of agents in certain
subgroups whose behaviors satisfy the “inner
logic” formula. I proposed a new inference
algorithm that can infer the CensusSTL for-
mula directly from individual agent trajecto-
ries and applied the inference algorithm to an-
alyzing the strategies of a soccer game with
the data of body sensors equipped on each
player.

3 Reinforcement learning and transfer learning utilizing high-level knowl-
edge

The sampling efficiency and performance of reinforcement learning can be improved if some
high-level knowledge (e.g., temporal logic formulas, finite-state machines) can be incorporated
in the learning process [20, 21].

How to utilize high-level knowledge for improving reinforcement learning?

I conceptualized and developed a framework to achieve joint inference of high-level knowledge
and policies for reinforcement learning [20]. In this framework, the high-level knowledge (e.g.,
temporal logic formulas, finite-state machines) is inferred simultaneously while the reinforce-
ment learning proceeds, and the inferred high-level knowledge can effectively guide the future
explorations of the learning agent. The experiments show that learning high-level knowledge
can lead to fast convergence to optimal policies, while standard reinforcement learning methods
fail to converge to optimal policies after a substantial number of training steps in many tasks.

How to utilize high-level knowledge for transfer learning?

The inferred temporal logic formulas can be also transferred from a source task to a target task if
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these tasks are logically similar. While the transfer of logical knowledge without a temporal context
has been studied in reinforcement learning, i.e., learning for sequential decision-making, transfer
between tasks in temporal context has attracted significantly less attention. I concretized similarity
between temporal tasks through a notion of logical transferability, and developed a transfer learn-
ing approach between different yet similar temporal tasks. If logical transferability is identified
through this inference, I construct an automaton for each subformula of the inferred temporal
logic formulas from both source and target tasks, and perform reinforcement learning on the
extended state which includes the states of the automata representing the subformulas for the
source task. I then establish mappings between the corresponding components of the automata
from the two tasks, and transfer the extended reward and policy information based on these
established mappings. Finally, I perform reinforcement learning on the extended state for the
target task, starting with the transferred extended reward and policy information. The experi-
mental results show, depending on how similar the source task and the target task are, that the
sampling efficiency for the target task can be improved by up to one order of magnitude by perform-
ing reinforcement learning in the extended state space, and further improved by up to another order
of magnitude using the transferred extended reward and policy information [8].

4 System verification with respect to temporal logic specifications

Given a temporal logic specification, I am interested in analyzing whether all the trajectories
within certain robust neighbourhood around a nominal trajectory simulated by a system (e.g.
hybrid system, non-linear system) can satisfy the given temporal logic specification within cer-
tain time horizon. This problem is referred to as robust testing or verification problem with tem-
poral logic specifications [22].

How to perform robust testing of temporal logic specifications in nonlinear hybrid systems?

Complex systems such as power systems can be very vulnerable to disturbances or intended
attacks. How can we make sure that these systems are stable or behave as they are designed to
behave? If the desired behavior is specified in the form of temporal logic formulas such as “line
currents should never exceed the threshold value for more than 0.1 seconds”, then I can perform robust
testing of temporal logic specifications for the nonlinear hybrid system model of power systems.
I first proposed the algorithm of computing the bounded disturbance local discrepancy function for a
general nonlinear system and then extended themethod to hybrid systems [22]. I applied the ro-
bust testing algorithm in power systems cascading failures mitigations in two different scenarios
(see Fig. 3): robust testing of various generator mechanical power dispatch schedules; robust testing of
post-fault remedial actions based on quick-start storage. I performed robust testing on a three-machine
power system model for the Italian blackout in 2003 and the IEEE 39-bus benchmark system.

5 Controller synthesis with respect to temporal logic specifications
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Figure 3: A simulated trajec-
tory from initial state x0 can be
equipped with a robust neighbor-
hood such that variations in the
initial state or bounded distur-
bance will not deviate the trajec-
tory beyond the robust neighbor-
hood, thus safety is guaranteed
(cascading failures are proven to
be avoided).

With a temporal logic specification, I am also interested in
designing a controller such that the trajectories of the con-
trolled system satisfy the given temporal logic specification.
This problem is referred to as the controller synthesis prob-
lem with temporal logic specifications [23, 24, 25, 26, 27,
28].

How to synthesize controller with temporal logic specifica-
tions for nonlinear DAE (differential-algebraic equations) sys-
tems?

I proposed a controller synthesis method to regulate grid fre-
quencies with energy storage systems, so that the system trajecto-
ries satisfy theMTL specifications about the grid frequency devia-
tions and the wind turbine generator rotor speed deviations [29].
I formulated the metric temporal logic (MTL) specification as a
constraint and applied the functional gradient descent method to
both satisfy the MTL constraint and minimize an objective func-
tion as a performance metric of the controller. The gradients of both the objective and the con-
straint functions are calculated specifically for DAE systems.

I simulated finitely many post-fault trajectories (after the fault is cleared) with different fault
clearing time such that the initial robust neighborhoods of these simulated trajectories can cover
all the post-fault initial states (all the possible states when the fault is cleared) with given uncer-
tainties in the fault clearing time. In this way, all the post-fault trajectories that start from the set
of post-fault initial states (including the uncertainties in the fault clearing time) are guaranteed
to stay in the robust neighborhoods around the nominal (simulated) trajectories and satisfy the
MTL specifications.

Is it possible to learn a feedback control law from the state and input data of the feedforward
controller?

I learned a piecewise linear control law from the data of the optimal input signals and the
states of the simulated trajectories. I used robust linear programming to find the classification
functions for the subclasses and construct piecewise linear classifiers in partitioning the state
space so that the state space is totally covered. I have proven and tested with simulations that
any trajectory starting from the initial set with the feedback controller are guaranteed to satisfy
the metric temporal logic (MTL) specification [29]. Besides, simulations show that even when
unexpected disturbances occur, trajectories generated with the feedback controller can still sat-
isfy the MTL specification in certain cases and have better performance in comparison with the
trajectories generated with the feedforward controller.

How to synthesize controller with temporal logic specifications in stochastic environment?

6



I proposed the stochastic control bisimulation function, which bounds the divergence of the tra-
jectories of the stochastic control system and the diffusionless deterministic control system in a
probabilistic fashion [30]. I designed a feedforward controller by solving an optimization prob-
lem for the nominal trajectory of the deterministic control system with robustness against initial
state variations and stochastic uncertainties. Then I learned a feedback control law from the state
and input data of the feedforward controller. As an implementation, I applied the proposed ap-
proach in controlling a wind farm and an energy storage system for frequency regulation with
provable probabilistic safety guarantees in the stochastic environment of wind power generation.
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Figure 4: Block Diagram of the advisory STL
subformula inference (learning), controller
design and refinement process.

Is it possible to combine the temporal logic inference
and controller synthesis processes?

Few of the existing works utilize the inferred tempo-
ral logic formulas as features of the desired set for iter-
atively improving the performance of future generated
trajectories. As an example, in uncertain or adversarial
environment, robots with all the necessary sensors may
still fail to complete tasks within specified time if wrong
strategies are employed. To improve the performance
of the robots in these situations, we can utilize the tra-
jectories of the robots generated in successful or failed
attempts to provide valuable information or knowledge
for advising or guiding the future operations.

I proposed a method to iteratively learn (infer) and refine a set of advices from the trajectories
generated in the successful and failed attempts in a task, with each advice in the form of advi-
sory signal temporal logic (STL) formulas [25]. Each advice consists of an advisory motion STL
formula that characterizes the spatial-temporal pattern of the motion as a feature of success and
an advisory selection STL formula as a criterion for the environment to select the advice. The ad-
visory controller can advise or guide the human operators or the robots for better performance
with the shared autonomy between the human operator and the controller (see Fig. 4).

I implemented the approach in two case studies to test the effectiveness of the advisory con-
troller, one with a Baxter-On-Wheels simulator using the keyboard control and the other with
two quadrotors in an experimental testbed using the joystick control in iteratively improving the
success rates of completing the tasks with the help of the designed advisory controller.
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