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Abstract

We demonstrate a new fuzzing tool for the Robotic Operating System (ROS), which exploits the physical nature of robotic

systems to detect a novel class of bugs.
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ABSTRACT

Robotic systems continue their diffusion into society, accomplish-
ing a myriad of physical tasks on our behalves. However, their
safety-critical nature implies the vitality of testing their robust-
ness. In this paper, we propose a novel fuzzing methodology that
exploits the continuity of the physical world to automatically ex-
plore the input space and detect malfunctions in robotic software
modules. The analysis of outputs includes the computation of the
first and second derivative functions that can unveil anomalies in
the behavior of the software. We implemented this methodology
in DiscoFuzzer, the discontinuity-based fuzzer for ROS, and eval-
uate three different sampling approaches based on Monte Carlo,
Chebyshev, and Spline methods. DiscoFuzzer detected 85 distinct
vulnerabilities: 77 of the 89 previously known vulnerabilities, and
8 novel vulnerabilities previously undetected. The discontinuity
analysis of DiscoFuzzer detected 41 more unique vulnerabilities
than crash detection alone. Furthermore, we determined that the
implemented sampling approaches were statistically equal in find-
ing vulnerabilities, but each of them discovered vulnerabilities the
others could not. The chebfun sampling is found to be the fastest
in finding vulnerabilities. We determined that DiscoFuzzer provides
a unique fuzzing solution for ROS systems to detect a wide variety
of security vulnerabilities with high precision.

1 INTRODUCTION

Robotic systems are proliferating in our society due to their capac-
ity to carry out physical tasks on behalf of human beings. Current
applications include, but are not limited to, military, industrial, agri-
cultural, and domestic robots[6]. In this paper, we consider robotic
systems as a subset of cyber-physical systems (CPS). While CPS are
defined as “physical and engineered systems whose operations are
monitored, controlled, coordinated, and integrated by a computing
and communicating core”[32], a robot is a “actuated mechanism
programmable in two or more axes with a degree of autonomy,
moving within its environment, to perform intended tasks”[14].
The standard ISO8373 distinguishes robots further in industrial and
service robots according to their tasks.

However, in the deployments of robots it is vital to consider their
safety-critical nature. Indeed, a faulty robot can irreversibly damage
the physical environment in which it is operating, including being
harmful to human beings. Thus, testing the robustness of robotic
systems is crucial to ensure safety.

Fuzzing has become a central tenant of computer security re-
search over the past 20 years. Fuzzing is the repeated execution of
the program using inputs sampled from the input space [22]. This
repeated execution is performed automatically with the sampling
of inputs adhering to different heuristics. Usually, fuzzers guided by
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code-coverage [9, 16, 40, 44, 55] or by symbolic engines dominate
the scene of the security community [7, 46, 57, 59]. Furthermore,
most current fuzzers solely focus on traditional software crashes or
well-known vulnerable code behaviors with the help of sanitizers
[20, 21, 41].

However, robotic systems have to face different threats that
current fuzzers do not adequately address. In this paper, we consider
external security threats that consist of an attacker gaining control
of specific modules of a robotic system or interfering with the
robot’s sensors input data[10, 11, 19, 34]. An attacker can lead a
robotic system to disregard safety measures, behave in an unsafe
way, or crash.

We propose a novel fuzzing methodology that exploits the
continuity of the physical world to automatically explore
the input space and detect malfunctions in robotic software
modules. Our solution improves over conventional software test-
ing because it directly addresses failure states, i.e.,unsafe behaviour,
that other fuzzers do not have the ability to address, and provides a
mathematical approach to provide dynamic solutions. The fuzzer op-
erates by performing a single test against a target and constructing
a model of the targets’ response behavior, including discontinuity
analysis. We show how a comparison of these tests on several inputs
can detect anomalies that are usually only unveiled by extensive
manual testing.

We implemented DiscoFuzzer, the discontinuity-based fuzzer for
ROS[31]. We focus on the Robotic Operating System (ROS) because
it is an open-source project with a large active community. ROS is
a software framework that provides a structured communication
layer and libraries to develop robotic applications. Manufacturing
and other industries[35][37] use ROS for their robots, while both
Windows and Amazon have shown interest in supporting it[54][42].
With ROS systems projected to make up the majority of robotic
systems within the next five years, a focus on security is needed
[28]. To the best of our knowledge, DiscoFuzzer is the first fuzzer
applied to ROS. However, Santos et al.proposed a property-based
testing approach for ROS. Property-based testing is very similar
to fuzz testing, but the latter does not require familiarity with the
target to specify properties and shapes[39].

Our main contributions in this paper are:

e A novel fuzz testing methodology to examine robotic soft-
ware systems based on numerical analysis and discontinu-
ity localization;

e A formalized benchmark for ROS consisting of 14 open-
source packages and 89 previously known vulnerabilities
(plus eight new vulnerabilities discovered by DiscoFuzzer);

e The design, implementation, and evaluation of DiscoFuzzer,
its discontinuity-based detection mechanism, and three
different sampling approaches.
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Figure 1: Example of discontinuity-based vulnerability detection for the software module of a robotic arm’s joint.

We demonstrated that DiscoFuzzer’s discontinuity analysis could
detect more than three times the vulnerabilities that the crash detec-
tion mechanism finds. Both DiscoFuzzer and the used benchmarks
will be publicly released on GitHub for the reproducibility of the
experiments and to aid further research in automated testing of
ROS packages.

2 DISCONTINUITY-BASED FUZZ TESTING

Let us consider an industrial robotic arm with a single joint. The
joint software module receives as input the desired angular posi-
tion and effort (power) to provide to the joint motor to perform the
movement. The output is an array describing the actual change of
angular position, velocity, and acceleration in time as performed by
the joint. Figure 1 shows an example of how the proposed method-
ology works. The discontinuity fuzzer begins by first choosing a
range of continuous input values. In this case, the range consists
of three values for the angular position and three values for the
effort. They constitute three fuzz test cases that are provided one by
one to the joint software module of the robotic arm. Each defined
test case wants to spin the joint one radian clockwise but with
increasing effort, i.e., the power to provide to the motor to perform
the movement. After each test, we collect the output messages and
concatenate their values to create the output functions. The fuzzer
then computes first and second derivative functions to analyze dis-
continuities and unveil anomalies in the behavior of the software.
Indeed, the output functions of velocity and acceleration contain a
significant change of the slope. The fuzzer detects an anomaly that
consists of the uncontrolled rapid rotation of the joint, which could
lead to a burn out of the motor because the software did not check
the physical constraint The methodology reports the properties of
the output function to help guide input test-case generation.

This example illustrates the functionality of discontinuity fuzzing.
Initially, our methodology identifies all of the target’s inputs and
outputs. For each input, it creates a sample generator to provide
intervals, i.e., ranges of continuous values, depending on the in-
put types (including arrays). Regarding floating points, the sample
generator also needs to define the distance between values in the
interval (i.e., the resolution). The methodology changes one input
at a time while setting the others to default values. Thus, a fuzzer
should perform the following actions:

e Choose an interval: The fuzzer samples a range of continu-
ous values and generates this iteration’s test cases (§2.1).

e Test values in the interval: The fuzzer performs one test at
the time against the target and saves the outputs.

o Analyze the output distribution: The fuzzer analyzes all of
the outputs of this iteration to detect anomalies (§2.2).

The fuzzer iterates on these actions until a termination criterion is
met, such as a time limit.

In the following subsection, we present some approaches we
adapted to implement the above methodology.

2.1 Sampling approaches

A sampling generator consists of an iterative process to choose the
next group of samples to test. We defined three different sampling
approaches based on three numerical sampling functions known in
the state-of-the-art literature.

First, we used a simple randomized Monte Carlo analysis[43]
that chooses every single value at random. Second, we perform a
Chebyshev approximation[13] of the target’s input/output function
and use the discontinuity and root-finding of the Chebyshev approx-
imation to look for potential areas of interest. Third, we construct
a model of the behavior function using a Cubic Hermite Spline
Interpolation. We chose these three functions to cover different
spectra of potential erroneous behavior.

The sampling approach is different between arrays and individ-
ual values, and we expand on them separately below.

Monte Carlo Sample Generator. Monte Carlo is a method based
on repeated random sampling. To conduct Monte Carlo sampling
for individual values, the sample generator chooses a random value
to be the central point for evaluation, and two values are sampled
in either direction for derivation analysis, for a total of five values
per iteration. For arrays, the fuzzer randomly chooses between (1)
creating the array repeating a single sample point, and (2) sampling
a central point and creating the array with increments of the central
point. Within this paper, we shall refer to Monte Carlo sampling as
monte_carlo.

Chebyshev Sample Generator. Chebyshev is a numerical method



that generates increasingly complex polynomials (Chebyshev poly-
nomials) for the interpolation of a dataset. Since the initial intro-
duction of the chebfun package in Matlab in 2005, Chebyshev
polynomials have gained broad interest in the field of numerical
approximation research as a way to model an arbitrary function.
One of the vital functions that Chebyshev polynomials provide
is the efficient location of roots and inflection points, computed
at each approximation. The Chebyshev sample generator initially
returns a list of interpolation inputs. Once the target runs the in-
terpolation inputs, the new list of interpolation inputs is generated
based on the target outputs. Indeed, this approach recursively de-
termines which points would be most optimal to sample, given the
current function approximation. Within this paper, we shall refer
to Chebyshev sampling as chebfun.

Spline Sample Generator. Similar to Chebyshev, Spline is a nu-
merical method that interpolates the function through a piece-
wise polynomial called a spline. Spline sampling begins with the
generation of two clusters of random values, in the same way as
monte_carlo does. Then, it generates a cluster at the midpoint
between these two. If the output from the third selected cluster is
similar to the spline interpolated output of the first two clusters,
within a user-specified tolerance, then a spline is drawn between
the first two clusters. Thus, it randomly generates a new cluster.
Otherwise, it generates a new cluster within the bounds set by the
first two generated clusters, and it performs a new interpolation.
For arrays, it follows the same behavior as monte_carlo, with the
caveat that the methods for filling arrays are treated as two distinct
sources of input for interpolation and generation separately. Within
this paper, we shall refer to Spline sampling as spline.

Structurally, the monte_carlo simulation has the lowest pro-
cessing overhead and the fastest turnaround, allowing it to cover
a larger number of potential inputs. However, the chebfun anal-
ysis provides a more precise analysis. The spline approach acts
as a hybrid of the two, with moderate precision and processing
overhead.

2.2 Discontinuity Analysis approach

We believe discontinuities in the output functions are the most
significant source of issues as the difference in state course changes
incredibly quickly as the system runs. The discontinuity analysis
approach first looks for discontinuities in the output. It focuses on
sharp changes in the slope of the output functions: large values in
the first derivative indicate a significant change, and large values in
the second derivative indicate a significant effect. We believe that
these changes in the derivatives are more likely to be indicative of
errors than any other behaviors, as it is less likely for a numerical
output with a smaller average derivative change to be the source
of vulnerability.

However, there could still be a chance that a minor change in
derivative will create a significant effect. As cyber-physical systems
tend to maintain a consistent internal state about the world which
they use to make decisions, the approach also considers the amount
of influence past inputs have on current outputs. This issue is
more obvious to recognize with the input of large floating-point
values: these values continue to affect the output regardless of the

new provided value due to the mathematical rounding properties.
Once an input corrupts the internal state, unexpected or malicious
behavior becomes more likely in the long-term. Thus, the analysis
raises an error when old inputs in the memory buffer start being
disproportionately different from new inputs.

Furthermore, we choose to look for anomalies where changes
to one input cause changes in multiple outputs. We enhance the
analysis by considering how many times a field in the output topic
has changed. If it changes at some consistent rate, then there is
presumed to be a connection between the published topic and the
output field. However, if there is a one-off outlier, it is more likely
to be a memory or mathematical calculation error. For example,
consider a memory-overflow vulnerability. If an input makes the
software write beyond the bounds of an array, it could overwrite
the other inputs. Thus, a field could change in the output response
message when it would typically not be affected by that type of
input.

In summary, our discontinuity analysis focuses on two main
patterns: values changing very quickly and values changing unex-
pectedly.

In both experimental analysis[45] and industrial surveys[53]
algorithmic bugs are found to make up between 30 and 50% of
the causes for robotic software failure. Additionally, previous ex-
ploratory research found that more then 75% of all algorithmic
bugs caused either a discontinuity in output (>50%) or a system
crash(>20%)[45]. The modular nature of most robotic systems means
that while there may be discontinuities in the output of a node,
all downstream nodes need to adapt to these discontinuities. For
example, a user may create a command to have a robot reset its
position to account for rotation. In the real world, this may be ad-
vantageous to avoid errors after long runs. However, this does lead
to a discontinuity in robot position, which may cause bugs to man-
ifest in other components in the robot, potentially leading to robot
burn-out or another failure. Even in these cases, where the user
may see an immediate advantage, the importance of addressing an
anomaly is vital in avoiding potential failures in other components.

3 ROS CHALLENGE

Robotic Operating System (ROS) is a collection of software libraries
that enables communication of both (abstracted) hardware and
(pure) software components to develop robotic systems. It is pre-
dicted that ROS centered systems will make up the majority of
robotic systems within the next five years, both in commercial and
academic settings[28]. Even among non-ROS systems, many design
similarities exist wherein similar methods can be applied [12]. ROS
is an open-source project, and it has a vibrant community with
thousands of developers and over nine thousands unique packages
available!. Usually, these packages extend ROS core functionalities
by implementing commonly used robotic software modules such
as hardware drivers, robot models, datatypes, planning, perception,
localization, simulation tools, and other algorithms. Of particular
mention is the ROS-Industrial[35] consortium: it consists of 78 in-
ternational industries that chose to extend and adopt ROS for their
industrial robots.

Uhttps://metrics.ros.org/



In ROS, independent computing processes called nodes com-
municate through messages. Messages define clean and consistent
interfaces. A ROS node is a self-contained process that controls a
part of the robot’s operation. A ROS topic is an implementation
of a channel in a publish-subscribe model. Topics act as a named
bus where nodes can join as either a publisher, a subscriber, or
both. When a publisher node sends a message over a topic, every
subscriber node to that topic receives a copy.

As an example, Figure 2 shows a node and its topics from the Uni-
versal Robot package 2. The arm_controller_spawner plans the
movement of a joint to reach a determined position and makes the
joint perform this movement. The node subscribes to one topic in
which a message consists of different components (inputs), e.g., an-
gular position and effort. It publishes a single topic in which a
message consists of different components (outputs): the current
angular position, the velocity, and the acceleration. We based the
example in Figure 2 on a simplification of the Universal Robot
package.

The ROS project already includes guidelines for testing[36] by
applying existing libraries, i.e., gtest for C nodes and pytest for
Python nodes, for simple unit testing. A tester should design and
implement every test in the proper language with test inputs and
oracles for every behavior they want to check. Santo et al.[39]
extended ROS unit tests with property-based testing. Their tool
randomly and automatically generates test inputs while checking
two simple properties of the node: liveness (a node should not
crash) and interface stability (the set of topics should not change).
However, adding new properties requires formal reasoning about
the target node to formulate its specific correct behavior.

Thus, we recognize the following challenge: designing a ROS
fuzzer to minimize human effort, explore the input space auto-
matically and efficiently, and detect any deviation from correct
behavior.

Zhttp://wiki.ros.org/action/show/universal_robots
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Figure 2: The Universal Robot’s node and topics

4 DISCOFUZZER

DiscoFuzzer implements the presented novel methodology to target
ROS nodes. The fuzzer is developed in Python 3.6, and targets ROS
kinetic.

Figure 3 shows an overview of DiscoFuzzer. The fuzzer’s input
is a user-defined configuration file that includes target information.
It outlines the type of messages used in the topics published or
subscribed to by the target node. It defines the input topic for the
sampling generators. The configuration file also contains how to
execute the target node, i.e, flags, and arguments for the command-
line. An orchestrator reads the configuration file and it (1) initializes
the ROS environment with the target node and DiscoFuzzer’s pub-
lisher and subscriber. A timer starts to count how long the fuzzer
should test the target. Then, the first iteration starts. The orches-
trator (2) notifies the test case generator of the new iteration. The
generator samples a new interval, and it (3) provides one value at a
time to the ROS environment through the publisher. Once the sub-
scriber receives a message, it (4) copies this value into the output
analyzer. The analyzer (5) sends the result of the analyses back to
the orchestrator. When anomalies are detected, the orchestrator @
relaunches the node and returns the node to a starting state so that
testing can continue. The fuzzer’s output is a set of reports issued
during the fuzzing campaign.

4.1 Test case generator and Publisher

The test case generator takes the current state of the system and
generates a new set of inputs to test through the publisher. The
user can define the interval size, i.e., the number of inputs to gen-
erate at every iteration. If the sampling generator computes the
size algorithmically (e.g., in chebfun), it ignores this configuration
parameter.

The generator tracks which inputs it has already given to the
system to ensure that there are no unnecessarily repeated values.
Beyond that, it maintains a collection of every single combination
of potential inputs from the topic to publish on. This collection
allows us to fuzz individual inputs one at a time, as well as inputs
in groups of size s3...sp, where n is the size of the input. It allows
for the identification of potential interactions or discontinuity in
situations where the combined two inputs can break the system,
even if they could not individually. It focuses on single inputs and
implement a power-law drop-off for values fuzzed in combination,

ROS environment

DISCOFUZZER'S
PUBLISHER

TARGET
NODE

DISCOFUZZER'S
SUBSCRIBER

Figure 3: Overview of DiscoFuzzer
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prioritizing potentially interesting interactions found from the sin-
gle fields before conducting a random search. For every ten values
fuzzed, nine values are single, and one is a combination. For the
combinations, 90% are pairing, 10% are combinations greater than
two.

The test generators implement the three sampling approaches
presented in the methodology.

For the monte_carlo sampling approach, the fuzzer chooses
the central input at random. The fuzzer stores every point, and
it discards any new point that overlaps with the previous range.
Additionally, we chose to initialize the fuzzer with some common
failure-inducing values such as NaN, infinity, and very large or very
small floating points.

Since the chebfun approach works by calculating a polynomial
and measuring the result, the generator relies on the information
provided by the output analyzer (through the orchestrator). For our
implementation, we chose to use the pychebfun library[47] as it
had the most active development and stars on GitHub outside of
the Matlab core implementation. As the chebfun approach stores
only the expansion coefficients we do not require any space-saving
optimizations for a longer run.

The spline approach consists of a numerical analysis that stores
a group of splines containing both measured points and their deriva-
tives, allowing for more accurate interpolation. One of the main
benefits of this method is that it allows arbitrary N-dimensional
interpolation of functions without extra computation. The spline
interpolation allows us to perform a more accurate analysis of array
fields. For our implementation, we rely on the scipy interpolation
library [49], choosing our points for the initial array in a random
method, just like the monte_carlo approach. The spline interpo-
lation approach is refined with a mixture of midpoints and random
additional points.

For generating an interval of floating points, DiscoFuzzer requires
the user to choose a resolution. The resolution both represents the
distances between points in the same interval and indicates the
number of decimal digits to consider.

The rate of publishing is limited in two areas: (1) the rate at
which the targeted node can respond and (2) the rate at which
the subscriber can update. While we can optimize the subscriber
and assign new threads to it, there is nothing we can do about the
targeted node. As such, the publisher runs on a single thread, and
no additional processing capabilities are required.

Users can also choose to set limitations on the monte_carlo
sampling if they expect that only specific values will produce in-
teresting results. Users can set a compression factor and/or place
constraints on combinations.

In the first case, DiscoFuzzer will choose a range at random with
size equal to the compression factor with bounds determined by
the resolution. Then, DiscoFuzzer sweeps through the range from
bottom to top at the chosen resolution, only saving the center of
the range instead of saving each selected random point. Effectively,
whenever DiscoFuzzer chooses a value for its sampling, it chooses
the next value in the specified range instead of a completely random
value. Once the range has been fully explored, it will randomly
select another range and repeat the sweeping process. This gives
users far more space-efficient storage for their simulation at the

cost of far fewer random values being explored over time. As an
example, suppose the user sets a range size of 100. When using the
compression factor feature, after sampling 10,000 points it would
only have 100 values saved in memory instead of the 10,000 total
values it would have under normal sampling procedures.

The constraints on combinations feature allows users to set con-
straints on generated inputs. These can vary in complexity from
simple constraints such as limiting fields to a specific range of
values (such as x < N), to specific combination rules (such as
y > x;y < N). Users can specify any numeric constraints they
deem necessary for their purposes. This allows users to better
guide fuzzing processes to be more efficient.

4.2 Output analyzer and Subscriber

The output analyzer takes the outputs captured by the subscriber
and analyzes them to provide reports to the orchestrator.

The analyzer operates by creating a mapping of potential dis-
continuities and their inputs. It begins by establishing a baseline
for every single output topic, by looking for integer, floating-point,
Boolean, and array outputs, and stores a shortened differential vec-
tor for them. First, it collects the five (for monte_carlo and spline
sampling approaches) or N (for chebfun sampling approach) values.
Then, it starts the anomaly detection process in a separate thread
while signaling to the orchestrator to send a new group of values.
This ensures that the system is utilizing as much of the duty cycle
as possible.

The anomaly detection algorithm is at the center of this concept.
We primarily rely on numerical approximation rules, as well as
analysis of previous research on bugs behavior in cyber-physical
systems. Our criterium consists of: (1) numerical discontinuities
i.e., points where the difference between two values is signifi-
cant and nonlinear, and (2) information leakage across values in a
message, i.e., when a field that is previously unchanged suddenly
changes after input changes, especially when it is an outlier or a
unique instance.

The discontinuity measures come from the underlying assump-
tion of the continuous nature of the physical world. While there
are valid reasons for discontinuity in the output of a robot, if we
notice large values in the first or second derivative, mainly when
such values are not reflected in their neighboring value derivatives,
it necessitates further investigation. These discontinuities are often
a sign of a bug in the control loop or floating-point mathematical
computations. The quintessential example of this is a division that
is rapidly approaching infinity as its denominator tends toward zero.
We use the first derivative to look for any logical jumps, and the
second derivative to look for any potential significant changes in
the first derivative. The analyzer records the mean and the standard
deviation for the first and second derivatives of each output. Any
deviations more than a detection threshold are raised as a potential
anomaly.

Furthermore, the analyzer includes a Bayesian sensitivity analysis[51]

that calculates the weighted effect of each of the past N inputs on the
output. The weighted effect is calculated by measuring derivative
effects of the output from a given group of inputs. This weighted
effect is stored in an array of size N, and the sum of this array is
always one. The weight array is continually updating, maintaining
size N. Empirically, we chose to consider the first 50% of values as



“old”, and second 50% of values as “new”. The analyzer raises an
anomaly if the sum of the “new” values is less than the weighting
threshold. This indicates the process is no longer updating that
output for new inputs, flagging a potential anomaly.

We consider NaN and infinity outputs as leading special cases of
discontinuity. These values are vital for analysis, given that once
an internal robotic state system starts to propagate NaN values, it is
highly likely that it will continuously output NaN values. Unless the
system has proper handling functionality, the same applies to values
of infinity. We only flag NaN and infinity values when they occur in
more than three consecutive listings, as this was determined to be
a sign that the robot is unable to perform any new calculations.

The analyzers also look for anomalies where changes occur un-
expectedly in some outputs. Upon startup, a mapping is created
for every input and output field combination. This mapping is one-
to-one or one-to-many. When a new message is received from the
subscriber, for every field changed a counter is incremented for
those particular mappings. The analyzer raises an anomaly when
the counter is incremented, and the counter value is below a nor-
mality threshold, a user-defined ratio of the maximum difference
between any two mappings for the same input field. A low counter
indicates that a value has changed when it normally remains un-
changed, a potential anomaly.

By default, all three thresholds (detection, weighting, and normal-
ity) are set to be equal to two o or two standard deviations from
the mean. This value is based on the idea of using a 95% confidence
interval for fuzzing anomaly detection from Zhao et al.[59]. Each
threshold can be customized by the user. For example, a user can
specify the detection threshold and weighting threshold at two o,
but set the normality threshold to three o, if an output field has a
low rate of change causing a larger number false positives than
expected.

Once the anomaly detection algorithm has discovered an anom-
aly, the analyzer saves inputs, outputs, and timings of the test, as a
pickled message object.

4.3 Crash Detection

DiscoFuzzer implements another anomaly detection mechanism,
performed by the orchestrator, that fuzzers use typically: crash
detection. The orchestrator deploys the ROS nodes in python sub-
processes. When a node crashes, the subprocess returns with an
error code that is caught by the orchestrator. Furthermore, the
orchestrator periodically uses the utility ROStopic[38] to check
whether the topics are still available to the nodes. When a crash
is detected, it creates similar reports every time it discovers an
anomaly.

4.4 Source Code
The source code of DiscoFuzzer is publicly available at URL3.

5 EVALUATION

In this section, we evaluate DiscoFuzzer for the effectiveness of the
discontinuity-based analysis approach and efficiency of the three
sampling approaches.

3The URL is not available due to the double-blind process. The authors are available
to send a copy of the file upon request.

More specifically, we conduct an experimental campaign to an-
swer two main research questions:

RQ1 Can DiscoFuzzer detect vulnerabilities in ROS nodes based
on discontinuity analysis? (§5.3)

RQ1.1 How many bugs does the discontinuity analysis detect
compared to the other analyses, previous work and
human detection?

RQ2 Which sampling approach used by DiscoFuzzer is more
efficient to trigger vulnerabilities in ROS nodes? (§5.4)

We initially create a set of benchmarks by including popular
ROS nodes with known vulnerabilities (§5.1). Then, we execute
DiscoFuzzer against the benchmarks (§5.2). Furthermore, we also
consider some common use-cases and threats to validity to conclude
the evaluation(§5.5,§5.6).

5.1 Benchmarks

Table 1 shows the benchmarks.

We identified 14 open-source ROS packages in the ROS ecosys-
tem, using the rosmap[30] tool. We chose ten of them by deter-
mining the packages that had the highest number of packages that
depended on them, i.e,those packages with very high impact on
the community. These ten core packages are usually included in
academic robotic systems to support research, development, and
prototyping[24]. We chose also four additional real-world pack-
ages that are used in non-academic contexts. These packages are
highly-rated on GitHub, including the Autoware self-driving car,
the Udacy self-driving car, the NASA Mars rover, and the ARDrone
flight system.

All code for the 14 packages is hosted and regularly updated
on GitHub. For every package, we looked into its issue tracker
for closed issues. We kept only those issues related to software
vulnerabilities and discarded the others (i.e. users’questions, feature
requests, or compilation issues). We assign to each vulnerability
a numeric and unique id. We define a benchmark as the code in
the package’s repository at a version that include the maximum
number of vulnerabilities not already included in other benchmarks.
This criterion resulted in more benchmarks for the same package
but at different versions. Thus, we identified 20 benchmarks with
89 vulnerabilities.

During the execution of fuzz campaign, we detected further vul-
nerabilities in the targets. For each of them, we extensively searched
into the issue trackers and find the related issue. If not found, we
consider the new vulnerability as previously unknown to the com-
munity and we submitted a new issue related to it. We assigned
to all of them a numeric and unique id, and we added them to the
DiscoFuzzer’s benchmarks. Since we reported the 8 vulnerabilities
to the developers, 5 have have been officially confirmed as potential
security threats. Of those 5, 3 have been patched and the other 2
are still open issues. The other 3 are still pending for confirmation.

Further information, such as the link to the issue on GitHub
where the vulnerability is described, is in the JSON file at URL *.



Table 1: DiscoFuzzer’s benchmarks. The first two columns enumerate the names of the benchmarks. The third and fourth
columns show the URLs of the code and the lists of the ids of each benchmark’s vulnerabilities. An exception occurs for the
benchmarks number 5 (carla) and 6 (carla-bis): they require other code running to be tested, namely carla-core, introducing
in the above-mentioned benchmarks two new vulnerabilities. We added the URL of carla-core in the table. We also added the

previously unknown vulnerabilities in bold (cfr. §5.3).

name URL vulnerabilities

1 apm-planner https://github.com/ArduPilot/apm_planner/tree/dfe1865a82 [1,2,3,4,5,6,90]

2 ardupilot https://github.com/AutonomyLab/ardrone_autonomy/tree/2e3b75a [7,8,9,10,11, 12, 13]

3 autoware https://github.com/autowarefoundation/autoware/tree/31f4bfb [14, 15, 16, 17, 18, 19, 20]

4 autoware-bis https://github.com/autowarefoundation/autoware/tree/e625625 [21]

5 carla https://github.com/carla-simulator/ros-bridge/tree/8e468ca [22, 23]

6 carla-bis https://github.com/carla-simulator/ros-bridge/tree/625960e [24]

carla-core https://github.com/carla-simulator/carla/tree/ec3bb90 [25, 26]

7 cartographer-ros https://github.com/googlecartographer/cartographer_ros/tree/2538ac3 [27, 28, 29, 30, 31, 32]

8 cartographer-ros-bis https://github.com/googlecartographer/cartographer_ros/tree/7bcdda4 [33, 34, 91]

9 cob-driver https://github.com/ipa320/cob_driver/tree/7a5d7c8 [35, 36, 37, 38, 39, 40]
10 image-pipeline https://github.com/ros-perception/image_pipeline/tree/d11edf3 [41, 42, 43, 44, 45, 46, 47, 48, 92]
11 1sd-slam https://github.com/tum-vision/Isd_slam/tree/bb82258 [49, 50, 51, 52, 53, 93]
12 moveit https://github.com/ros-planning/moveit/tree/ecel1fe [54, 55, 56, 57, 58, 59, 60, 94, 95]
13 mrpt https://github.com/mrpt/mrpt/tree/f564006 [61, 62]
14 mrpt-bis https://github.com/mrpt/mrpt/tree/a4bcb08 [63]
15 mrpt-tris https://github.com/mrpt/mrpt/tree/31e853f [64, 96]
16 navigation https://github.com/ros-planning/navigation/tree/48323b0 [65, 66, 67, 68, 69, 70, 71, 72, 73]
17  open-source-rover https://github.com/nasa-jpl/osr-rover-code/tree/33f072e [74, 75, 76, 97]
18 rtabmap https://github.com/introlab/rtabmap/tree/173bd49 [77, 78, 79, 80, 81]
19 rtabmap-bis https://github.com/introlab/rtabmap/tree/344dc16 [82, 83, 84]
20 universal-robot https://github.com/ros-industrial/universal_robot/tree/8c912d4 [85, 86, 87, 88, 89]

5.2 Experimental design

DiscoFuzzer’s configuration parameters were tuned with results
from all three different sampling approaches. Table 2 shows the val-
ues of all other parameters that are identical among the three. These
parameters were determined experimentally after exploratory anal-
ysis with DiscoFuzzer.

For each combination of a benchmark and one of the three Dis-
coFuzzer sampling approaches, we run the fuzzer 10 times. A single

4The URL is not available due to the double-blind process. The authors are available
to send a copy of the file upon request.

Table 2: DiscoFuzzer’s configuration parameters used in the
evaluation.

parameter value
interval size 5
resolution 0.01
compression factor 200

2 times the standard deviation
of the expected values

3 times the standard deviation
of the expected values

2 times the standard deviation
of the expected values

detection threshold
weighting threshold

normality threshold

repetition, i.e., a fuzz campaign[22], lasts 24 hours. The only excep-
tion is the chebfun sampling approach: it only needs to run once
per benchmark because of its deterministic nature. In total, we ran
420 fuzz campaigns, 420 full days in CPU time.

The fuzzing environment runs in a virtual machine with four
cores of an Intel(R) Xeon(R) CPU E5-4650 set in a host emulation, 8
GB of RAM, Ubuntu 16.04, ROS kinetic, Python 3.6, and pychebfun 5,
We optimize the execution of the program with the python profile
library and implement an automatic load balancer between the
subscriber and the publisher to ensure that the system is constantly
publishing at the highest rate that the fuzzed node can support. We
enforce the testing time by using the system clock and terminate
the program after 24 hours.

5.3 Effectiveness of DiscoFuzzer

Every fuzz campaign produced a report for each vulnerability de-
tected by DiscoFuzzer. The report contains information such as
sampling approach, target node, last messages (i/0), anomaly type,
and detection time (elapsed time since the beginning of the fuzzing
campaign). We manually inspected every report and tested its re-
producibility. We labeled the report with its vulnerability-id if it

5The used version of pychebfun is at https:/github.com/pychebfun/pychebfun/commit/
cda9283.
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Figure 4: Metrics grouped by the issuing detector mecha-
nism. The bars’ height represents the mean value for the
group in the specified benchmark.

produced a True Positive. In case of a previously unknown vul-
nerability, we created a new one and recorded it in the bench-
marks (cfr. §5.1. All of the reports consist of JSON files, uploaded
as archives at URL®.

DiscoFuzzer found eight previously unknown vulnerabilities,
marked in bold in Table 1, and identified 77 of the 89 previously
known vulnerabilities. We grouped the reports by the issuing de-
tector, i.e., either discontinuity_analysis or crash_detection.
The crash detection mechanisms detected 22 distinct vulnerabili-
ties: 20 of the 89 previously known vulnerabilities, and 2 new ones.
During the evaluation, the discontinuity analysis of DiscoFuzzer
detected 63 distinct vulnerabilities: 57 of the 89 previously known
vulnerabilities, and 6 new ones (cfr. RQ1).

5The URL is not available due to the double-blind process. The authors are available
to send a copy of the file upon request.
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Figure 5: Metrics grouped by the used sampling approach.
The bars’ height represents the mean value for the group in
the specified benchmark. They also include an error bar, but
for chebfun, that is deterministic.

Figure 4 shows the number of true and false positives, and the
precision computed as the number of true positive divided by the
number of all positives. Even if the discontinuity_analysis can
detect more vulnerabilities in 12 out of 14 benchmarks, its complex-
ity and infancy are highlighted by looking at the precision. The
crash_detection almost has no false positives resulting in a much
higher precision than discontinuity_analysis.

The discontinuity analysis of DiscoFuzzer detected 41 more unique
vulnerabilities compared to the crash detection (cfr. RQ1.1).

5.4 Efficiency of the sampling approaches

We grouped the reports by the used sampling approaches, shown
in Figure 5.

Following the methodology presented by Klees et al.[18], we
performed a statistical analysis to determine which of the sampling
approaches has better precision. We performed the Mann Whitney



Table 3: Results of the statistical analyses on precision per-
formed among DiscoFuzzer’s three sampling approaches,
namely spline (s), monte_carlo (mc), and chebfun(c). The p
is the p-value of the Mann-Whitney U test performed, while
the A is the Vargha and Delaney’s statistic. The first column

lists the benchmarks’ names.

Benchmark Psme  Asme  Psec  Asc  Pmec  Amec
apm-planner 0.106 034 0481 050 0.045 0.70
ardupilot 0.380 0.55 0.115 0.65 0.006 0.80
autoware 0435 047 0.027 0.75 0.016 0.78
autoware-bis 0.432 047 0.099 0.66 0.049 0.70
carla 0.111  0.65 0.121 0.65 0.227  0.40
carla-bis 0.221 041 0.226 0.60 0.032 0.73
cartographer-ros 0.036 0.26 0323 043 0.000 0.94
cartographer-ros-bis  0.154  0.36  0.000 1.00 0.000 1.00
cob-driver 0.380 046 0.000 1.00 0.000 1.00
image-pipeline 0.470 048 0.000 1.00 0.000 1.00
lsd-slam 0.351 0.56 0.000 1.00 0.000 1.00
moveit 0.296 042 0.057 0.30 0.035 0.30
mrpt 0.468 0.52 0.180 0.38 0.148 0.36
mrpt-bis 0.000 0.94 - - 0.000 0.94
mrpt-tris 0.251 042 0339 056 0.084 0.67
navigation 0.114 034 0.221 0.60 0.001 0.90
open-source-rover  0.350 045 0.220 040 0.000 0.00
rtabmap 0.073 0.33 0.288 042 0228 0.59
rtabmap-bis 0.448 048 0500 049 0482 0.51
universal-robot 0.409 0.54 0.221 0.60 0.219  0.40

U test [23] to test the null hypothesis Hy that the precision of two
sampling approaches is statistically equal. In case of p_value < 0.05,
we reject Hy. We computed the Vargha and Delaney’s A statistic
[48] to compute the effect size of the statistically different group.
Given two groups, Ay 2 is close to 1 if the first group has a statis-
tically higher precision than the second group, close to 0 on the
opposite case. Table 3 shows the results of this statistical analysis.
The precision of the spline and monte_carlo sampling methods
are statistically different only in three cases, where spline is more
precise during a single benchmark and monte_carlo in other two.
In 5 out of 20 benchmarks, the spline approach has a statistically
higher precision than chebfun, but in one benchmark the con-
verse is true. In 12 out of 20 benchmarks, monte_carlo is better
than chebfun, but in the other two cases, the contrary holds. The
monte_carlo sampling is the most precise while using chebfun
leads to the least precise reports. However, in the majority of cases,
the statistical tests are inconclusive.

Table 4 and Figure 6 present the vulnerabilities as detected by
the three sampling approaches. Every sampling approach found
unique vulnerabilities that the other two could not. In particular, the
chebfun sampling approach found more than double the amount
of these unique vulnerabilities, including two previously unknown
vulnerabilities. In total, eight new vulnerabilities were detected, five
of which were detected by all three methods, two which were iden-
tified by spline and monte_carlo, and two that were identified
only by chebfun.

Table 4: Vulnerabilities as detected by the three sampling
approaches. The first three columns indicate whether the
row is the intersection (®) or not (O) of the elements detected
by spline, monte_carlo, and chebfun. The fourth column has
the number of vulnerabilities in the resulted subset. The last
column contains the ids of the vulnerabilities, highlighting
in bold the previously unknown vulnerabilities.

spline monte_carlo chebfun #

o o o 46

vulnerability IDs

1,2,7,8,9,10, 12, 13,
15, 16, 17, 21, 23, 26,
27, 34, 35, 39, 40, 53,
54, 55, 56, 57, 59, 60,
61, 62, 64, 66, 67, 68,
72, 73, 74, 81, 82, 86,
88, 89, 90, 92, 93, 96,
97

21 11, 14, 20, 25, 29, 32,
33, 36, 37, 41, 42, 43,
44, 45, 47, 49, 50, 52,
70, 83, 91

18, 24,71, 85

19, 28, 80

48, 52, 63

46, 65

22,30, 75,77, 79, 94,
95
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Figure 6: Venn diagram of the vulnerabilities as detected by
the three sampling approaches. The area occupied by the
three circles represents the number of unique vulnerabili-
ties found. Overlapped areas indicate the number of unique
vulnerabilities found by both (or the three) approaches. The
stars represent unique vulnerabilities that were previously
unknown.

Similarly to the precision analysis, we analyzed the vulnerability
detection times of the three sampling approaches through statistical
tests. The null hypothesis Hy, for the Mann-Whitney U test, is that
the detection times for a vulnerability in two sampling methods
are statistically equal. The Vargha and Delaney’s A; » statistic is
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Figure 7: Detection times plotted for each benchmark (ROS node) and grouped by sampling approaches. The lighter lines
around spline and monte_carlo represent the minimum and the maximum functions, while the darker lines are the average

functions.

high if the first group has longer detection time than the other, low
in the opposite case. We then compared each sampling approach
with the other two. For each comparison, we computed how many
times it is statistically faster than the other. Results of the statistical
analysis on vulnerability detection times are in the appendix. Table
5 lists the results of these comparisons, demonstrating that chebfun
approach is statistically faster to detect bugs. Figure 7 provides a
view on the detection times for the benchmarks.

(19) rtabmap-bis

No sampling method is statistically better in finding vulnerabili-
ties, but each of them discovered vulnerabilities the others could
not. However, the chebfun approach occurs to be the fastest in

finding vulnerabilities (cfr. RQ2).

(20) universal-robot




Table 5: Pairwise comparison among the three sampling ap-
proaches of DiscoFuzzer. While the second column present
us with the results based on statistical significance, the last
column presents the number of ties. There is a tie in a com-
parison of vulnerability detection times if such a compari-
son is not statistically significant, i.e.,the p-value of the as-
sociated Mann-Whitney U test is greater than 0.05.

Comparison Result Ties
spline - monte_carlo 15-25 26
spline - chebfun 11-19 19
monte_carlo - chebfun 13-17 18

5.5 Discussion

DiscoFuzzer demonstrates its capabilities in detecting previously
known and unknown erroneous behavior. The three sampling ap-
proaches complement each other well to identify many types of
cyber-physical vulnerabilities. In the majority of cases, DiscoFuzzer
successfully identified vulnerabilities with high precision. However,
testing revealed some case-specific behaviors that are notable for
future analysis.

When considering the security of ROS systems, there are three
viewpoints to analyze. First of all, ROS systems are insecure and
provide little protection against attackers [11]. The second point
of view is that through leveraging all security modules available
through ROS [52], we can treat these systems as reasonably secure.
The only concern is about sensor-based attacks. As an extension
of the second viewpoint, the third one only considers attacks that
could potentially leave long-lasting or hard to repair damage to
the physical systems or their surroundings. DiscoFuzzer operates
under the assumption that the only vulnerabilities in ROS systems
are concerning sensor-based attacks. Thus, every anomaly found
by DiscoFuzzer is not adequately protected by the current security
measures and can be exploited to cause damage to the robotic
system and its surroundings. In this way, DiscoFuzzer provides
another layer of protection.

Overall, the false positives are exceedingly rare for crash failures.
Two scenarios cause them: (1) virtual memory overflow due to
dynamic array sizes, and (2) asserts. Most nodes only crash due to
the first scenario occurring when the fuzzer passes a message with
a large array causing the virtual machine to run out of memory
(as they do not have swap). Then, the fuzzer crashes but does not
indicate a bug in the node code. Notably, Google Cartographer
exhibits a different crash profile. Google Cartographer uses asserts
while parsing messages. For any malformed message, the assert
causes the node to cease execution. After a manual analysis of the
design and code of the node, we hypothesize that this is a design
decision made to enforce well-formatted inputs. Even applying
constraints and automatically eliminating any combination that
caused too many crashes, the tool still picks up a moderate amount
of false positives.

In respect to false positives for discontinuity analysis, they occur
primarily as a product of the threshold settings, with some behav-
iors producing more noise than others. However, it is necessary to
note that for this paper, we chose a consistent threshold for testing

of all packages. In real-world applications, users can tune the fuzzer
for their specific applications.

In general, false negatives are an expected component of any test-
ing platform[18]. Here, we found that false-negatives are primarily
due to specific configuration requirements or bugs that required
multiple fields to be at precise values.

A limitation of DiscoFuzzer is data-type selection. DiscoFuzzer
only analyzes numeric data types, such as integers, floating points,
boolean values, and arrays. Other data types are, therefore, excluded.
While our approach behaves well for our stated goals, it deliberately
excludes vital data types such as strings, a typical application in
fuzzing research. A future version of the tool can mitigate this limi-
tation by using a combination approach with other well-established
non-numerical fuzzers such as AFL[58]. Another limitation con-
cerns DiscoFuzzer’s strict adherence to the ROS message format.
Our tests never included malformed messages nor out-of-order mes-
sages. Only valid messages were sent to the node to ensure that the
fuzzer was only analyzing the node-specific code and not the ROS
parsing mechanisms. These concerns are ROS specific and deemed
out-of-scope as the goal was to create a generalizable technique.

The final limitation is due to the black-box nature of the test sys-
tem. While black-box testing allows for easy integration of a wide
variety of ROS nodes written in multiple programming languages
based purely on input-output behavior, an extensive corpus of lit-
erature focuses on grey-box fuzzing, which is not explored here.
Grey-box fuzzing would allow for more efficient guided fuzzing, at
the cost of complexity of fuzzer design and portability. While the
use of grey-box fuzzing, in this case, would allow more accurate
tuning of parameters, there would be a high cost in efficiency and
performance. By using the black-box technique, we obtain accurate
results while providing an efficient and usable tool for users.

While previous work on property-based fuzzing is valid, Disco-
Fuzzer outperforms them in detecting vulnerabilities that combine
multiple properties in unison, which traditional property-based
fuzzing detects less efficiently [39]. Additionally, DiscoFuzzer is
more accessible for developers to validate discovered vulnerabil-
ities. Similarly, another recent advancement in the field includes
derivative-based fuzzing [17]. However, this approach is narrow in
scope, focusing only on the control loop of systems. DiscoFuzzer is
capable of a broader scope in its analysis, able to identify a more
significant number of potential vulnerabilities with applications
among any ROS package.

5.6 Threat to validity

The only threat to validity that we are aware of for DiscoFuzzer
is external. As we focused our initial design on ROS, we did not
guarantee that our discontinuity results are generalizable to other
cyber-physical systems. However, we do believe that the approach
is general enough to apply to any system with well-defined inputs
and outputs interfaces.

6 RELATED WORK

Previous research related to our work includes fuzz testing and
state-of-the-art of robot system testing.



6.1 Fuzz testing

In recent years, the security community advanced enormously in
the state-of-the-art of fuzzers, proposing different approaches to
generate new inputs and detect the program’s misbehavior. The
most recent advancement in derivative-based fuzzing is an approach
by Taegyu et al.[17], which focused on fuzzing the PID control loop
of several types of robots. This approach utilized control loop sta-
bility as a means to guide coverage testing for systems that use
the MAVlink protocol. KAFL[40] is coverage-guided kernel fuzzer
that is OS-independent and based on hardware-assisted instrumen-
tation. DIFUZE[9] is an interface-aware fuzzing tool to automati-
cally generate valid inputs and trigger the execution of the kernel
drivers. JANUS[55] is a feedback-driven fuzzer that explores the
two-dimensional input space of a file system, that mutates meta-
data on a large image while emitting image-directed file operations.
PeriScope[44] focuses on the hardware-OS boundary, targeting de-
vice drivers. Razzer[16] guides the exploration of inputs to search
for data races.

Concolic execution can help the exploration of the input space
where standard approaches fail. These fuzzers are called hybrid and
vastly showed their efficacy in testing software programs[46], [7],
[57], [59]. However, the community also provided lighter methods
to explore the program under test and overcome magic numbers
and nested checksums. VUzzer [33] leverages control- and data-
flow features to generate interesting inputs. TFuzz[27] solves the
problem by removing sanity checks in the target program when it
cannot bypass them. REDQUEEN [5] exploited the input-to-state
correspondence, i.e.the feature of some program where parts of the
input often end up directly in the program state. Some fuzzers try to
use some level of knowledge of the input space and generate fewer
but better inputs. TIFF [15] tags input bytes with its basic type
(e.g.,, 32-bit integer) in the program, then it uses this information
to mutate the inputs accordingly. ProFuzzer [56] adds to this the
ability to understand input fields of critical importance. Superion
[50] creates meaningful tests for programs that process structured
input (e.g.,. XML engines) by analyzing its grammar.

The differential testing approach is a way to find errors by com-
paring results from different implementations of the same program,
resulting in cross-referencing oracles. Chen et al.[8] applied differ-
ential testing to a coverage-guided fuzzer for Java Virtual Machines.
Nezha [29] exploits these differences also to generate inputs that
are more likely to trigger a bug. DifFuzz [26] explores the input
space by maximizing the differences in resource consumption since
it targets side-channels vulnerabilities.

Sanitizers are another approach to detect specific failures in a
fuzzing campaign. AddressSanitizer[41] finds out-of-bounds ac-
cesses to heap, stack, and global objects, as well as use-after-free
bugs. UndefinedBehaviorSanitizer [21] detects null pointer, signed
integer overflows, and wrong type conversions. MemorySanitizer
[20] focuses on uninitialized reads.

The novelty of DiscoFuzzer lies in taking the previous model-
based testing approaches and extending their most commonly found
failure modes into a highly search-based system. We provide a
standard extension framework for analyzing model-based bugs.
DiscoFuzzer is highly user-customizable and aimed at an under-
explored area of fuzzer research: cyber-physical systems. As of

the publishing of this paper, this is the first-known approach that
combines these methods for applications within the cyber-physical
domain. Additionally, this approach is the first applied to Robotic
systems, namely ROS.

6.2 Robotic System Testing

Robotic systems are validated with formal specifications, and these
formal verification approaches are complementary to the testing
of the actual implementation of the robot. With the assumption of
functioning hardware, we focus on how to test robotic software.

DiscoFuzzer falls into the category of search-based approaches.
A search-based method uses heuristics to explore the input space
of the target and automatically generate test cases. Both Ali and
Yule[2] and Arrieta et al.[3][4] use genetic algorithms to generate
and select test cases. Matinnejad et al.[25] applied different search
algorithms for testing automotive embedded systems, including
random search, adaptive random search, a hill-climbing algorithm,
and a simulated annealing algorithm. Abbas et al[1] applies the
Monte Carlo simulation to explore the input space to find violations
of robustness properties. Instead, DiscoFuzzer is not applying Monte
Carlo on models nor focuses on temporal logic. DiscoFuzzer treats
the module as a black-box, and its Monte Carlo implementation is
aware of the state of the robot system.

Specific to ROS, RosPenTo is a semi-automated tool for testing
ROS[11]. It injects fake messages into the system to demonstrate
the consequences of the lack of security in ROS. Indeed, an attacker
(1) can easily query the master for sensitive information, and (2) can
easily impersonate a subscriber node. These are the assumptions we
used for DiscoFuzzer. Indeed, DiscoFuzzer assumes that the message
and packaging interface of ROS are wholly intact and reliable, and
focuses on the effects of those messages on the system.

Santos et al.[39] implemented a property-based testing frame-
work for ROS. This first approach aims at the automatic generation
of test scripts for property-based testing of various configurations
of a ROS system. Their approach looks for sequences of messages
that either crashes the target node or violate a previously specified
property. An automatic test generation method builds the property-
based tests from configuration models extracted by a static analysis
framework. Instead, DiscoFuzzer is a proper fuzzer that, besides
automatically generated test cases for the target, does not need any
specification of properties to detect anomalies in the target.

7 CONCLUSION

In this paper, we have proposed a novel fuzz testing methodology.
We chose three different sampling methods and implemented the
methodology in DiscoFuzzer targeting ROS packages. We tested
it against 14 ROS packages to evaluate its efficacy and efficiency.
Results show that DiscoFuzzer can find more vulnerabilities than
traditional crash detection mechanisms without the necessity to
specify any ad-hoc property for the targets. However, no sam-
pling approach resulted entirely better than the other, but all of
them are necessary to find the majority of unique vulnerabilities.
Thus, we envision DiscoFuzzer will be able to use a combined ap-
proach for sampling and cover all the detected vulnerabilities at
once. Furthermore, future research should look forward to improv-
ing discontinuity-based analysis and decrease the number of false
positives while using the approach.
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