
P
os
te
d
on

2
J
u
l
20
20

—
C
C
-B

Y
-N

C
-S
A

4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
25
93
55
5.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
o
u
ld

n
ot

b
..
.

Optimization of the PointPillars network for 3D object detection in

point clouds

Joanna Stanisz 1, Konrad Lis 1, Tomasz Kryjak 2, and Marek Gorgon 1

1Affiliation not available
2AGH University of Science and Technology

October 30, 2023

Abstract

In this paper we present our research on the optimisation of a deep neural network for 3D object detection in a point cloud.

Techniques like quantisation and pruning available in the Brevitas and PyTorch tools were used. We performed the experiments

for the PointPillars network, which offers a reasonable compromise between detection accuracy and calculation complexity. The

aim of this work was to propose a variant of the network which we will ultimately implement in an FPGA device. This will

allow for real-time LiDAR data processing with low energy consumption. The obtained results indicate that even a significant

quantisation from 32-bit floating point to 2-bit integer in the main part of the algorithm, results in 5%-9% decrease of the

detection accuracy, while allowing for almost a 16-fold reduction in size of the model.

1



Optimisation of the PointPillars network for 3D
object detection in point clouds

Joanna Stanisz
AGH University of Science

and Technology Krakow, Poland
E-mail: stanisz@student.agh.edu.pl

Konrad Lis
AGH University of Science

and Technology Krakow, Poland
E-mail: lis@student.agh.edu.pl

Tomasz Kryjak, Senior Member IEEE
AGH University of Science

and Technology Krakow, Poland
E-mail: tomasz.kryjak@agh.edu.pl

Marek Gorgon, Senior Member IEEE
AGH University of Science

and Technology Krakow, Poland
E-mail: mago@agh.edu.pl

Abstract—In this paper we present our research on the
optimisation of a deep neural network for 3D object detection
in a point cloud. Techniques like quantisation and pruning
available in the Brevitas and PyTorch tools were used. We
performed the experiments for the PointPillars network, which
offers a reasonable compromise between detection accuracy and
calculation complexity. The aim of this work was to propose
a variant of the network which we will ultimately implement
in an FPGA device. This will allow for real-time LiDAR data
processing with low energy consumption. The obtained results
indicate that even a significant quantisation from 32-bit floating
point to 2-bit integer in the main part of the algorithm, results
in 5%-9% decrease of the detection accuracy, while allowing for
almost a 16-fold reduction in size of the model.

I. INTRODUCTION

The detection of objects, i.e. vehicles, pedestrians, cyclists,
animals etc. is crucial in advanced driver assistance systems
(ADAS) and autonomous vehicles (AV). It can be based on
data from radars, cameras and LiDARs (Light Detection and
Ranging). The first two sensors are quite commonly used in
vehicles currently (2020) available on the market and equipped
with ADAS solutions. However, fully autonomous vehicles
(4 and 5th level of SAE classification) are often addition-
ally equipped with the LiDAR sensor. The most well-known
examples are vehicles from Waymo 1, but most major car
manufacturers and component manufacturers (Bosch, Aptiv)
have test vehicles equipped with these sensors. The advantages
of the LiDAR, which is an active sensor, are low sensitivity to
lighting conditions (including correct operation at nighttime)
and a fairly accurate 3D mapping of the environment, espe-
cially at a short distance from the sensor. The disadvantages
include improper operation in the case of heavy rainfall or
snowfall and fog (laser beam scattering occurs), deterioration
of the image quality along with the increasing distance from
the sensor (sparsity of the point cloud) and a very high
cost. The last issue is the major reason that prevents this
technology from being used more widely in commercially
available vehicles. However, it should be noted that there

1they are also the vehicles with the largest number of autonomously driven
kilometres

is constant progress in this area, including so-called solid-
state solutions (without moving parts). Therefore, one should
expect that the LiDAR cost will be much lower soon. The
output from a LiDAR sensor is a point cloud, usually in the
polar coordinate system. A reflection intensity coefficient is
assigned to each point. Its value depends on the properties of
the material from which the beam was reflected.

Because of the rather specific data format, object detection
and recognition based on the LiDAR point cloud signifi-
cantly differs from the methods known from “standard” vision
systems. Generally, two approaches can be distinguished:
“classic” and based on deep neural networks. In the first,
the input point cloud is subjected to pre-processing (e.g.
ground removal), grouping (using clustering or fixed three-
dimensional cells), feature vector calculation and classifica-
tion. These methods achieve only moderate accuracy on widely
recognised test data sets – i.e. KITTI [6], [8].

In the second case, deep convolutional neural networks are
used. They provide excellent results (cf. the KITTI rank-
ing [8]). However, the price for the high accuracy is the
computational and memory complexity, and the need for
high-performance graphics cards (GPU) – for training and
inference. This stands in contrast with the requirements for
systems in autonomous vehicles, where the aim is to reduce the
energy consumption while maintaining the real-time operation
and high detection accuracy.

Recently, a very promising research direction in embedded
deep neural networks is the calculation precision reduction
(quantisation). In many publications, it has been shown that the
transition from a 32-bit or 64-bit floating point representation
to a fixed point and in an extreme cases even to a binary one,
results in a relatively small loss of precision, and a very sig-
nificant reduction in computational and memory complexity.
For example, in [7] experiments with a binary and in [11] with
ternary network were presented. In addition, it is possible to
use pruning (removing less important neurons), which allows
to further reduce the computational complexity of the network.

In this work we evaluate the possibility of applying the
above-mentioned optimisations to a deep neural network for



object detection on point cloud data from a LiDAR sensor.
Based on the initial analysis, we selected the PointPillars
[9] network, mainly due to the favourable ratio of detection
precision to the computational complexity. Then, using the
Brevitas [2] and PyTorch libraries, we conducted a series
of experiments to determine how limiting the precision and
pruning affects the detection precision. We were able to obtain
almost a 16-fold reduction in the size of the model, by chang-
ing the precision from 32-bit floating-point to 2-bit integer.
This resulted in 5%-9% decrease of the detection accuracy,
which should be regarded as moderate and acceptable. To our
knowledge, similar experiments for this network have not been
previously described in the literature. This research is a stage
in the work on implementing the PointPillars network in an
FPGA (Field Programmable Gate Array) device. This would
allow to create an energy-efficient and working in real-time
embedded object detection system.

The reminder of this paper is organised as follows. In
Section II the general scheme of an object detection system
based on data from the LiDAR sensor, the methods described
in the literature, and the available LiDAR data sets are dis-
cussed. Section III presents the used PointPillars network. The
applied optimisation methods, tools, comparison with similar
approaches, and the obtained results are presented in Section
IV. The paper ends with a summary and an indication of
further research directions.

II. OBJECT DETECTION FROM A LIDAR POINT CLOUD

Object detection from a LiDAR can be divided into several
stages. The first is data acquisition from the sensor followed by
an optional coordinate system change – from polar to Carte-
sian. The next two stages are pre-processing: the detection and
removal of the ground and data filtration (removal of single
points). An example ground removal algorithm is presented in
[3]. The next step is data segmentation. Its output are separate
groups of points that will be classified. The final stage is object
detection and recognition. In the classical approach it consists
of: feature extraction, classification and final object grouping.
For the feature vector, the most commonly used quantities
are: real cluster dimensions, the number of points, elements
of the covariance matrix, elements of the inertia tensor, central
moments or reflectance intensity histogram. For classification
the Support Vector Machine algorithm is often used [14].

In recent years, the detection and recognition stages have
been often implemented using deep convolution neural net-
works. Similar to image processing, these methods integrate
virtually all processing steps, including feature extraction and
classification. They are characterised by high computational
and memory complexity, but also assure high recognition
performance. We can make the following breakdown among
neural networks for LiDAR data processing:

• 2D methods – the point cloud is projected onto one
or more planes, which are then processed by typical
convolutional networks – e.g. the MV3D method [4],

• 3D methods – the point cloud is processed without
reducing the third dimension, the following subdivision

can be made:
– methods operating on points – these methods per-

form semantic segmentation or classify the entire
cloud as an object – an exemplary method is Point-
Nets [12],

– methods operating on cells – these methods divide
the three-dimensional space into cells (fixed size),
aggregate the features of particular points into a fea-
tures vector for a given cell and process the matrix
of cells with 2D or 3D convolutional networks –
examples are VoxelNet [16] and PointPillars [9]
(described in more detail in Section III),

– hybrid methods – methods partly using both of the
above described approaches – an example is PV-
RCNN [13].

The main advantage of the PointPillars solution in compari-
son to other methods operating on cells is the use of 2D instead
of 3D convolutions (like in VoxelNet [16]). This significantly
reduces the computational complexity of the system, while
maintaining the detection accuracy. Therefore, we decided to
start research on its acceleration.

In the scientific community working on object detection for
autonomous vehicles the following databases are used: KITTI,
Waymo Open Dataset and NuScenes. The most popular of
them is the KITTI Vision Benchmark Suite [6], which was
created in 2012. Besides the point cloud from the LiDAR
sensor, images from four cameras are also available in the data
set: two monochrome and two colour ones, and information
from the GPS/IMU navigation system. In the object detection
category, an important element of the database is the training
data set containing 7481 photos along with the corresponding
point clouds and annotated objects. In addition, KITTI keeps
a ranking of object detection methods in categories: BEV
(bird eye view) and 3D. In the first case, the output of the
algorithm is compared to a rectangle describing the object in
the top view (3D data is projected into 2D). In the second,
the output is compared with a cuboid describing the object in
3D. In addition, the test cases are divided into three levels of
difficulty.

In the experiments described in Section IV we decided to
use the KITTI data set due to the following reasons. KITTI is
still the most widely used LiDAR database. This is because
of a ranking, which is highly recognised in the scientific
community and contains results for many algorithms. Thanks
to this, it is easy to compare a new solution with those
proposed so far. In addition, the PointPillars network was
originally trained and evaluated on this set. We plan to use
the other data sets in our future research.

III. THE POINTPILLARS NETWORK

The input to the PointPillars [9] algorithm is a point cloud
from a LiDAR sensor limited to the area located in front of the
vehicle. The results are oriented cuboids denoting the detected
objects: cars, pedestrians and cyclists. A “pillar” is a three-
dimensional cell, without a user-defined height. It is created
by dividing the point cloud in the XY plane (all operations are



Fig. 1. An overview of the PointPillars networks structure [9].

carried out in the Cartesian coordinate system). An overview
of the network structure is shown in Figure 1.

The first part – Pillar Feature Net (PFN) – converts the
point cloud into a sparse “pseudo-image”. Initially, the input
data is divided into pillars. The points in each of the pillars
are then extended to a nine-dimensional space (D = 9) by
adding to the basic four point parameters (coordinates x, y,
z and reflection intensity) the values: xc, yc, zc, xp, yp. The
variables with the c designation describe the distance of the
considered point to the centre of gravity of the points forming
the pillar, while with the p designation, the distance from the
geometric centre of the pillar. Because of the sparsity of the
LiDAR data, most of the pillars do not contain any points. For
this reason, only a few of nonempty pillars (P ) form the input
to the network. This approach reduces the memory complexity.
Additionally, a limit on the number of points (N ) in a pillar
is introduced to minimise the differences between very dense
and sparse pillars.

The pillars are therefore fed to the network in the form
of a dense tensor with dimensions (D,P,N). Then, each
point (D dimensional) is processed by a linear layer with
batch normalization and ReLU activation function resulting
in a tensor with dimensions (C,P,N). Next, for each cell, all
points are processed by a max-pooling layer creating a (C,P )
output tensor. Then it is mapped to a (C,H,W ) tensor in such
a way, that the pillars are moved to their original location in
the input cloud. H and W are the dimensions of the pillar grid
and simultaneously the dimensions of the “pseudoimage”.

The second part of the network – Backbone (2D CNN) –
processes the “pseudo-image” and extracts high-level features.
It can be divided into two subnets: “top-down”, which gradu-
ally reduces the dimension of the “pseudoimage” and another,
which up-samples the intermediate feature maps and combines
them into the final output map. The “top-down” network can
be described as a series of blocks: Block (S,L, F ). A block has
L convolution layers with a 3x3 kernel and F output channels.
Each convolution is followed by a batch normalisation and
a ReLU activation function. The first layer in the block has
a S

Sin
step, while the next ones have a step equal 1. At the end

of each block, the feature maps are up-sampled, from input
stride Sin to output stride Sout, using transposed convolution
with F output channels denoted as Up(Sin, Sout, F ). Then, af-
ter up-sampling, a batch normalisation and a ReLU activation
function are used. The final feature map is derived from the
concatenation of all up-sampled output pillars feature maps.

The last part of the network is the Detection Head (SSD),
whose task is to detect and regress the 3D cuboids surrounding

TABLE I
COMPARISON OF THE AVERAGE PRECISION RESULTS FOR THE BEV AND

3D KITTI RANKING (SECOND COLUMN INDICATES THE PLACE IN THE
RANKING)

Place Method Data Car
Easy Mod. Hard

BEV

75 PointPillars LiDAR 88.35 86.10 79.83
32 Patches LiDAR 89.72 89.39 83.19
12 STD LiDAR 89.66 87.76 86.89
2 PV-RCNN LiDAR 94.98 90.65 86.14

3D

82 PointPillars LiDAR 79.05 74.99 68.30
46 Patches LiDAR 88.67 77.20 71.82
8 STD LiDAR 86.61 77.63 76.06
1 PV-RCNN LiDAR 90.25 81.43 76.82

the objects. The objects are detected on a 2D grid using the
Single-Shot Detector (SSD) network [10] . The position of
the object along the Z axis is derived from the regression
map. After inference, overlapping objects are merged using
the Non-Maximum-Suppression (NMS) algorithm.

The detection results obtained using the PointPillars net-
work in comparison with selected methods from the KITTI
ranking are presented in Table I (numbers taken from [9]).
The list was limited only to car detection, because for these
data the experiments described in Section IV were carried out.
The AP (Average Precision) measure is used to compare the
results: AP =

∫ 1

0
p(r)dr where: p(r) is the precision in the

function of recall r.
When analysing the presented results, it is worth paying

attention to the following issues. First, progress in the field
is rather significant and rapid – the PointPillars method was
published at the CVPR conference in 2019, and the PV-
RCNN at CVPR in 2020. Second, for the BEV case, the
difference between these methods is about 7%, and for the 3D
case about 10% – this shows that the PointPillars algorithm
does not very well regress the height of objects. Third, the
PV-RCNN network is much more complex than PointPillars.
Unfortunately, in [13], the authors did not present data that
would allow to describe this important parameter of the
network unambiguously.

IV. OPTIMISATION OF THE POINTPILLARS NETWORK

A. Optimisation methods

There are basically three methods of optimising a given deep
network. First, at the design stage, the number of layers can
be reduced and simpler computational elements can be used.
This, however, contradicts the general rule that larger models,
or models with additional modules, provide better results. The
PV-RCNN [13] network is a good example of this issue.



TABLE II
RESULTS OF 3D DETECTION WITH QUANTISED BACKBONE AND PFN LAYERS.

Backbone quantisation PFN quantisation
N

et
w

or
k PFN FP32 FP32 FP32 FP32 FP32 FP32 FP32 INT16 INT8 INT4 INT2

Backbone FP32 INT32 INT16 INT8 INT4 INT2 BIN INT2 INT2 INT2 INT2
SSD FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32
Activation FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32

A
P

[%
] Easy 80.19 76.88 76.34 78.38 74.24 70.76 60.71 72.72 66.03 62.38 55.65

Moderate 67.96 66.38 66.35 67.45 64.62 61.60 47.09 62.81 54.03 51.63 44.03
Hard 66.60 60.28 63.87 65.48 62.02 55.94 44.96 57.83 53.29 46.45 43.22

Si
ze

[k
iB

] PFN 2.2 2.2 2.2 2.2 2.2 2.2 2.2 1.1 0.6 0.3 0.1
Backbone 18752.0 18752.0 9376.0 4688.0 2344.0 1172.0 586.0 1172.0 1172.0 1172.0 1172.0
SSD 30.1 30.1 30.1 30.1 30.1 30.1 30.1 30.1 30.1 30.1 30.1
Sum 18784.3 18784.3 9408.3 4720.3 2376.3 1204.3 618.3 1203.2 1202.6 1202.4 1202.2

Fig. 2. Average Precision vs. network size

Second, the required calculations can be quantized. Initially,
all arithmetic operations are carried out on single or double
precision floating-point numbers (32 or 64-bit respectively).
This ensures high accuracy, but the parameters consume a lot
of memory resources and calculations require complicated
hardware resources and thus much energy. A natural step,
which has been applied for years in the hardware implemen-
tation of algorithms in reconfigurable devices (FPGA), is the
transition to a fixed-point representation with any precision
from 64 bits to 1 bit only. Both weights (network parameters)
and activations (in this case ReLU function) can be quantised.
It is worth noting that quantisation is also used in dedicated
hardware accelerators for artificial intelligence algorithms, e.g.
Google’s Tensor Processing Unit and many other accelerators.

The simplest solution, in the form of quantising the weights
of a trained model, does not provide good results – a sig-
nificant decrease in the quality of operation is observed.
Therefore, training networks with limited precision is a much
better solution. We used this approach in this paper.

The third popular method is the so-called pruning, i.e.
removing connections and neurons with insignificant weights
(i.e. with low value). This idea was presented, for example,
in the work [15] from 1990. In practice, this process consists
of many iterations and requires multiple neuron removal and
network re-training steps.

B. The used tools
As mentioned above, quantisation provides the best results

when training networks from the beginning with quantised
parameters. In addition, it is important when implementing
networks in embedded systems, including FPGA devices.
Therefore, in the research department of Xilinx, one of the
leading manufacturers of reconfigurable devices, the FINN
project was developed [5], [1]. It is an experimental frame-
work that allows to analyse the possibilities of implementing
quantized neural networks (QNN) in FPGAs. It consists of
three parts: the QNN network training tool (Brevitas), the
FINN compiler that transforms the network description into
a hardware module that can be run in an FPGA device and
the Pynq-based deployment environment.

In the presented research we used the Brevitas tool. It is
a library based on the popular PyTorch tool, which allows to
train quantised neural networks (QNN). It provides, among
others, such options as choosing the type of quantisation
(binary, ternary or integer), precision (constant or learned
bit width) or scaling – both for layers and the activation
function. The currently (2020) available layers include 1D and
2D convolutions and fully connected ones. Brevitas does not
define its own batch normalization layer, but one can easily
use the ones available in PyTorch. The supported activation
functions are: ReLU, Sigmoid, Tanh and HardTanh.

C. PointPillars Quantisation
To check how the PointPillars network optimisation affects

detection precision (AP value) and the network size, we
carried out several experiments. We focused on data from
the KITTI database, especially the car detection in the 3D
category for three levels of difficulty: easy, medium and hard.
As a reference we used a network with all parameters in
the 32-bit floating-point (FP32) representation. We split the
quantisation of the PointPillars network into four parts: Pillar
Feature Net (PFN), Backbone, Detection Head (SSD), and
activation function.

The original PointPillars network was trained using the
Adam optimiser with initial learning rate 2 ∗ 10−4 which
decays by a factor of 0.8 every 15 epochs. The total number
of epochs was originally 160, but during preliminary research
we discovered that we can achieve satisfactory results after
about 20. Therefore, we decided to limit most experiments to



TABLE III
RESULTS OF 3D DETECTION WITH QUANTISED SSD AND ALL LAYERS.

SSD quantisation All layers quantisation

N
et

w
or

k PFN FP32 FP32 FP32 FP32 INT16 INT16 INT16 INT8 INT8
Backbone INT2 INT2 INT2 INT2 INT2 INT2 INT2 INT2 INT2
SSD INT16 INT8 INT4 INT2 INT16 INT8 INT2 INT8 INT2
Activation FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32 FP32

A
P

[%
] Easy 75.16 75.69 73.34 73.01 70.90 70.75 66.49 73.90 48.12

Moderate 63.71 65.26 57.86 62.99 62.84 62.66 55.83 63.42 40.60
Hard 58.00 59.04 55.78 57.14 56.48 56.45 53.58 57.84 39.96

Si
ze

[k
iB

] PFN 2.2 2.2 2.2 2.2 1.1 1.1 1.1 0.6 0.6
Backbone 1172.0 1172.0 1172.0 1172.0 1172.0 1172.0 1172.0 1172.0 1172.0
SSD 15.0 7.5 3.8 1.9 15.0 7.5 1.9 7.5 1.9
Sum 1189.3 1181.8 1178.0 1176.1 1188.2 1180.6 1175.0 1180.1 1174.4

20 epochs — for such a configuration, one experiment lasted
an average of 3 hours on a computer with AMD Ryzen 5 3600
processor and Nvidia RTX 2070S GPU.

We have divided the quantisation experiments into several
stages. The first one focused on the Backbone part because
it has the largest impact on the size of the entire network
(over 99% for the base variant). We summarise the results
in the left part of the Table II and in Figure 2, where we
present the AP value depending on the size of the network.
Dashed lines represent the AP reference value for the non-
quantised network. The waveforms for particular categories
(easy, medium, hard) are similar - with a network size smaller
than 2 MiB (INT2 quantisation) there is a significant decrease
in accuracy, above 2 MiB the accuracy remains stable, with
a maximum of around 5 MiB (INT8 quantisation). We have
observed that the INT8 quantisation is closest to the original
FP32, while the INT16 and INT32 quantisations resulted in
noticeably worse results. This observation requires further
analysis, as it may result from the limited number of epochs
used during training.

Further experiments focused on the INT2 quantisation of
the Backbone network. The network size was reduced by
almost 16x, with an AP drop of max 11%. We have chosen
this variant having in mind the future work on implementing
this network in FPGA, where the size of the model is one of
the key constraints. In the case, when higher precision would
be required, it is also worth considering the INT4 and INT8
variants, where the size reduction is 8x and 4x, respectively.

In the second step, we checked the effect of PFN quan-
tisation on the AP parameter. We summarise the results in
the Table II, columns PFN quantisation. Quantisation of this
layer has a big impact on the detection efficiency, and only
negligible on the networks’ size. For this reason, only the
quantisation types INT16 and INT8 were considered in further
experiments.

The third experiment examined how SSD quantisation af-
fects AP. We present the results in Table III, SSD quantization
columns. The layer is slightly larger than PFN, but also not
significant from the point of view of the entire network (in
relation to the INT2 variant it is only 2.5%). Interestingly,
quantisation has a relatively small impact on the final AP
value, and we obtained the best results for the INT8 variant.

Based on the gathered results, we selected several quanti-

TABLE IV
RESULTS OF 3D DETECTION FOR VARIOUS NETWORK VARIANTS AFTER

TRAINING FOR 160 EPOCHS

Easy Moderate Hard
PP (INT8, INT2, INT8, INT4) 76.64 67.33 65.56
PP (INT16, INT2, INT8, INT4) 76.71 66.45 65.20
PP (FP32, FP32, FP32, FP32) 84.17 76.12 70.51

sation options for the entire network and summarised them
in Table III in the All layers quantisation columns. We
considered the variants INT16 and INT8 for the PFN, INT2
for the Backbone, and INT16, INT8 and INT2 for the SSD.
Then we re-trained the selected networks. Ultimately, we
obtained the best result for the PointPillars network in the
variant PP (INT8, INT2, INT8, FP32), where the individ-
ual elements represent the type of the PFN, the Backbone,
the SSD and the activation functions quantisation, respec-
tively. Good results were also achieved for the configuration
PP (INT16, INT2, INT8, FP32).

For these two variants, we checked the effect of quantising
the ReLU activation function. We present the results of this
experiment in Table V. We considered three variants INT16,
INT8 and INT4. It turned out that greater precision has
a negative impact on detection precision. This issue requires
further research. Nevertheless, the differences between FP32
and INT4 activation for the considered network variants are
small, and therefore we used this quantisation in further
experiments.

Two of the considered variants were the most
promising: PP (INT8, INT2, INT8, INT4) and
PP (INT16, INT2, INT8, INT4). We trained them
for another 140 epochs to reach 160 in total. The achieved
results, including also PP (FP32, FP32, FP32, FP32)
trained for 160 epochs, are presented in Table IV. The two
considered variants have very similar AP results. We finally
selected PP (INT8, INT2, INT8, INT4), as compared to
the reference variant, it provides almost 16x lower memory
consumption for weights while the AP value drops by max.
9% in all three categories.

D. PointPillars pruning

As part of further research, we considered pruning of
the PP (INT8, INT2, INT8, INT4) variant trained for 160



TABLE V
RESULTS OF 3D DETECTION WITH QUANTISED ACTIVATION FUNCTIONS.

Activation quantisation

N
et

w
or

k PFN INT16 INT16 INT16 INT8 INT8 INT8
Back. INT2 INT2 INT2 INT2 INT2 INT2
SSD INT8 INT8 INT8 INT8 INT8 INT8
Act. INT16 INT8 INT4 INT16 INT8 INT4

A
P

[%
] Easy 63.10 69.28 72.60 57.47 72.53 72.05

Mod. 52.77 58.99 63.28 46.00 57.94 57.18
Hard 52.06 54.63 57.82 44.39 55.59 55.71

Si
ze

[k
iB

] PFN 1.1 1.1 1.1 0.6 0.6 0.6
Back. 1172.0 1172.0 1172.0 1172.0 1172.0 1172.0
SSD 7.5 7.5 7.5 7.5 7.5 7.5
Sum 1180.6 1180.6 1180.6 1180.1 1180.1 1180.1

TABLE VI
RESULTS OF 3D DETECTION AFTER PRUNING WITH UNFROZEN AND

FROZEN WEIGHTS.

60% 70% 80%

After pruning
Easy 76.64 76.64 57.39
Mod. 67.33 67.33 50.92

Unfrozen Hard 65.56 65.56 46.38
weights

After retraining
Easy 78.67 79.66 80.79
Mod. 67.30 67.41 68.68
Hard 65.56 65.66 66.60

After pruning
Easy 76.64 76.64 57.39
Mod. 67.33 67.33 50.92

Frozen Hard 65.56 65.56 46.38
weights

After retraining
Easy 78.83 78.72 76.94
Mod. 68.71 68.16 66.84
Hard 66.78 66.12 64.94

epochs. The network was pruned in three variants – 60%,
70% and 80% of weights with the smallest absolute value
from the entire network were zeroed, respectively (we used
the functionality available in PyTorch). Next we trained these
variants with frozen and unfrozen pruned weights for another
20 epochs. We show the results in Table VI. By saying frozen
weights we mean keeping their values constant during the
training (i.e. equal zero). It can be seen that when zeroing 60%
and 70% of the weights, the AP value remains the same. When
zeroing 80% of the weights after pruning, we can see a no-
ticeable decrease in the AP value. However, after re-training,
the results are the best of the cases considered, moreover the
unfrozen variants are comparable with the FP32 base variant
trained for 20 epochs. Compared to the base variant trained for
160 epochs the AP drops by max. 8% in all three categories.
The frozen variants have slightly decreased performance but
still very close to PP (INT8, INT2, INT8, INT4) trained
for 160 epochs. Using pruning does not directly affect the
size of the network (“0” weights are also stored), but in the
case of hardware implementation in an FPGA device, it allows
for a significant reduction of the necessary computational
elements.

V. CONCLUSION

The article presents research on optimisation of the PointPil-
lars network for 3D object detection based on a LiDAR point
cloud. We used two techniques: quantisation and pruning.
We performed several experiments with different variants of
network quantisation, with the PFN, the Backbone, the SSD

and the activation function parts separately. It turned out
that the most important is the quantisation of the Backbone
part, which is responsible for 99% of the size of the input
network. In this case, changing the calculation precision from
FP32 to INT2 resulted in almost a 16-fold reduction in size
at a cost of approx. 11% AP (average precision) loss. The
quantisation of the other layers had a small impact on the
network size and ambiguous on the AP value. We trained
the best variant PP (INT8, INT2, INT8, INT4) for 160
epochs, which allowed to improve the precision by approx.
4% for easy and 10% for medium and hard test cases. In
addition, we carried out several pruning experiments which
showed that the removal of 80% of neurons followed by re-
training results only in slight decrease of performance. The
final variant of the optimised PointPillars network, compared
to the input one with floating-point precision, has the AP value
decreased by max. 9%, and after pruning with frozen weights
by max. 10%. Most operations use INT2 numbers, some INT8,
and the whole model is about 16 times smaller than the
original one. Summing up, the obtained results show that the
optimisations used for PointPillars networks provide very good
results, and an energy-efficient, real-time implementation in
reprogrammable devices should be fully possible.

In the first stage of further work on the system we will
use the FINN tool to generate a hardware module with the
optimised variant of the PointPillars network and try to run it
on an FPGA or Zynq SoC device. Ultimately, we would like to
create a demonstrator cooperating with a LiDAR sensor. Then,
we plan to conduct experiments with the network for the other
categories from the KITTI set, i.e. pedestrians and cyclists, as
well as the Waymo and NuScenes sets. In addition, we will
carry out an in-depth quantisation analysis of the Backbone
layer. In the longer term, we consider modifying the network’s
architecture using a state-of-the-are research results or adding
additional elements (like in [13]). Ultimately, we would like
to use data fusion for LiDAR, video and radar sensors.

ACKNOWLEDGMENT

The work presented in this paper was supported by
AGH University of Science and Technology project no.
16.16.120.773.

REFERENCES

[1] Blott, M., Preußer, T.B., Fraser, N.J. Gambardella, G., O’brien, K.,
Umuroglu, Y., Leeser, M. Vissers, K.: FINN-R: An End-to-End Deep-
Learning Framework for Fast Exploration of Quantized Neural Networks,
ACM Trans. Reconfigurable Technol. Syst., vol. 11, nr. 3 (2018)

[2] Brevitas repository, https://github.com/Xilinx/brevitas. Last accessed 28
May 2020

[3] Cabanes, Q., Senouci, B: Objects detection and recognition in smart
vehicle applications: Point cloud based approach, Ninth International
Conference on Ubiquitous and Future Networks, pp. 287-289, (2017)

[4] Chen, X., Ma, H., Wan, J., et all.: Multi-View 3D Object Detection
Network for Autonomous Driving, IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Honolulu, HI, 2017, pp. 6526-6534,
doi: 10.1109/CVPR.2017.691. (2017)

[5] FINN homepage, https://xilinx.github.io/finn/. Last accessed 27 May 2020
[6] Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets Robotics: The

KITTI Dataset, International Journal of Robotics Research (IJRR), (2013)



[7] Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.:
Binarized neural networks, Advances in Neural Information Processing
Systems 29, pp. 4107–4115 (2016)

[8] KITTI website: http://www.cvlibs.net/datasets/kitti/ Last accessed 29 May
2020

[9] Lang, A. H. et all” PointPillars: Fast Encoders for Object Detection
From Point Clouds. 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 12689-12697, (2019)

[10] Liu, W., Anguelov, D., Erhan, D., et all.: SSD: Single shot multibox
detector, omputer Vision – ECCV 2016, pp. 21–37 (2016)

[11] Lei Deng, Peng Jiao, Jing Pei, Zhenzhi Wu, Guoqi Li,: GXNOR-
Net: Training deep neural networks with ternary weights and ac-
tivations without full-precision memory under a unified discretiza-
tion framework, Neural Networks, Vol. 100, pp. 49–58, DOI:
https://doi.org/10.1016/j.neunet.2018.01.010 (2018)

[12] Qi, C. R., Liu, W., Wu, C., et all.: Frustum PointNets for 3D Object
Detection from RGB-D Data, IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 918-927, (2018)

[13] Shi, S., Guo, C., Jiang, L., et all.: PV-RCNN: Point-Voxel Feature Set
Abstraction for 3D Object Detection, https://arxiv.org/abs/1912.13192,
(2019)

[14] Tang, H., Chien, S., et all.: Multi-cue pedestrian detection from 3D
point cloud data, IEEE International Conference on Multimedia and Expo
(ICME), pp. 1279-1284, (2017)

[15] Yann, L., Denker, J. S., Solla, S. A.: Optimal Brain Damage. In:
Advances in Neural Information Processing Systems, pp. 598-605, (1990)

[16] Zhou, Y., Tuzel, O.,: VoxelNet: End-to-End Learning for Point Cloud
Based 3D Object Detection, IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 4490-4499, (2018)


