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1. Introduction

A multi-channel spectrum imaging system enables accurate spectral measurement across changes in illumi-
nation and ensures color matches for all observer types [1]. Multi-channel imaging is important for areas
that require high-end color reproduction and spectral data collection, such as artwork reproduction and
conservation [2], archeology [3], telemedicine [4], agriculture [5], study of minerals and gems [6], and inte-
grative lighting systems [7]. Research on multi-channel imaging systems also impacts filter design [8] and
target analysis [9], where spectral mismatches are considered detrimental for the optical systems. However,
previous studies comparing and evaluating the mismatches in spectral power distributions (SPDs) are day-
light oriented [10–13]. Optical imaging systems that are aimed to detect spectra during night time (i.e., sky
glow, ecological impacts of lighting) require spectral analysis of electric light sources [14]. Here, the optimal
spectral sensitivity of a three-channel sensing system is described using electric and natural light sources
(i.e., one standard illuminant and ten commercially available electric light sources).

2. Methods

The spectral properties of three theoretical sensors were optimized using a genetic algorithm (GA) to mini-
mize the error between reconstructed (estimated) and actual light source spectra. A GA is a computational
tool inspired by the natural selection [15], and it is widely used in engineering and lighting research to find
optimal solutions for a given problem [16,17]. The spectral sensitivity of each sensor was generated using a
Gaussian distribution and characterized by their peak wavelengths and bandwidths (i.e., the full width at
half maximum (FWHM)).

The differences between reconstructed (estimated) and measured spectrum were analyzed using spectral
curve difference metrics. Root mean square error (RMSE) is a simple, but widely used, metric for spectral
estimation evaluation [18,19]. In addition to RMSE, two other metrics (integrated irradiance error (IIE) [10]
and goodness-of-fit (GFC) coefficient [11]) were also considered for spectral analysis. While RMSE and IIE
range between 0 and 1 (a smaller value denotes smaller error), a spectrally accurate estimation requires a
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GFC > 0.995 (“acceptable” fit), a “good” spectral fit requires a GFC > 0.999, and GFC > 0.9999 is needed
for an “excellent” fit [11, 12]. Instead of a mean absolute average, the root-mean-square of three metrics
was used, which is found to be more sensitive to distance differences and more appropriate when the error
distribution is expected to be Gaussian [20].

3. Results and discussion

The optimal peak wavelength and bandwidth of the three sensors are λsens1 = 380 nm, FWHMsens1 = 160
nm, λsens2 = 563 nm, FWHMsens2 = 194 nm, λsens3 = 750 nm, FWHMsens3 = 166 nm. The resulting error
for each light source and error measures are summarized in Table 1. The highest RMSE was found for
daylight illuminant and the smallest error was recorded for low-pressure sodium. There was one “excellent”
fit for GFC (LPS), eight “good” fits, and two “acceptable” fits. None of the light sources were below the
“acceptable” level for GFC. The reconstructed spectra for tri-phosphor fluorescent and phosphor-coated LED
with additional red peak performed the best according to IIE.

The results obtained here are comparable to other spectral mismatch studies, where values for daylight ranged
between IIE = 0.032 [10], GFC = 0.9900 [11], RMSE = 0.3715, GFC = 0.9997, IIE = 0.0133 [14], and GFC
= 0.9985, IIE = 0.70 [13]. Although some of the GFC values in these previous studies are marginally better
than results presented here, the RMSE and IIE scores found in previous studies are lower compared to data
gained through GA.

Table 1. Spectral properties of the reference light sources and the error between the estimated and measured
spectra according to three spectral mismatch metrics.

Light source RMSE GFC IIE

Incandescent 0.0327 0.9988 0.0451
Daylight D65 0.0373 0.9989 0.0439
Phosphor-coated LED 0.0208 0.9993 0.0348
Phosphor-coated LED + red peak 0.0090 0.9994 0.0327
Cool white fluorescent 0.0125 0.9995 0.0390
Daylight fluorescent 0.0108 0.9993 0.0394
Tri-phosphor fluorescent 0.0068 0.9996 0.0345
Metal Halide 0.0090 0.9993 0.0462
Mercury 0.0072 0.9997 0.0432
High-pressure sodium 0.0093 0.9997 0.0369
Low-pressure sodium 0.0037 1.000 0.0353

Accurate and inexpensive spectral estimation can enable more diverse applications of multispectral sensing
where the light source spectrum plays a vital role. Optimizing the sensor sensitivities for the commercially
available electric light source can allow manufacturers to improve the accuracy of sensing systems. Although
the spectral optimization of three sensors resulted in small spectral matching errors, it is possible to increase
the accuracy even further by using more sensors or changing optimization parameters.
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