
P
os
te
d
on

6
J
u
l
20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
26
01
99
1.
v
1
—

e-
P
ri
n
ts

p
o
st
ed

on
T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
ot

b
..
.

Towards a Programming Paradigm for Reconfigurable Computing:

Asynchronous Graph Programming

Paulo Garcia 1 and Josh Fryer 2

1Carleton University
2Affiliation not available

October 30, 2023

Abstract

The shift towards reconfigurable systems -hardware

and software that adapt themselves to an external context-

promises to unlock unprecedented performance, power consumption, and quality of service. However, reconfiguration imposes
several challenges on the design of cyber-physical systems. Current design practices, including software frameworks and pro-
gramming languages, are ill-prepared for supporting reconfiguration.

In this paper, we explore Asynchronous Graph Programming, a programming paradigm and an associated model of computa-
tion designed for efficient and automated parallelization across processing elements, efficient reconfiguration (i.e., mapping of
computational tasks across processing elements), and combining synchronous and asynchronous I/O handling within the same
conceptual programming model. We also introduce an analytical model of parallelization, unlocked by Asynchronous Graph
Programming, that can inform reconfiguration strategies.

We analyze the implications of our model through an analysis of reconfiguration scenarios given a program’s characteristics; our
analysis quantifies the benefits of reconfiguring software for higher levels of parallelism, given an amount of data left to process.
We also introduce Horde, an open source Asynchronous Graph Programming interpreter, and use it to empirically validate the
performance advantage of its automatic parallelism capabilities; in our experiments, automatic parallelization from one to four
cores improves average case execution time by a factor of 2 and worst case execution time by a factor of 3.

This manuscript has been accepted at the IEEE International Conference on Emerging Technologies and Factory Automation

(ETFA 2020)

1



Towards a Programming Paradigm for
Reconfigurable Computing: Asynchronous Graph

Programming
Joshua Fryer

Systems and Computer Engineering
Carleton University

Ottawa, Canada
joshfryer@cmail.carleton.ca

Paulo Garcia
Systems and Computer Engineering

Carleton University
Ottawa, Canada

paulo.garcia@carleton.ca

Abstract—The shift towards reconfigurable systems -hardware
and software that adapt themselves to an external context-
promises to unlock unprecedented performance, power consump-
tion, and quality of service. However, reconfiguration imposes
several challenges on the design of cyber-physical systems.
Current design practices, including software frameworks and
programming languages, are ill-prepared for supporting recon-
figuration.

In this paper, we explore Asynchronous Graph Programming,
a programming paradigm and an associated model of computa-
tion designed for efficient and automated parallelization across
processing elements, efficient reconfiguration (i.e., mapping of
computational tasks across processing elements), and combining
synchronous and asynchronous I/O handling within the same
conceptual programming model. We also introduce an analytical
model of parallelization, unlocked by Asynchronous Graph
Programming, that can inform reconfiguration strategies.

We analyze the implications of our model through an analysis
of reconfiguration scenarios given a program’s characteristics;
our analysis quantifies the benefits of reconfiguring software for
higher levels of parallelism, given an amount of data left to
process. We also introduce Horde, an open source Asynchronous
Graph Programming interpreter, and use it to empirically val-
idate the performance advantage of its automatic parallelism
capabilities; in our experiments, automatic parallelization from
one to four cores improves average case execution time by a
factor of 2 and worst case execution time by a factor of 3.

Index Terms—Embedded software, Runtime environment, Par-
allel processing, Reconfiguration, Graph Processing, Program-
ming languages

I. INTRODUCTION

Modern cyber-physical systems encompass a broad spec-
trum of applications, from edge devices in cloud computing
[1] to autonomous vehicles [2]. These applications are increas-
ingly characterized by two unique characteristics: unprece-
dented demand for performance and battery life [3]; and a shift
from static implementations, where software and hardware
remain unchanged throughout system lifetime, to dynamic
implementations, that adapt themselves to the external context
[4]. Fundamental properties of real-time systems, such as pre-
dictability and observability, remain, of course, as important as

ever [5], [6], and harder than ever to guarantee [7], especially
with many systems becoming more and more distributed [8].

This shift towards reconfigurable, adaptable systems is
an inescapable need to guarantee tomorrow’s performance
and power consumption [9]: examples include new hetero-
geneous multi-core adaptable software architectures [10] and
application-specific accelerators on reconfigurable hardware
(FPGAs) [11]. The vast majority of modern cyber-physical
systems are adaptable in some way [12], due to, e.g., market
demand for upgrades [13].

Reconfigurability and adaptability, however, impose several
challenges on the design of cyber-physical systems [14].
Current design practices, including software frameworks, pro-
gramming languages and hardware artifacts, are ill-prepared
for supporting reconfiguration, especially if these include
evolving hardware [15], deployment across heterogeneous
platforms [16], or performance-driven design [17].

In this paper, we describe a novel programming paradigm
and its associated model of computation, and how its unique
properties allow it to implement reconfigurable, adaptable
software. Specifically, this paper offers the following contri-
butions:

• We describe the semantics of Asynchronous Graph Pro-
gramming, a paradigm for parallel, heterogeneous, asyn-
chronous computing.

• We describe its model of computation, as well as the
runtime engine that implements such model, showing
how it supports reconfiguration at multiple levels.

• We formulate a model that quantifies the performance
speedups from reconfiguration for parallelism, i.e., for
deploying a program across other available processing
units, in function of how much of that program must still
be evaluated.

• We demonstrate an empirical evaluation of such model,
based on the current implementation of our Asynchronous
Graph Programming paradigm.



+ 

3 

== != 

8 5 

merge 

foo Data node 

Operator node 

Subgraph definition 

foo: returns 8 if the 

sum of two inputs is 

equal to 3. 5 

otherwise. 

Fig. 1. Example program in AGP semantics.

II. THE ASYNCHRONOUS GRAPH PROGRAMMING
PARADIGM

Asynchronous Graph Programming (AGP) is a program-
ming paradigm and an associated model of computation de-
signed for achieving three main objectives:

1) Efficient and automated parallelization across homoge-
neous and heterogeneous processing elements.

2) Efficient reconfiguration (i.e., mapping of computational
tasks across processing elements).

3) Combining synchronous and asynchronous I/O handling
within the same conceptual programming model.

AGP achieves the first two through its model of com-
putation, and the third by its semantics, i.e., its conceptual
programming model.

A. AGP semantics

AGP is technically a type of value-level programming. In
AGP, a directed graph defines a program: every node in the
graph represents either an operation on data, or a potential
single assignment datum in that program. Every data node
is said to be constructed if its value is known (either by
defining it at compile time, or by calculating it at runtime),
unconstructed if its value is not yet known, or destroyed
(removed from program) if it is determined that it can never
be constructed. Once a node is assigned a value, it does not
change.

A particular execution of a program, for a given input
stream, corresponds to a particular set of constructed and
destroyed nodes (and respective values if constructed), such
that the effectively constructed graph is a subset of the original
AGP graph, which is a superset of all possible executions of a
program. AGP semantics support this behavior by testing for

construction. E.g., boolean tests (if-else) will construct either
a datum true or a datum false, but not both. In a program
definition, both these data will be defined as unconstructed
data. Upon execution, one of these data will be constructed and
the other destroyed. Subgraphs that depend on the constructed
data will then be evaluated: subgraphs that depend on the
destroyed data will be destroyed as well (pruned).

Whilst there are similarities between AGP and both func-
tional and dataflow programming, there are key fundamen-
tal differences. Dataflow (e.g., CAL [18]) implements re-
cursion through feedback networks, assuming mutable state.
Unlike dataflow, AGP preserves immutability: recursion is
achieved through dynamic graph expansion. Subgraphs (the
AGP modularization and encapsulation approach) may create
dynamic copies of themselves, if all data required for input
is constructed (data destruction is the base case to terminate
recursion). Unlike pure functional programming, where state
and I/O must be implemented through monadic operations
(e.g., Haskell [19]), AGP implements input and output as
first class operators: both are represented by a graph edge
with an empty end (directionality determines input or output).
The example program depicted in Fig. 1 illustrates the main
features of AGP semantics.

By leveraging I/O as a first class operation and execution
that depends on construction, the AGP paradigm combines
synchronous and asynchronous I/O processing. Programmers
do not need to concern themselves with the order of input
processing nor race conditions that may arise from shared
state: simply, programmers specify the data dependencies
(which dictate processing) in function of the existence, or non-
existence, of inputs. For example, if two sources of inputs are
present (e.g., synchronous user input and a hardware interrupt),
an AGP program defines behaviors for interrupt occurrence
and non-occurrence as mutually exclusive sub-graphs. Should
the interrupt occur before the respective subgraph is evaluated,
its corresponding datum will be constructed and fed into the
computation. Should it not be created, its subgraph will be
pruned upon evaluation (and potentially restored later through
a recursive call). Thus, race conditions are prevented by
construction, and the programmer’s conceptual view needs not
distinguish synchronous and asynchronous processing.

B. Model of computation

AGP’s runtime engine implements its model of computa-
tion: i.e., the runtime engine is responsible for processing
an AGP program, obeying its semantics, and mapping I/O
operations to external data sources/sinks. The AGP runtime
engine maintains an immutable graph that specifies the pro-
gram (i.e., the code graph) and creates a mutable copy that
it operates upon for processing (i.e., the processing graph -
this is necessary as recursive programs must create copies of
sub-graphs: the runtime engine must always keep an original
copy of every sub-graph).

AGP graphs are processed by N ready queues, where N is
the number of parallel processing elements (e.g., CPU cores:
we give additional details on parallelization below). Each



a b 

+ 

c 3 

== != 

8 5 

… 

Ready queue 

Processing 

graph 

a b 

Binding  

Datum -> function 

 

  int x; 

  scanf(“%d”,&x); 

  return x;  

Binding  

Function-> datum 

 

  ADC_ISR(){ 

    int x = ADC_READ(); 

    AGP_construct_b(x); 

  } 

When both (a) and (b) 

are constructed, the 

(+) operator is 

evaluated. 

(a) and (b) are removed 

from the ready queue, 

(c) is added. 

3 

Fig. 2. AGP ready queue (model of computation) and associated I/O mappings
in both directions. In this example, one input is bound to a function called
upon datum evaluation (user input) whilst another is bound to a hardware
interrupt (ADC).

ready queue contains a list of all data that can be evaluated
at the current state; upon program initialization, these are
only constants and input operators. As data are constructed,
they are added to the ready queue, and any data that have
been completely processed (meaning, all data that depend on
them have been constructed) are removed from the queue.
Thus, a program is processed by following the flow of data
dependencies in such program. The ready queue is guaranteed
to analyze only data that can conceivably be constructed at
the current state.

C. I/O mapping

The runtime engine is responsible for mapping AGP I/O
operators to data sources/sinks. If the runtime engine is
deployed bare-metal, this is achieved by low-level ”hooks” in
the engine’s code that are linked to processing graph’s nodes
when a program is loaded (bi-directionally). E.g., interrupt
service routines (ISRs) are part of the runtime engine’s code
base. Upon AGP program compilation, if an input source is
mapped to a timer interrupt, then the runtime engine populates
the timer ISR hook with a call to the corresponding input
datum in the processing graph, essentially binding the ISR
to the construction of a datum which is in turn added to the
ready queue. Synchronous input (e.g., reading user-inputted
data from a console) is bound in the reverse way: a datum is
added to the ready queue as soon as it is possible to evaluate it,
and when the runtime engine processes it, it calls a low-level
function (e.g., scanf()) to construct it. Hence, the details of
I/O mapping are abstracted from the graph processing aspects
of the runtime engine.

D. Parallelization

AGP supports efficient parallelization across heterogeneous
processing elements by transforming the problem of code
parallelization into a problem of graph partitioning. Notice that

every edge in an AGP graph corresponds to data processing
and transfer between two memory positions. At the low level
(optimizations not-withstanding), this corresponds to data read
from memory (from a graph node) to the processor, processing
as per the operator, and writing the data to a new memory
position (destination graph node) for construction. Memory
as the bottleneck of performance is a well-established fact
[20]: optimizing performance means minimizing the number
of memory accesses. Because cache memories are already
quite efficient at doing so on a per-core basis, the performance
bottleneck in a multi-core parallel system is shared memory
[21]: we want to minimize data transfers between the process-
ing functions on each core. In AGP, the problem of multi-core
parallelization can be thus formulated as: given N processing
elements, we want to partition a processing graph into N sub-
graphs, such that the number of elements in each subgraph is
approximately the same, and we minimize the number of edges
between subgraphs. Whilst we have identified some suitable
algorithms for performing this automated parallelization (e.g.,
[22]) we have not yet empirically verified their suitability and
limitations. The runtime engine deploys one ready queue per
core, which operates only in memory destined for its subgraph,
thus making efficient use of caches.

E. Reconfiguration

AGP supports dynamic reconfiguration and adaptability by
enabling efficient execution of three reconfiguration tasks:
• Changing the number of parallel processing elements

at runtime. Efficient allocation of a graph from 1 to
N processing elements can be pre-computed offline. At
runtime, based on operational constraints and context
(e.g., load processing requirements) parallelization can be
increased by simply copying partial ready queues, accord-
ing to the allocation strategies, from one core to another,
without significant pressure on instruction caches, as
would happen in imperative languages where substantial
amounts of code must cached when re-allocating threads.

• Re-mapping sub-graphs to processing elements (includ-
ing heterogeneous) at runtime. Partial or complete pro-
grams can be moved from one core to another, following
the same strategy described before, by simply copying
ready queues (which impact data caches only). This is
especially useful in situations where different cores have
different power profiles (e.g., high-performance/high-
power versus low-performance/low-power) and adapta-
tion occurs in function of battery life constraints. Because
only data must be transfered, this process is seamless even
if different cores implement different instruction sets: the
runtime engine must be compiled for each heterogeneous
instruction set, but re-mapping of AGP programs occurs
seamlessly.

• Hot-swapping of hardware I/O sources/sinks at runtime.
Should we wish to re-map the source of data at runtime,
e.g., in cases of hardware redundancy to account for
runtime faults, where a backup system comes online when
a primary system fails, AGP can re-map sources/sinks of



a b 

e 

c d 

f 

a b 

e 

c d 

f 

R
e
a
d
y
 
q
u
e
u
e
 
(
1
 
p
r
o
c
e
s
s
o
r
)
 

a 
b

 
c 

d
 

e 
f 

R
e
a
d
y
 
q
u
e
u
e
s
 
(
2
 
p
r
o
c
e
s
s
o
r
s
)
 

a 
b

 
e 

c 
d

 
f 

Fig. 3. AGP model of parallelization. In this example, parallel processing across two processors, based on a graph partitioning that divided the graph into
two sub-graphs with approximately the same number of nodes, minimizing edges across sub-graphs (one edge).

data by modifying the low-level hooks, re-binding data
to a new system. This separates reliability concerns (non-
functional) from algorithmic concerns (functional): AGP
programs do not need to account for hardware changes,
delegating that responsibility to the runtime engine.

III. RECONFIGURATION MODEL

Depending on an application’s primary concerns, differ-
ent reconfiguration strategies may apply, prioritizing different
aspects of a system’s execution. In this paper, rather than
proposing new or evaluating extant reconfiguration strategies,
we focus on modeling AGP’s reconfiguration capabilities so
practitioners/researchers of reconfiguration strategies can use
these models to inform their work.

We are interested in modeling the overhead (in execution
time) associated with changing the number of processing
units responsible for processing a graph, i.e., dynamically
changing the number of parallel ready queues, as this informs
performance-driven reconfiguration algorithms. We are also
interested in modeling the amount of data processed per
processing unit in the same scenario, as this has a substantial
impact on data caches, again impacting performance. These
variables (degree of parallelism, overhead for ready queue
reallocation, and data size overhead) can be composed with
total execution time and data size for a full program running
on one processing unit to derive a function that estimates total
execution time in function of degree of parallelism. Notice
that we do not encompass any code overhead: it is assumed
that the runtime engine is already deployed on all processing
units, and there is no need for code transfers when runtime
reconfiguration occurs.

We define Tn as the total execution time for a program
across n processing units, such that the total execution time for

that program on a single processing unit is T1. Tn is defined as
the processing time if a program is allocated to n processing
units from startup, having pre-computed allocation of ready
queues offline. We define the partial time Tpd as the time
required to compute a partial program (a subgraph) consisting
of d nodes on a single processing unit, such that, if a graph
of D data is uniformly partitioned in an idealized scenario:

Tn = TpD
n

(1)

We define Oq as the overhead (in time units) caused by
transferring a (full or partial) ready queue from one processing
unit to another, such that Oq = f(q) and q is the number
of data in the queue to be transferred; in other words, such
that the overhead is a function of the number of data in
the queue. We assume that Oq includes the overhead caused
by populating a new core’s data cache with the subgraph
associated with the ready queue data. The function f(q) must
be adapted to the specific hardware details: e.g., for a system
with processor cores accessing a shared memory without
caches, f(q) can likely be defined as linear function, such
as f(q) = t × q, where t is the time required to transfer a
single datum across memory positions. For systems with cache
memories, distributed memories or any form of Non-Uniform
Memory Access (NUMA), f(q) is likely not a linear function
and must be determined accordingly.

If, at a point in time during a program execution, such
that there are D′ data left to evaluate, such that D′ < D
(assuming that recursive computations that dynamically create
more data are already accounted for in both D and D′), and
the remaining program can be uniformly partitioned in an
idealized scenario, the total time for program execution when



0 

0,2 

0,4 

0,6 

0,8 

1 

1,2 

1,4 

1,6 

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 

S
p

e
e

d
u

p
 

D'/D 

N=2 

N=4 

N=8 

Fig. 4. Speedup (new over original time - lower is better) in function of
reconfiguration at different program execution times (percentage of data left
to process in parallel) for both Oq and Tp of complexity O(logn).

reconfiguring from one to N processing units, Tn
′ , can thus

be defined as:

Tn
′ = TpD−D′ + (Oq ×N) + TpD′

N
(2)

I.e., Tn
′ is the time required to process D − D′ on the

original, single processing unit (TpD−D′ ) plus the time re-
quired to transfer the partial ready queue across each new
processing unit (Oq×N ) plus the time required to process D′

N
data (TpD′

N
). Equation 2 equals Equation 1 when D = D′,

i.e., Tn = Tn
′ when all the parallelization is performed offline,

prior to program execution.
Estimating the growth rate for Oq and TpD′

N
(both of which

are implementation dependent) in function of D′ and q, as
well as the relationship between D′ and q (which is program
dependent) can inform reconfiguration strategies, e.g., ideal
number of processing units for any given program state; such
study is, however, outside the scope of this paper and reserved
for future work, although we provide a superficial analysis
in the next section. It should be noted that this framework
provides a way of quantifying the degree of parallelism for a
program, as a function of the growth rates of different model
components.

IV. EXPERIMENTS AND RESULTS

A. Model analysis

AGP’s analytical reconfiguration model provides a way
to analyze degrees of parallelism to inform reconfiguration.
Whilst we have not yet performed a thorough analysis, we
present a small evaluation of how an AGP program behaves
given different growth rates for the functions Oq and Tp.

As D′ increases (towards a higher and higher percentage
of D), Oq and TpD′

N
increase whilst TpD−D′ decreases

(obviously, TpD′
N

also decreases as N increases). Analyzing
Equation 2, one can see that whether Tn

′ is greater or smaller
than T1 depends on the growth rates for each term.

If Oq is the fastest growing term, there is an upper bound
on the value of D′, past which parallelism hurts performance:

0 

0,2 

0,4 

0,6 

0,8 

1 

1,2 

1,4 

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 

S
p

e
e

d
u

p
 

D'/D 

N=2 

N=4 

N=8 

Fig. 5. Speedup (new over original time - lower is better) in function of
reconfiguration at different program execution times (percentage of data left
to process in parallel) for Oq of complexity O(logn) and Tp of complexity
O(n).

0 

0,2 

0,4 

0,6 

0,8 

1 

1,2 

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 

S
p

e
e

d
u

p
 

D'/D 

N=2 

N=4 

N=8 

Fig. 6. Speedup (new over original time - lower is better) in function of
reconfiguration at different program execution times (percentage of data left
to process in parallel) for Oq of complexity O(logn) and Tp of complexity
O(n logn)

the overhead of transferring data outweighs the advantages of
parallel performance (this upper bound is also dictated by N ,
but it is guaranteed to exist).

If Oq is not the fastest growing term, there is a lower
bound on the value of D′ past which reconfiguration for
parallelism brings performance advantages; these are the par-
ticularly interesting scenarios. We simulated synthetic data for
an implementation of Oq of complexity O(log n), compared to
three implementations of Tp of complexities O(log n), O(n)
and O(n log n): these are plotted, for different values of N , in
Figures 4, 5 and 6, respectively, as speedup (Tn

′

T1
) in function

of percentage of data processed in parallel (D
′

D ).
These results are illustrative of classes of functions that

represent Oq and Tp. When both have complexity O(log n)
(Fig. 4), i.e., they grow at the same rate, performance worsens
(execution time ratio grater than 1) for low values of D′: over-
head of transferring data overcomes performance advantages
of parallelism. As D′ becomes a bigger and bigger portion of
total data, we start to see performance improvement, and this



Graph 

constructor 

AGP 

code 

Graph Evaluator 

thread 

0 

Horde 

source 

Horde binary 

… 
thread 

1 

thread 

n 

Fig. 7. The Horde interpreter architecture. AGP code is implemented as an embedded language that is expanded into graph construction.

happens more quickly for higher values of N . The specific
values for Oq and Tp dictate when the function crosses
speedup = 1, and the value of Oq dictates the value of the
function at D′ = D; i.e., how much higher the real value is
than the theoretical limit of 1

N . E.g., in Fig. 4 the function for
N=2 intersects D′ = D at ≈ 0.6 (rather than the theoretical
limit at 0.5).

As Tp grows more quickly than Oq , we start seeing that
performance improves for lower values of D′. In Fig. 5, where
the growth of Tp is O(n), we see that for small values of
D′ parallelization across fewer parallel computational units
results in increased performance more quickly: this makes
intuitive sense, as we minimize data transfer overhead where
little parallelism can be achieved. As the value of D′ increases,
higher values of N eventually result in higher performance
gains (e.g., N=4 surpasses N=2 at D′

D ≈ 0.4 and N=8 surpasses
both N=2 and N=4 at D′

D ≈ 0.9).
As Tp grows even more quickly, such as in Fig. 6, where

the growth of Tp is O(n log n), a similar behaviour occurs
even more rapidly: N=2 initially outperforms higher levels
of parallelism, but is more quickly surpassed by N=4 and
N=8. Whilst we have much deeper analyses and empirical
validations to perform, this model provides a language for
reasoning about parallelism and reconfiguration in quantifiable
terms.

B. Empirical results

We conducted all experiments on a machine equipped with
a quad-core i5-7440HQ CPU @2.80GHz, with 8GB of RAM,
running Ubuntu 16.04LTS. Our experiments were conducted
on the current prototype of the AGP compiler and runtime en-
gine: the Horde interpreter (publicly available in open-source
form here1). At present, Horde does not yet support bare-
metal deployment nor associated interrupt to datum binding;
all I/O is mapped to user (file) input and output. However,
Horde already supports the full AGP semantics and model of
computation, as well as parallelization (implemented through
multi-threaded execution).

1https://github.com/paulofrgarcia-carleton/Horde-Public-release-

The current version of the Horde interpreter was primar-
ily built as a testing environment for the AGP semantics;
hence, it is not optimized for performance. AGP graphs
are implemented as multiply-linked linked lists which the
interpreter reduces throughout execution. The ready queue is
also implemented as a linked list that points to nodes in the
program. AGP code is programmed as an embedded language,
i.e., based on macro expansions that generate interpretable
code. Fig. 7 provides a high level overview of the architecture
of Horde. AGP code is not programmer-friendly, nor meant to
be: it is meant as an intermediate representation that higher
level languages can build upon. Despite its immaturity, Horde
already provides a complete environment to test AGP seman-
tics, and can be used to experiment with software runtime
reconfiguration. Horde supports parallel execution of multiple
programs (one program per thread), or parallel execution of
one program across several threads in a master-slave fashion:
one master thread initially has exclusive access to all nodes in
the program, and can transfer ready nodes to slave threads.

We began by evaluating the overhead required to transfer
ready nodes from a master to a slave thread. We created a
program with approximately 100 data (200 nodes total, data
and operators), where all 100 operators are ready at startup.
We then tested transferring q = {1..100} as soon as the
master thread starts executing and measured the processor time
required to transfer the data. For every value of q, we ran
Horde 100 times, for a total of 10,000 executions. We calculate
processor time through pthread API functions. Results of this
experiment are displayed in Fig. 8. Interestingly, despite the
function that transfers ready nodes having complexity N (it
must traverse the entire graph, copying the nodes that have
been marked by the master thread), we do not observe a
constant execution time: there are peaks between q ≈ 9 and
q ≈ 45. This confirms the hypothesis in Section III that Oq is
implementation dependent: in this case, we hypothesize that
for these values of q, cache behavior, particularly due to inter-
thread interference, causes significant delays, highlighting the
need to perform architectural (implementation) profiling for
efficient reconfiguration.

We then assessed the performance gained through runtime



1 6 12 19 26 33 40 47 54 61 68 75 82 89 96

0
5
0
0

1
0
0
0

1
5
0
0

Data to copy

C
o
p
y
 t
im

e
 (

n
s
e
c
)

Fig. 8. Data transfer time (nsec) across threads for different number of ready
nodes in the Horde interpreter.

0 1 2 3 4

0
.0

0
0
5

0
.0

0
1
0

0
.0

0
1
5

0
.0

0
2
0

0
.0

0
2
5

0
.0

0
3
0

0
.0

0
3
5

Ready queue data transferred at program startup

E
xe

c
u
ti
o
n
 t
im

e
 (

s
)

Fig. 9. Total execution time (sec) for dual-thread execution for different
number of transferred ready nodes in the Horde interpreter.

reconfiguration for parallelism. We created a dual thread pro-
gram, processing a math-intensive application (calculating the
factorials of eight input data). Upon startup, we experimented
with transferring q = {0..4}, i.e., from single-thread execution
up to fully balanced parallel execution. For each value of q,
we ran Horde 100 times, for a total of 500 executions: results

0 20 40 60 80 100 120

0
2

4
6

8
1
0

1
2

Program execution step

#
 o

f 
re

a
d
y
 n

o
d
e
s

Fig. 10. Number of ready nodes for the execution of SolveCubic in the Horde
interpreter. Peaks correspond to calculating all required inputs to an equation,
which then collapse as the result is calculated.

are displayed in Fig. 9. It’s easily observed from Fig. 9 that
the average execution time follows a decaying exponential;
best-case execution time behaves as our models suggest, albeit
there is not enough data to confirm the specific growth rate.
Interestingly, execution time variation decreases as the load is
balanced more and more equally across the different threads,
suggesting that, in this case, parallel execution likely takes
better advantage of the memory hierarchy (probably due to
latency hiding by the scheduler).

Finally, we implemented one example from the MiBench
suite [23] (basicmath from the automotive package) in Horde
to analyze how the ready queue behaves in a real representative
program (we will eventually implement the entire suite for
comparison). Fig. 10 shows the evaluation of the ready queue
as the program is evaluated (one call to SolveCubic, 117 steps
in this implementation for this input data).

V. CONCLUSIONS AND FUTURE WORK

Modern cyber-physical systems are now characterized by
unprecedented demand for performance and battery life, and
a shift from static implementations, where software and hard-
ware remain unchanged throughout system lifetime, to dy-
namic implementations, that adapt themselves to the external
context. Reconfigurability and adaptability, however, impose
several challenges on the design of cyber-physical systems. In
this paper, we described Asynchronous Graph Programming,
a novel programming paradigm (and its associated model of
computation), designed for reconfigurable embedded software.

AGP semantics provide a way to express the degree of
parallelism of a program: we have introduced an analyti-



cal model that captures both program-specific features and
architecture/implementation-specific features that can inform
reconfiguration strategies. The AGP runtime engine imple-
ments AGP semantics, whilst providing mechanisms for ef-
ficient handling of common real-time embedded system re-
quirements (e.g., asynchronous event handling). We have
empirically validated AGP semantics, and partially validated
our analytical model, through experimentation with Horde, an
open-source AGP interpreter.

Future work will focus on three fronts. First, the develop-
ment of code generators for bare-metal deployment of AGP
programs, which will allow us to conduct more in-depth empir-
ical evaluations. Second, the refinement and further validation
of our analytical model, informed by the empirical results, and
its applicability in context-aware reconfiguration strategies.
Third, the semantics of high level languages that embedded the
AGP paradigm, towards the maturity of design frameworks,
supported by hardware and software artifacts, that will unleash
the potential of reconfigurable computing.

ACKNOWLEDGMENT

We would like to thank Carleton University’s I-CUREUS
program for undergraduate student research for sponsoring
Joshua Fryer’s research work.

REFERENCES

[1] S. Meixner, D. Schall, F. Li, V. Karagiannis, S. Schulte, and K. Plakidas,
“Automatic application placement and adaptation in cloud-edge envi-
ronments,” in 2019 24th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA). IEEE, 2019, pp. 1001–
1008.

[2] S. Mubeen, “Developing predictable embedded systems in the vehicle
industry: Results and lessons learned,” in IEEE International Conference
on Industrial Technology (IEEE ICIT), FEB 13-15, 2019, Melbourne,
AUSTRALIA. IEEE, 2019, pp. 1063–1065.

[3] H. Zhang and H. Hoffmann, “Maximizing performance under a power
cap: A comparison of hardware, software, and hybrid techniques,” ACM
SIGARCH Computer Architecture News, vol. 44, no. 2, pp. 545–559,
2016.

[4] S. Gaur, L. Almeida, E. Tovar, and R. Reddy, “Cap: Context-aware pro-
gramming for cyber physical systems,” in 2019 24th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA).
IEEE, 2019, pp. 1009–1016.

[5] M. Garcı́a-Gordillo, J. J. Valls, and S. Sáez, “Heterogeneous runtime
monitoring for real-time systems with art2kitekt,” in 2019 24th IEEE
International Conference on Emerging Technologies and Factory Au-
tomation (ETFA). IEEE, 2019, pp. 266–273.

[6] A. Hasanbegović, M. Ventovaara, J. Wiklander, and S. Mubeen, “Opti-
mising vehicular system architectures with real-time requirements: An
industrial case study,” in IECON 2019-45th Annual Conference of the
IEEE Industrial Electronics Society, vol. 1. IEEE, 2019, pp. 4501–
4508.

[7] V. Lesi, Z. Jakovljevic, and M. Pajic, “Synchronization of distributed
controllers in cyber-physical systems,” in 2019 24th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA).
IEEE, 2019, pp. 710–717.

[8] A. Cenedese, M. Frodella, F. Tramarin, and S. Vitturi, “Comparative as-
sessment of different opc ua open–source stacks for embedded systems,”
in 2019 24th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA). IEEE, 2019, pp. 1127–1134.

[9] T. Guillaumet, A. Sharma, E. Feron, M. Krishna, R. Narayan, P. Baufre-
ton, F. Neumann, and E. Grolleau, “Using reconfigurable multi-core
architectures for safety-critical embedded systems,” in 2016 IEEE/AIAA
35th Digital Avionics Systems Conference (DASC). IEEE, 2016, pp.
1–6.

[10] B. Donyanavard, T. Mück, S. Sarma, and N. Dutt, “Sparta: Runtime
task allocation for energy efficient heterogeneous manycores,” in 2016
International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ ISSS). IEEE, 2016, pp. 1–10.

[11] M. A. Aguilar, R. Leupers, G. Ascheid, and L. G. Murillo, “Automatic
parallelization and accelerator offloading for embedded applications on
heterogeneous mpsocs,” in Proceedings of the 53rd Annual Design
Automation Conference. ACM, 2016, p. 49.

[12] J. Otto, B. Vogel-Heuser, and O. Niggemann, “Automatic parameter
estimation for reusable software components of modular and recon-
figurable cyber-physical production systems in the domain of discrete
manufacturing,” IEEE Transactions on Industrial Informatics, vol. 14,
no. 1, pp. 275–282, 2017.

[13] F. Boschi, C. Zanetti, G. Tavola, and M. Taisch, “Functional require-
ments for reconfigurable and flexible cyber-physical system,” in IECON
2016-42nd Annual Conference of the IEEE Industrial Electronics Soci-
ety. IEEE, 2016, pp. 5717–5722.

[14] L. Liu, J. Zhu, Z. Li, Y. Lu, Y. Deng, J. Han, S. Yin, and S. Wei,
“A survey of coarse-grained reconfigurable architecture and design:
Taxonomy, challenges, and applications,” ACM Computing Surveys
(CSUR), vol. 52, no. 6, pp. 1–39, 2019.

[15] M. Ghane, S. Chandrasekaran, R. Searles, M. S. Cheung, and O. Her-
nandez, “Path forward for softwarization to tackle evolving hardware,”
in Disruptive Technologies in Information Sciences, vol. 10652. Inter-
national Society for Optics and Photonics, 2018, p. 106520O.

[16] J. Castrillon, M. Lieber, S. Klueppelholz, M. Völp, N. Asmussen,
U. Assmann, F. Baader, C. Baier, G. Fettweis, J. Froehlich et al., “A
hardware/software stack for heterogeneous systems,” IEEE Transactions
on Multi-Scale Computing Systems, vol. 4, no. 3, pp. 243–259, 2017.

[17] M. Kreutzer, J. Thies, M. Röhrig-Zöllner, A. Pieper, F. Shahzad,
M. Galgon, A. Basermann, H. Fehske, G. Hager, and G. Wellein,
“Ghost: building blocks for high performance sparse linear algebra on
heterogeneous systems,” International Journal of Parallel Programming,
vol. 45, no. 5, pp. 1046–1072, 2017.

[18] P. Garcia, D. Bhowmik, A. Wallace, R. Stewart, and G. Michaelson,
“Area-energy aware dataflow optimisation of visual tracking systems,”
in International Symposium on Applied Reconfigurable Computing.
Springer, 2018, pp. 523–536.

[19] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières, “Flexible dynamic
information flow control in haskell,” in Proceedings of the 4th ACM
symposium on Haskell, 2011, pp. 95–106.

[20] X.-H. Sun and Y.-H. Liu, “Utilizing concurrency: A new theory for
memory wall,” in International Workshop on Languages and Compilers
for Parallel Computing. Springer, 2016, pp. 18–23.

[21] V. Stegailov, G. Smirnov, and V. Vecher, “Vasp hits the memory
wall: processors efficiency comparison,” Concurrency and Computation:
Practice and Experience, vol. 31, no. 19, p. e5136, 2019.

[22] K. Andreev and H. Racke, “Balanced graph partitioning,” Theory of
Computing Systems, vol. 39, no. 6, pp. 929–939, 2006.

[23] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “Mibench: A free, commercially representative
embedded benchmark suite,” in Proceedings of the fourth annual IEEE
international workshop on workload characterization. WWC-4 (Cat. No.
01EX538). IEEE, 2001, pp. 3–14.


