
P
os
te
d
on

8
J
u
l
20
20

—
C
C
-B

Y
-N

C
-S
A

4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
26
19
70
6.
v
1
—

T
h
is

is
a
p
re
p
ri
n
t.

V
er
si
on

of
R
ec
or
d
av
ai
la
b
le

at
h
tt
p
s:
//
d
oi
.o
rg
/1
0.
11
09
/T

V
T
.2
02
1.
30
59
37
0

List Viterbi Decoding of PAC Codes

Mohammad Rowshan 1 and Emanuele Viterbo 1

1Affiliation not available

October 30, 2023

Abstract

Polarization-adjusted convolutional (PAC) codes are special concatenated codes in which we employ a one-to-one convolutional
transform as a pre-coding step before the polar transform. In this scheme, the polar transform (as a mapper) and the successive
cancellation process (as a demapper) present a synthetic vector channel to the convolutional transformation. The numerical
results show that this concatenation improves the Hamming distance properties of polar codes.

In this work, we implement the parallel list Viterbi algorithm (LVA) and show how the error correction performance moves from

the poor performance of the Viterbi algorithm (VA) to the superior performance of list decoding by changing the constraint

length, list size, and the sorting strategy (local sorting and global sorting) in the LVA. Also, we analyze the latency of the local

sorting of the paths in LVA relative to the global sorting in the list decoding and the trade-off between the sorting latency and

the error correction performance.

1

List Viterbi Decoding of PAC Codes

Mohammad Rowshan, Student Member, IEEE and Emanuele Viterbo, Fellow, IEEE

Polarization-adjusted convolutional (PAC) codes are special
concatenated codes in which we employ a one-to-one convolu-
tional transform as a pre-coding step before the polar trans-
form. In this scheme, the polar transform (as a mapper) and
the successive cancellation process (as a demapper) present a
synthetic vector channel to the convolutional transformation.
The numerical results show that this concatenation improves
the Hamming distance properties of polar codes. In this work,
we implement the parallel list Viterbi algorithm (LVA) and
show how the error correction performance moves from the
poor performance of the Viterbi algorithm (VA) to the superior
performance of list decoding by changing the constraint length,
list size, and the sorting strategy (local sorting and global sorting)
in the LVA. Also, we analyze the latency of the local sorting of the
paths in LVA relative to the global sorting in the list decoding and
the trade-off between the sorting latency and the error correction
performance.

Index Terms—Polarization-adjusted convolutional codes, polar
codes, Viterbi decoding, list decoding, path metric sorting.

I. INTRODUCTION

Polar codes proposed by Arıkan in [1] are the first class of
channel codes with an explicit construction that was proven
to achieve the symmetric (Shannon) capacity of a binary-
input discrete memoryless channel (BI-DMC) using a low-
complexity successive cancellation (SC) decoder (SCD). Nev-
ertheless, the error correction performance of finite-length
polar codes under SCD is not satisfactory due to the existence
of partially polarized channels. To address this issue, SC list
decoding (SCLD or in short LD) was proposed in [2].

Recently in [3], Arıkan proposed a concatenation of a
convolutional transform with the polarization transform [1]
in which a message is first encoded using a convolutional
transform and then transmitted over polarized synthetic chan-
nels as shown in Fig. 1. These codes are called “polarization-
adjusted convolutional (PAC) codes”. It was shown in [4] that
a properly designed pre-transformation such as convolutional
transform can improve the distance properties of polar codes.

In [5], we studied the implementation of tree search
algorithms including the conventional list decoding and
complexity-efficient Fano decoding for PAC codes. However,
due to the convolutional pre-transformation, PAC codes can
also be easily encoded and decoded based on the trellis
by employing the Viterbi algorithm (VA) [6], [7] and the
extended/list VA [9] as a decoder. The basic Viterbi algorithm
was employed in [8] as an ML decoder for short polar codes
in a comparison with Reed-Muller (RM) codes.

M. Rowshan and E. Viterbo are with the Department of Electrical and Com-
puter Systems Engineering (ECSE), Monash University, Melbourne, VIC3800,
Australia. E-mail: {mohammad.rowshan, emanuele.viterbo}@monash.edu.
These authors’ work was supported by the Australian Research Council under
Discovery Project ARC DP160100528.

Mapper

Polar
Transform

Rate
Profiling

Convolutional
Transform

Trellis Search
Message
Extraction

Channel

Demapper

Successive
Cancellation

d

d

uv

λ

û

v̂

x

y

Precoding Outer decoding

Polar
Mapper

Memoryless
Channel

v v̂

u metricû

x y Polar
Demapper

Pre‐processing Post‐processing

Polarized Vector Channel

0 1 0 1 0 1 0 0 0 1 0 1

‐2 ‐1 0 1 2 3 4 5 6 7‐3‐4
Message

bits

Constraint Length (m+1)

+
P[0]=0

0 1 0 1 0 1 0 0 0 1 0 1

‐2 ‐1 0 1 2 3 4 5 6 7‐3‐4
Message

bits

+
P[1]=1

Generator
Polynomial, g

Polarized Vector Channel

Figure 1. PAC Coding Scheme

In this paper, we illustrate the implementation of the parallel
list Viterbi algorithm (LVA) [9], [10] for PAC codes, and
analyse the impact of list size and constraint length on the
error correction performance. We also analyze the latency of
the path sorting at each state on the trellis relative to global
sorting in tree-based list decoding.

II. PRELIMINARIES

Polarization-adjusted convolutional (PAC) codes are de-
noted by PAC(N,K,A,g), where N = 2n is the length of the
PAC code. A rate profiler first maps the K information bits to
N bits. Then, the convolutional transform (with polynomial
coefficients vector g) scrambles the resulting N bits before
feeding them to the classical polar transform (Fig. 1). The
information bits d = [d0, d1, ..., dK−1] are interspersed with
N −K zeros and mapped to the vector v = [v0, v1, ..., vN−1]
using a rate-profile which defines the code construction. The
rate-profile is defined by the index set A ⊆ {0, . . . , N − 1},
where the information bits appear in v. This set can be
defined as the indices of sub-channels in the polarized vector
channel with high reliability. These sub-channels are called
good channels. The bit values in the remaining positions Ac
in v are set to 0.

The input vector v is transformed to vector u =
[u0, . . . , uN−1] as ui =

∑m
j=0 gjvi−j using the binary

generator polynomial of degree m, with coefficients g =
[g0, . . . , gm]. The convolutional transform combines m previ-
ous input bits stored in a shift register with the current input bit
vi to calculate ui (see subroutine conv1bEnc in Algorithm 1).
The parameter m+1, in bits, is called the constraint length of
the convolutional code. As a result of this pre-transformation,
ui for i ∈ Ac are no longer frozen as in polar codes. Note that
this convolutional transformation is one-to-one, therefore the
output vector u is not a traditional convolutional codeword.
The rate-profiling process performed before the convolutional

Figure 2. The truncated trellis for PAC codes. Since vt = 0 for t ∈ Ac,
the path does not split. The dashed-line arrows represent the input 0 and the
solid-line arrows represent the input 1 to the convolutional transform.

transformation creates the redundancy by inserting N − K
zeros in the length-K input sequence d.

Finally, as shown in Fig. 1, vector u is mapped to vector x
(x = uPn) by the polar transform Pn = P⊗n defined as the
n-th Kronecker power of P =

[
1 0
1 1

]
.

The x vector is transmitted through a noisy channel and
received as the vector y. The channel log-likelihood ratios
(channel LLRs) computed based on the received signals y by
λtn = ln P (Yt=yi|Xt=+1)

P (Yi=yt|Xt=−1) = 2
σ2 yt. The outputs of demapping

by successive cancellation process are denoted by λ0,N−10

which are simply shown by λ in Fig. 1. Note that the subscript
n and 0 in λn,N−10 and λ0,N−10 denote respectively the first
and the last stages of the SC factor graph shown in Fig. 1
of [11]. In the next section, we describe the decoding process
and define the path metric.

III. LIST VITERBI DECODING

The Viterbi algorithm [6] is the most popular decoding
procedure for convolutional codes (CCs), which is based on
their trellis diagram graphical representation [7]. A trellis is
a directed graph where the nodes represent the encoder state.
The branch sequences on the trellis are generated by a finite
state machine with inputs v and states S = {s1, ..., s2m}
and the code is called the trellis code. The Viterbi algorithm
traverses the trellis from left to right, finding the maximum
likelihood transmitted sequence estimate, when reaching the
last stage t = N − 1.

PAC codes can be encoded and decoded on the trellis. The
trellis used for PAC codes is an irregular trellis which is shown
in Fig. 2 and 3. As shown, when there is a sub-sequence of at
least m zeros in the input v, the current states of all the paths
on the trellis transit toward all-zero state.

In convolutional coding, there are three methods to obtain
the finite code sequences: (1) code truncation where the
encoder stops after a finite block-length, N , and the code
sequence is truncated. This method leads to a substantial
degradation of error protection, because the last encoded
information bits influence a small number of code bits. (2)
code termination where we add some tail bits to the code
sequence in order to ensure a predefined end state (usually,
the all-zero state) of the encoder, which leads to low error
probabilities for the last bits, (3) tail-biting where we choose a
starting state that ensures the starting and ending states are the

Figure 3. The irregularity of the trellis where vt = 0 for t = [i, ..., j] for
j > i. The paths from t = i+ 1 to t = j are not pruned.

same (this state value does not necessarily have to be the all-
zero state). This scheme avoids the rate loss incurred by zero-
tail termination at the expense of a more complex decoder. For
encoding PAC codes, we use the code truncation, thus we do
not add any tail bits. This will not degrade the error protection
of last bits because the last encoded bits are transmitted over
the high-reliability sub-channels in the polar transform.

The fundamental idea behind the Viterbi decoding is as
follows. A coded sequence u, the output of the convolutional
transform in Fig. 1, corresponds to a path through the trellis.
Due to the noise in the channel, the received vector y after
demapping may not correspond exactly to a path on the trellis.
The decoder finds a path through the trellis which has the
highest probability to be the transmitted sequence u over the
polarized vector channel. The probability to be maximized is

P (û|y) =

N−1∏
t=0

P (ût|ût−10 , yN−10) (1)

In practice, it is convenient to deal with the logarithm of
(1) to use an additive metric. Consider now a partial sequence
ût−10 = [û0, û1, . . . , ût−1] at the output of the convolutional
transform. This sequence determines a path, or a sequence of
states, through the trellis for the code.

Let Mt−1(s′) = −
∑t−1
i=0 logP (ûi|ûi−10 , yN−10) denote the

path metric for the sequence ût−10 terminating in state s′. We
seek to minimize the path metric for the entire codewords
(t = N − 1) to maximize the probability in (1).

Now let the sequence ût0 be obtained by appending ût to
ût−10 and suppose ût is such that the state at time t+ 1 is s.
The path metric for this longer sequence is

Mt(s) = −
t∑
i=0

logP (ûi|ûi−10 , yN−10) (2)

= Mt−1(s′) + µt(s
′, s) (3)

where µt(s′, s) = − logP (ût|ût−10 , yN−10) denotes the branch
metric for the trellis transition from state s′ at time t to state
s at time t+ 1.

The path metric along a path to state s at time t is obtained
by adding the path metric to the state s′ at time t − 1 to the
branch metric for an input that moves the encoder from state
s′ to state s. If there is no such input, i.e., s′ and s are not

Figure 4. Merging two paths at state s

connected on the trellis, then the branch metric is considered
∞.

To simplify the arithmetic operation, we can define µt based
on λt0(s′, s) or simply λt0.

µt(s
′, s) = − logP (ût|ût−10 , yN−10)

= − log

(
e(1−ût)λ

t
0

eλ
t
0 + 1

)
= log

(
1 + e−(1−2ût)λ

t
0

) (4)

where the last equality holds only for ût = ût(s
′, s) = 0 and 1.

Now, for the value of ût that equals h(λt0),

h(λt0) =

{
0 λt0 > 0,
1 otherwise

(5)

the term e−(1−2ût)λ
t
0 = e−|λ

t
0| is small and hence

log(1 + e−|λ
t
0|) ≈ 0. Otherwise, we can approximate

log(1 + e|λ
t
0|) ≈ |λt0|. Thus

µt(s
′, s) = µt(λ

t
0, ût)≈

{
0 if ût = h(λt0)

|λt0| otherwise
(6)

It turns out that this branch metric is equivalent to the one
suggested for the list decoding of polar codes in [12], [13] and
PAC codes in [5].

When paths merge at state s, we need to select one of them
in order to extend it at the next time step. Suppose Mt−1(s′0)
and Mt−1(s′1) are the path metrics of the paths ending at
states s′0, s

′
1 ∈ {0, 1, ..., 2m − 1} at time t. Suppose further

that both of these states are connected to state s at time t+ 1,
as illustrated in Fig. 4.

According to the Bellman’s principle of optimality [14], to
obtain the maximum likelihood (ML) path through the trellis,
the path to any state at each time step must be locally an ML
path. This is the governing principle of the Viterbi algorithm.
Thus, when the two or more paths merge, the path with the
smallest path metric is retained (the survivor path or in short
the survivor) and the other path is eliminated from further
consideration. This defines the add-compare-select step of the
Viterbi algorithm

Mt(s) = min{Mt−1(s′0) + µt(s
′
0, s),

Mt−1(s′1) + µt(s
′
1, s)}

(7)

Note that the initial path metrics are M0(0) = 0 and
M0(s′) =∞ for s′ = 1, 2, ..., 2m − 1.

In [9], the conventional Viterbi algorithm was generalized
to list-type VA where instead of one path, the L paths with
smallest metric are selected and extended at time t. Hence, (7)
is generalized as

Mt(s, k) =
(k)

min
1≤l≤L
s′

{Mt−1(s′, l) + µt(s
′, s)} (8)

where min(k) denotes the k-th smallest value (1 ≤ k ≤ L).
From (8), one can observe some similarity between list

decoding of PAC codes and list Viterbi algorithm (LVA). The
main difference is that in the LVA, the paths are sorted locally
at each state, while in list decoding all the paths are sorted
globally and then half of them are discarded.

Algorithm 1 illustrates the list Viterbi algorithm. In the
beginning, there is a single path in the list. When the index of
the current bit is in the set Ac, the decoder knows its value,
usually vt = 0, and therefore it is encoded into ut based on
the current memory state S and the generator polynomial g
in line 8. Then, using the decision LLR λt0 obtained in line 6,
the corresponding path metric is calculated using subroutine
calcM . Note that in the algorithm 1, instead of Mt(s, k) in
8, we use Mt(k). Although the metric is calculated in lines 9
and 26-27 regardless of the current state of each corresponding
path, when we sort the paths in line 16, we consider their
current states. Eventually, the decoded value ut is fed back
into SC process in line 10 to calculate the partial sums. On
the other hand, if the index of the current bit is in the set A
(see lines 12-17), there are two options for the value of vt, i.e.,
0 and 1, to be considered in line 23. For each option of 0 and 1,
the aforementioned process for t ∈ Ac including convolutional
encoding, and calculating the path metric is performed and
then the two encoded values ut = 0 and 1 are fed back into
SC process to update the partial sums βπ .

The vector λ[π] as the input argument of the subroutine
updateLLRs constitutes the N − 1 intermediate LLR values
of path π. The subroutine updateLLRs updates all the in-
termediate LLRs and gives λt0[π]. Similarly, the vector βπ
constitutes the N − 1 intermediate partial sums of path π
which is needed to compute the intermediate LLRs. The partial
sums are updated after decoding each bit by the subroutine
updatePartialSums. The subroutines updateLLRs, updatePar-
tialSums, and prunePaths in Algorithm 1 are identical to the
ones used in SCL decoding of polar codes.

IV. GENERALIZATION OF LIST VITERBI ALGORITHM

Successive Cancellation List Viterbi algorithm (SC-LVA or
in short LVA) for decoding of PAC codes can be considered
a generalized decoder for PAC codes in a sense that it can
be converted to SC decoding, SC list decoding and Viterbi
decoding by changing the parameters of the algorithm.

In terms of sorting strategy for the path metrics at each time
step, there are two strategies to consider:
• global sorting of all the paths regardless of their current

states. In this case, LVA will not have a fixed number of
survivors for each state (or at each node on the trellis)
and the decoding reduces to SC list decoding (LD) of
PAC codes. In this case, the performance improves by

Algorithm 1: List Viterbi Decoding of PAC codes

input : A, L, g, λ0,N−1n

output: the recovered message bits d̂
1 Π← {1} // a single path in the list

2 m← |g| − 1 // memory size

3 for t← 0 to N − 1 do
4 if t /∈ A then
5 for π ← 1 to |Π| do
6 λt0[π]← updateLLRs(π, t, λ[π], βπ)

// updateLLRs: Identical with SCD’s

7 v̂t[π]← 0
8 [ût[π], S[π]]← conv1bEnc(0, S[π], g)
9 Mt(π)←Mt−1(π)+µt(λ

t
0[π], ût[π]) // cf. 6

10 βπ ← updatePartialSums(ût[π], βπ)
// Identical w/ SCD’s

11 else
12 for π ← 1 to |Π| do
13 duplicatePath(π, t, g)

14 if |Π| > 2m.L then
15 for s← 1 to 2m do
16 Sort {Mt(π)}, π ∈ Π : connected to s
17 Retain L paths (π’s) with smallest Mt

18 v̂N−10 [1 : |Π|]← sort(v̂N−10 [1 : |Π|]) // in ascending order

19 d̂← extractData(v̂N−10 [0], A) // inverse of rate-profiling

20 return d̂;
21 subroutine duplicatePath(π, t, g):
22 Π← Π∪{π′} // path π′ is a copy of path π

23 λt0[π]← updateLLRs(π, t, λ[π], βπ) // like SCD

24 (v̂t[π], v̂t[π′]) ← (0, 1)
25 [ût[π], S[π]] ← conv1bEnc(v̂t[π], S[π], g)
26 [ût[π′], S[π′]]← conv1bEnc(v̂t[π′], S[π], g)
27 Mt(π)←Mt−1(π) + µt(λ

t
0[π], ût[π]) // cf. 6

28 Mt(π
′)←Mt−1(π) + µt(λ

t
0[π], ût[π

′]) // cf. 6

29 βπ ← updatePartialSums(ût[π], βπ) // like SCD

30 βπ′ ← updatePartialSums(ût[π′], βπ)

31 subroutine conv1bEnc(v, currState, g):
32 u← v · g0
33 for j ← 1 to |g| do
34 if gj = 1 then
35 u← u ⊕ currState[j − 1]

36 nextState ← [vi] + currState[1,...,|g| − 2]
37 return (u, nextState);

increasing the list size, L. A special case of list decoding
is SC decoding when L = 1.

• local sorting of the paths with the same current state (the
paths connected to the same node on the trellis). This is
the conventional LVA for PAC codes described in section
III. In this case, by increasing either the list size L or the
number of states |S|, while keeping the other parameter
constant, the performance improves. However, if we keep
the product of L · |S| constant, an increase in L improves
the performance. Note that in this case, if |S| becomes

Figure 5. The reduced bitonic sorting network for LVA with L = 4. The
order of L smallest path metrics is not needed.

two small such as |S| = 2, the convolution has a limited
span and results in a degradation in FER performance as
we will see in Section VI. Needless to mention that if
we increase L · |S|, the performance improves. We note
that the PAC code changes by changing |S|, since we are
using a different g. Since it was observed that the FER
performance of PAc codes is not significantly affected
by the change of g, we can vary this parameter and the
local list size and observe the tradeoffs of the different
decoders.

Additionally, when we choose only one path at each state (L =
1), LVA is converted to a standard Viterbi algorithm (VA)
for PAC codes, which was described in Section III. In this
case, as the number of states, |S|, on the trellis increases,
the performance improves. Also note that PAC coding with
g = [1] or m = 0 is equivalent to polar coding simply because
there is no pre-transformation or pre-coding in this case.

V. SORTING LATENCY

As discussed in the previous section, the error correction
performance of the decoding changes with the sorting strategy
as well as the list size and the number of states. Now, let
us analyse the sorting complexity in list decoding and list
Viterbi decoding. Suppose the total number of survivor paths
is the same in LD and LVA, i.e., LLD = LLV A · 2m. As we
will observe in the next section, in the condition of the same
number of survivors, LD slightly outperforms LVA due to the
global sorting strategy. However, in case of parallelism which
is popular in the hardware design, the local sorting in LVA
can improve the latency significantly.

Let us consider a bitonic sorter [15] with 1 + logL super-
stages that can sort 2L path metrics shown in Fig. 5. At
each super-stage with index ψ ∈ {1, ..., 1 + logL}, there
are ψ stages (i.e., the number of stages at each super-stage
equals the index (ψ) of the corresponding super-stage, see the
top and the bottom of Fig. 5), each including L pairs of a

component (shown by vertical connections in Fig. 5) consists
of a comparator and 2-to-2 multiplexer, which work in parallel.
This sorter was used for list decoding of polar codes in [16]
and later improved in [17]. The length of the critical path of
the sorter is determined by the total number of stages which
is computed based on the sum of the arithmetic progression
as follows:

ΨLD =

1+log2 L∑
ψ=1

ψ =
1

2
(1 + log2 L)(2 + logL) (9)

From (9), one can see the impact of the list size, L, on
the latency of the sorter and consequently the whole decoder.
The pruned bitonic sorter suggested in [17] removes one stage
out of ΨLD stages, which is not significant in the case of
large L, although the pruned network reduces the silicon
area in hardware implementation. An efficient solution for a
significant reduction in the latency is to employ list VA where
the sorting is performed locally at each state. Therefore, the
parameter L in (9) is divided by the number of states. It
turns out the the order of the sorted metric in LVA is not
needed unlike in the pruned bitonic sorter where the pruning
is performed based on our prior knowledge about the order
and the relations between adjacent metric before and after the
tree extension. Hence, we can remove the last log2L stages in
the last super-stage As a result, the total number of stages is:

ΨLV A =
1

2

(
1 + log2

L

2m

)(
2 + log

L

2m

)
− log2 L (10)

Thus, list VA results in a significant reduction in the
latency of the decoding. For instance, for list decoding of
PAC(256,128) with m = 6 and L = 128 which has 128
survivors at each decoding stage, the total number of sorting
stages throughout decoding is KΨLD = 128 × 36 = 4608.
However, in decoding of the same code under list VA with
m = 4 and L = 128/24 = 8 which has 32 survivors
at each decoding stage, KΨLV A = 128 × (10 − 3) =
896, which is 80% smaller than its counterpart. Note that
this reduction comes at the cost of a slight degradation in
the FER performance. In a software implementation, the
sorting algorithms such as Heapsort and Mergesort cannot
perform better than O(2L log(2L)) in terms of time com-
plexity. By employing LVA, the time complexity reduces to
O(2m2L/2m log(2L/2m)) = O(2L log(2L/2m)).

VI. NUMERICAL RESULTS

In this Section, the error correction performance of list
Viterbi algorithm for PAC(128,64) on the trellis with different
setups is illustrated and analyzed. The RM rate-profile [5] and
the generator polynomials 0o3, 0o7, 0o17, 0o33, 0o73, and
0o133 (m = 1, . . . , 6), are used for convolutional transform
(pre-coding) for the results shown in Fig. 6 corresponding
to a number of states |S| = 2, 4, 8, 16, 32 and 64 (for LD),
respectively. Also, for the results shown in Fig. 7, the generator
polynomials 0o133, 0o73 and 0o733 are used for convolutional
transform with a number of states |S| = 64 (for LD), 32
and 256, respectively. The codewords are modulated based

1 1.5 2 2.5 3 3.5

E
b
/N

0
 [dB]

10-5

10-4

10-3

10-2

10-1

100

F
E

R

PAC(128,64), LVA, Survivors=32 paths

|S|=32,L=1, VA

|S|=16,L=2

|S|=8,L=4

|S|=4,L=8

|S|=2,L=16

|S|=64,L=32, LD

Figure 6. FER Comparison of LVA with various parameters while the total
number of paths is 32.

1 1.5 2 2.5 3 3.5

E
b
/N

0
 [dB]

10-5

10-4

10-3

10-2

10-1

100

F
E

R

PAC(128,64), LVA, Survivors=256,32,16 paths

|S|=64,L=256, LD

|S|=32,L=8

|S|=256,L=1, VA

|S|=4,L=8

|S|=64,L=32, LD

|S|=64,L=16, LD

256

paths

32

paths

16 paths

Figure 7. FER Comparison of LVA with various parameters while the total
number of paths are 256, 32, and 16.

on BPSK and transmitted over the AWGN channel. Fig. 6
compares the FER performance under LVA with various list
sizes L, while the total number of survivor paths at each time
step t remains constant (32 survivors). As can be seen, the
performance improves as L increases. Fig. 7 shows that as
the total number of survivors increases, the gap between the
performance of LD, VA and LVA decreases. This makes LVA
a better candidate when employing a very large list size, given
latency advantage shown in Section V. Conversely, when list
size is small, the performance of LVA with list size L is close
to the performance of LD with list size L/2 as it is shown in
Fig. 7 for LVA with L = 32 and LD with L = 16.

VII. CONCLUSION

In this paper, we investigate the implementation of the list
Viterbi decoding for PAC codes. We show that LVA can be

considered a general decoding scheme, which can transition
from list decoding to Viterbi algorithm decoding by changing
the number of states and the local list size. The results
show that as the local list size increases, the performance
improves. This implies that in the local sorting of the paths,
the probability of discarding the correct path is higher than the
global sorting in list decoding. On the other hand, the local
sorting has the advantage of a significantly lower latency than
global sorting. Therefore, depending on the application, we
can trade latency for performance, specially when the list size
is large.

REFERENCES

[1] E. Arıkan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051-3073, Jul. 2009.

[2] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Int. Symp. on
Information Theory, St. Petersburg, Russia, Jul. 2011, pp. 1–5.

[3] E. Arıkan, “From sequential decoding to channel polarization and back
again,” arXiv preprint arXiv:1908.09594 (2019).

[4] B. Li, H. Zhang, J. Gu, “On Pre-transformed Polar Codes,” arXiv preprint
arXiv:1912.06359 (2019).

[5] M. Rowshan, A. Burg and E. Viterbo, “Polarization-adjusted Convolu-
tional (PAC) Codes: Fano Decoding vs List Decoding,” arXiv preprint
arXiv:2002.06805 (2020).

[6] A. Viterbi, “Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm,” in IEEE Transactions on Information
Theory, vol. 13, no. 2, pp. 260-269, April 1967.

[7] G.D. Forney, “The Viterbi Algorithm,” Proc. of the IEEE, Vol. 61, No.
3, pp. 268-278, Mar. 1973.

[8] E. Arıkan, H. Kim, G. Markarian, U. Ozgur and E. Poyraz, “Performance
of short polar codes under ML decoding,” in Proc. ICT-Mobile Summit
Conf., Santander, Spain, 2009, pp. 1-6.

[9] T. Hashimoto, “A list-type reduced-constraint generalization of the Viterbi
algorithm,” in IEEE Transactions on Information Theory, vol. 33, no. 6,
pp. 866-876, November 1987.

[10] N. Seshadri and C.-E. W. Sundberg, “List Viterbi decoding algorithms
with applications,” in IEEE Transactions on Communications, vol. 42,
no. 234, pp. 313-323, Feb-Apr 1994.

[11] M. Rowshan and E. Viterbo, “Stepped List Decoding for Polar Codes,”
2018 IEEE 10th International Symposium on Turbo Codes & Iterative
Information Processing (ISTC), Hong Kong, Hong Kong, 2018, pp. 1-5.

[12] B. Yuan and K. K. Parhi, “Successive cancellation list polar decoder
using log-likelihood ratios,” 2014 48th Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, CA, 2014, pp. 548-552.

[13] A. Balatsoukas-Stimming, M. Bastani Parizi, and A. Burg, “LLR-based
successive cancellation list decoding of polar codes,” IEEE Trans. Signal
Processing, vol. 63, no. 19, pp. 5165-5179, Oct 2015.

[14] R. E. Bellman and S. E. Dreyfus, “Applied Dynamic Programming”,
Princeton University Press, Princeton, NJ, 1962.

[15] K. E. Batcher, “Sorting networks and their applications,” in Proc. AFIPS
Spring Joint Comput. Conf., vol. 32, 1968, pp. 307-314.

[16] J. Lin and Z. Yan, “Efficient list decoder architecture for polar codes,”
in Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS), Jun. 2014,
pp. 1022–1025.

[17] A. Balatsoukas-Stimming, M. Bastani Parizi and A. Burg, “On metric
sorting for successive cancellation list decoding of polar codes,” 2015
IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon,
2015, pp. 1993-1996.

