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Abstract

Any algorithm that needs to “understand” information to be capable of taking “intelligent” decisions, needs to access a lifetime

of memories and experience the world as an embodied consciousness. This paper emphasizes these concepts and proposes a

few fundamental constructs that provide algorithms with the capability to understand the human world, build larger sets of

cooperative machines and perform causal inferences without requiring human intervention.
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Context and Event-based Cognitive Memory
Constructs for Embodied Intelligence Machines

Navin K Ipe

Abstract—Any artificial intelligence algorithm that is required
to “understand” the information it processes, requires the capa-
bility to store a lifetime of memories and to physically experience
the real world as an embodied consciousness. This paper proposes
solving the challenges of self-supervised learning by creating
concepts like the universal event model, questioning constructs,
a partial-context-based event storage datastructure and an ar-
chitecture that allows an embodied algorithm to represent the
perceived world, access contextually relevant memories, derive
conclusions about the cause and effects of phenomena, label sets
of events to generalize them and create objectives to pursue.
The proposed constructs and implementation are currently in a
rudimentary state and are severely limited by current technology,
but even a simplistic implementation of context-based causal-
decision-making was proven to be more effective than neural
netwoks, when implemented with an embodied robot in a 2D
physics environment. The remaining concepts and modes of use of
the constructs are presented theoretically, along with a proposal
of the fundamental building blocks identified for creating an
intelligent machine.

Index Terms—self-supervised learning, embodied conscious-
ness, artificial intelligence.

I. INTRODUCTION

THIS paper succeeds the work that began investigating the
basis of intelligence [1] and the conclusions made about

Artificial Intelligence (AI) requiring an event-based memory
that stores a lifetime of experiences which provide contextual
and causal information that provide the necessary intelli-
gence even for trivial decision-making tasks. Artificial Neural
Networks (ANN), Computational Intelligence (CI) algorithms
and other contemporary machine learning (ML) algorithms
utilize probabilities, weights and symbolic representations to
store memories, which are insufficient to account for the
vast complexities of the real world [2] [3] [4] [5] [6]. The
methodology presented in this paper takes a stand on not
utilizing conventional approaches, and presents a rudimentary
attempt at designing a datastructure that stores sensory inputs
from a legged robot, as events and partial-contexts which gives
the robot the capability to imagine, conceptualize, correlate,
generalize and plan activities before performing them. The
datastructure is designed for quick access and abstraction of
raw data. This approach creates a bridge between the software
world and the real world. Training an ANN with pixels of
many apples can help it identify similar clusters of pixels,
but it would not know what it means to throw an apple or
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to eat an apple. This kind of an understanding and meaning
is necessary if AI/ML algorithms are required to understand
written words, because when humans read something, it trig-
gers imagery and events in the brain that get correlated with
past memories and events. This paper proposes the use of
“names” (labels) for sensory events, which are abstracted into
names that describe even sequences of events. When these
names are used to represent events and actions in a physical
world, the AI, when given a physical body, will be capable
of observing similar patterns in real-world events and assign
a name to it. For example, if it detects a person’s body
moving up and falling down, it would realize that it is the
same kind of motion it is capable of doing, and it knows
that in its memory the motion is named “4fo34n338d3in”.
When a human informs the AI that the motion is called
“jump”, the AI actually “understands” what a jump is, and
will then correlate “jump” with “4fo34n338d3in” and also
classify similar motion patterns under the name of “jump”.
This capability not only helps humans talk to robots, but also
helps the robot understand the physical world with respect to
the software world, by relating words with classes of actions
(this is how true Natural Language Processing should be done).
Right from the Abacus to Unix, computing systems were
designed to utilize resources efficiently and ease the work of
humans, rather than be intelligent. A biological consciousness
constantly compares objects, actions and plans to its own
perception of the universe. This perceived universe and space
is called an Umwelt [7] that consists of multiple dimen-
sions. Classification algorithms, regression algorithms, ANN’s,
etcetera do not understand the task they are programmed to
perform because their umwelt does not incorporate facets
of the human umvelt. For a machine to be able to think
ethically or morally, it is necessary to give it the capability
to understand consequences of actions. To experience love or
emotion, it is again the consequences that play a role. It is
necessary for science to move on from conventional thinking
and explore new angles of thought. For example, a new angle
of thought that 0,1,2,3 are not numbers, but are counting
actions. Prior work on embodied consciousness has either
often veered off the right path or has focused on achieving
results that fit generally accepted scientific representations.
This paper proposes solutions with the hope that research on
embodied consciousness would be pursued henceforth with
the realization that the very fundamentals of technology that
make up our computing systems, need to be altered to cater
to a multi-dimensional analog world.

The remainder of this paper is organized as follows: Section
II presents the literature review performed to examine similar
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concepts, Sect. III presents the objectives that influenced the
design of the architecture, Sect. IV presents how a simplistic
implementation of the proposed concept fared better than
conventional algorithms, Sect. V presents theoretical aspects
of how the the proposed constructs can be used, and the paper
concludes with Sect. VI.

II. RELATED WORK

The literature review for this paper encompassed work on
embodied consciousness, legged robots, pattern recognition
and storage of sensor signals.

A paper titled “The poverty of embodied cognition” [8]
aptly summarized the lack of scientific contribution to the
field of embodied cognition, but is biased due to conventional
perception of computing. Survey papers [9] [10] have reviewed
work on cognitive architectures built during the past forty
years. The Stanford Encyclopedia presents a curated collection
of various facets of research on embodied cognition [11]
which theorize cognition as a capability that is housed in
the agent’s body but also extends to the world they live in
and build, and also into the social communities they create.
Wilson’s work [12] outlines four steps for any research on
embodied cognition. Albus [13] proposes a real-time control
system architecture to represent intelligence and model the
world. A work that compares the representative and associative
theories of learning [14], analyzes various angles of thought
from the perspective of neuron signals, spatial perception,
time perception and critically assesses if a modern computer
architecture could capture biological information. Allen’s work
[15] performs a thorough and critical examination of prior
literature and concludes that characteristics required by a con-
sciousness are ergodicity, Markov blankets, active inference
and autopoiesis. Pathak [16] attempted determining causal
relationships.

Machine learning for legged robots include ragdoll gaits
using genetic algorithms [17], ANN’s for hexapod robots [18]
which arrange limb positions to define a gait and avoid ob-
stacles, action-recognition using embodiment [19] and Deep-
Mind’s walker which uses reinforcement learning and vast
memory storage [20].

To detect patterns in sensory signals, wavelets were initially
considered, but the slow windowed wavelet matching approach
and the need for pre-defined wavelet patterns did not fit the
requirement of generality for detecting a varied set of patterns
and matching them to causal events. Dynamic time warping
[21] was considered because signals from sensors would vary
in speed, but due to time complexity and the fact that it could
be simplified into a distance measure comparison, the approach
was discarded. Cross-correlation was discarded due to imple-
mentation complexity. The QRS wave technique [22], where
waves and their generalized thresholds are compared, was a
more promising technique when combined with wavelets, but
wavelets were not favorable. Distinguishing whether a body
part moved on its own or was moved by an external agent,
requires distinguishing between signals from the surroundings
versus signals generated by the consciousness. Such studies
were conducted on electric eels, where the signals emitted by

the creature got subtracted by a negative image of the same
signal. Such circuits help the eels generalize what is learnt and
apply it to other situations [23].

Since human memory works similar to how an Internet
search engine retrieves data based on the context of the words,
the concept of indexing and the suffix tree were explored [24].
The Knowledge Graph concept [25] was also considered. Var-
ious types of learning were considered: supervised, unsuper-
vised, semi-supervised, weakly-supervised, transfer learning,
reinforcement learning, active learning, one-shot learning etc.
The Differential Neural Computer model (it augments a neural
network with memory) [26], structural equation models [27],
correlations with p-value testing, Granger causality tests and
an abductive reasoning approach (logical inferencing that starts
with one or more observations and searches for the simplest
explanation for it) were also considered.

Overall, it was observed that although some research tended
to proceed in the right direction, there is a clear need for an
event-based datastructure that stores a lifetime of memories
and the need for faster and more generalized pattern matching
techniques.

III. DESIGN DECISIONS

For any artificial intelligence to be self-reliant, it needs to
use self-supervised learning, which is a method of using exist-
ing signals to train the algorithm with almost zero intervention
from humans. This is accomplished by creating and using self-
generated labels which help understand relationships between
signals and how the actions of the embodied consciousness
or external factors affect those signals. Automated machine
learning to date, has focussed on automation of data clean-
ing, engineering features, selection of models, tuning hyper-
parameters, selecting a pipeline, evaluation metrics, analyzing
and visualizing results and checking for problems, while
largely ignoring the need for creating primitive constructs
that enable automated integration of one intelligent entity
with another, to accomplish objectives. The true scope of this
investigation involves building physical robots with at least
many hundred terabytes of data storage, where the robots not
only learn causal relationships from each of the sensors they
have, but they also communicate with each other to form
cooperative entities that form one body that pursues objectives.
It is very evident in any animal brain that even for seemingly
simple tasks, there is a huge amount of communication that
happens between various cells. This is in stark contrast to
the overtly simple mechanisms created in conventional AI/ML
algorithms.

A. Embodiment and environment

Storing a lifetime of memory and using abductive and
deductive reasoning could potentially build an Explainable
AI that understands information and is capable of continued
processing of information, even if it does not immediately
comprehend something, much like how humans do. The
challenges are multi-fold: the design of generic behavioural
patterns, classification techniques and pattern matching tech-
niques which understand data patterns under various contexts,
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Fig. 1: Simulated robot

(a) Min-max world

(b) Spheres world

Fig. 2: 2D environments

overcoming hardware latencies when dealing with data stor-
age and designing “intelligence” and “understanding” without
using probability values or neural weights. To attempt this,
a simulated legged robot weighing 10kg was initialized in a
2D physics environment named PyMunk, as shown in Figs. 1
and 2. The robot limbs are attached with motors capable of
rotary motion at any angle. The robot possesses a movement
sensor that registers 2D movements in directions dx and dy,
a body angle sensor, body angle stability sensor, motor rate
sensor, energy sensor, limb tip position sensor, a tactile sensor
and an impact sensor. The robot is run in environments with
acceleration due to gravity at 9m/s. Multiple robots were first
run in a min-max world (Fig. 2a) with random limb motions,
to obtain all possible minimum and maximum possible sensor
values, to determine the range of values possible for each
sensor. The range was used for normalization of values.

B. Designing the storage of events
Various factors needed to be considered to design datastruc-

tures that could store a lifetime of memories and yet efficiently
access it. Every experience of the embodied consciousness is
considered an event, and rather than use a graph model to
store memories, a soft-connections model was designed keep
senses separate and uniquely identifiable and yet be integrated
to form a new memory (Fig. 3). This model helps immensely
when building a hierarchical division-of-labor AI or a growth-
model AI (where an intelligent body is formed from multiple
cooperative intelligent entities).

Fig. 3: Soft-connections model

Fig. 4: Quantization and hashing process

Cognitive architectures conventionally possess functionality
specific to perception, attention, action selection, motivation,
actuation, memory, learning, reasoning, meta-reasoning, so-
cial interaction, planning, emotion and creativity. However,
building a generalized intelligence, requires first building a
fundamental capability to:

1) Take into account context and ask questions about
phenomena.

2) Play with available matter or phenomena to deduce
causal relations (researching behavior).

3) Utilize matter or phenomena to enhance existing capa-
bilities (building new sensors or a stronger body) and to
continue pursuing core objectives.

The Cognitive Memory Construct (CMC) was conceptualized
with these needs in mind: quick access, partial-context match-
ing, causal relationship detection and lifetime storage. Every
sensor of the robot provides a constant stream of values every
second. For simplicity, events are considered as time slices
of one second length, discretized into 24 slices of length dT .
The signals from each sensor are a partial context of the entire
context of events. Quantized signals are hashed, and the hash
serves as the name of the partial context (Figs. 4 and 5).

Figure 5 depicts how each sensor signal’s values are con-
sidered a partial context combined in order to form a complete
context that forms an event. Each consecutive event is stored as

Fig. 5: Full context of an event
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(a) Doubly linked events (b) Skill

Fig. 6: Event storage format

Fig. 7: Signal classification by tolerances

a doubly linked list as shown in Fig. 6. The event datastructure
holds the event name, pointers to the next and previous
event and also doubly linked pointers to each partial context
(sensor’s signal values). This is a rudimentary storage method
that needs to be improved.

C. Classifying the signals

Each signal CMC receives, is first classified into start
context categories based on the first value of an event signal,
as depicted in Fig. 9a. This initial classification reduces the
iteration complexity when searching for patterns. The start
context is followed by the signal being classified based on the
pattern of all values of the signal that fit into tolerance bands.
For example, tolerances for the events layer are: T1 = 6%,
T2 = 10%, T3 = 20% as roughly represented in Fig. 7. While
any number of tolerance levels can be chosen (T 1, T 2...TA),
this paper considers A = 3. If a sensor can generate values
ranging from a minimum of −1 to a maximum of 1, the
tolerance T1 would be ±0.06. When comparing signals, each
of the 24 values of an incoming signal v1 is compared with a

stored signal value v2. If the M.S.E =
(
∑24

i=1(v2i−v1i)
2)

24 does
not exceed the tolerance band of 6%, v1 is stored in the same
class as v2 (Fig. 8). Tolerance bands can be adjusted based on
the accuracy desired, but once decided, the values should not
be changed.

As evident in Fig. 7, signals 1, 2 and 3 have almost the
same kind of pattern. However, if their quantized values were
hashed, it would be impossible to identify similarity of the
signals based on hash values. To overcome this, a decision was
taken to categorize the hashes into a hierarchy that matched
signals based on desired accuracy. Figure 8 depicts the event
hash storage hierarchy, where Hash1 at level T 1 is the first
signal of a classification hierarchy. This first signal’s hash
gets stored across levels T 1 to TA. The next signal that falls
within the tolerance limit T 3 of Hash1, gets stored at T 3

Fig. 8: Classification of tolerance hashes

. If it falls within T 2 and T 1 it also gets stored in those
categories. Storage operations have a worst-case complexity
of

∑A
1 O (log (nA)), where nA is the number of hashes in

each category A. Similar signals are thus classified into classes
of signals, where the entire signal is compared with a stored
signal using M.S.E to check for similarity. An advantage of
this storage technique is that if an exact match of any hash is
found, it is not necessary to iterate the hierarchy. Instead it can
safely be assumed that if T 2 was found, then it definitely falls
within the bounds of all hashes in T 3. Exact matches have
a search complexity of O(1), while searches of the highest
accuracy have a worst-case complexity of O(A× nA), when
stored in a hashmap.

Indexing techniques and the suffix tree were considered
for storage, but hashes provided faster lookups and also had
the advantage of providing a unique name to any observed
phenomenon. Since the size of inputs to SHA-256 can be
expressed as a 64 bit number, the maximum input size

of a string that can be hashed is (264−1)
8 bytes ≈ 2091752

TB. Pattern detection is not only about onset detection or
detecting parts of a pattern in a larger pattern (windowed
techniques and convolution). Pattern matching in an intelligent
entity involves matching patterns irrespective of the time it
gets stored (the way people remember last year’s new year
celebration as if it were yesterday), matching patterns across
sensors (synesthesia), partial patterns triggering memories of
complete patterns, predicting/estimating patterns before and
after a pattern (requires moving back and forth in a memory)
and most importantly, being able to combine partial patterns
from various facets of memory to create new patterns (imagi-
nation, dreams, creativity). Such functionality necessitates the
storage of memory “as-is”, and cannot be generalized into
neural weights in the way ANN’s do.

CMC is designed with a capability hierarchy consisting of
multiple layers (Fig. 9b), where each layer has a higher level
of abstraction (using integrated senses) than the layer below it.
The context start layer (proposed and implemented) stores the
start values (Fig. 9a) of partial context’s in categories that help
quickly locate relevant events that these start values represent.
The event layer (proposed and implemented) stores the signal
in its most raw form as partial contexts, and performs pattern
matching for any event signal. The skill layer (proposed and
implemented) selects events in a certain order so that it can
later identify that specific sequence of events with a single
name, and a skill could be performed without having to re-
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(a) Start context (b) Capabilities

Fig. 9: Start categorization and capability hierarchy

access vast stores of event memories (for example, events
that need to be executed to climb a specific kind of obstacle
is a skill). The plans layer (proposed, but not implemented)
is a sequence of skills and actions that are planned for
effective robot navigation. For example, when the robot has
knowledge of what the terrain ahead is like, and possesses
a set of skills to be able to climb each type of obstacle in
the terrain, the planning layer stores the sequence of skills
that can be used to navigate such a terrain. The social layer
(proposed, but not implemented) allows creation, editing and
storage of planned sequences which can be used to cooperate
with or combat other robots. The editing layer (proposed,
but not implemented) enables the robot to create or destroy
physical or virtual entities. The capability hierarchy is not a
complete representation of the architecture required to build
an intelligence. Details like object recognition, reproduction,
self-recognition, meta-cognition, self-preservation and many
more features need to be incorporated, to create an embodied
cognition.

D. Comparing ANN with CMC

A simple algorithm was created to compare CMC with
ANN. Thirty robots were assigned random motor rates and run
for multiple generations using Particle Swarm Optimization
to determine and improve the motor rate combinations that
yielded motion in the +dx direction. A Pareto front was
used to select the best robot based on multiple objectives like
minimal impact to the chassis and highest dx movement. The
goal of the robot was to reach a red line at the extreme right
of the environment. A Multi Layer Perceptron (MLP) was
trained with the normalized sensor values as input and the best
corresponding motor rates (which move the robot rightward)
as output. Various trials were conducted with variations in the
number of hidden nodes, activation functions, loss functions
etc., but the ANN showed no significant improvement in
learning the combination of motor rates under various body
positions, that would lead to a +dx movement instead of a
stationary or −dx movement. Figure 10 shows a screen-shot
of the thirty robots at the dnd of a PSO epoch, and the two-
dimensional objective fulfillment of each robot depicted as a
circle on a graph. The circles in blue depict the optimal Pareto
front (best robots), among which green is the selected optimal
robot.

Fig. 10: Pareto front from ANN robot’s PSO trials

Algorithm 1 CMC robot algorithm
1: Initialize simulation environment and robot.
2: If min max values not present, generate it.
3: Check objective to achieve and check if methods of
achieving objective are stored in memory. If not, activate baby
learning mode for 300s and determine events that fulfil focus
objective.
4: If objective not fulfilled, get sensory inputs.
5: If at least two legs not touching terrain, activate feeler mode
with low torque motor until legs touch terrain.
6: Check memory for partial contexts similar to current
context. Determine best motor rates based on Pareto front,
consequence of event or the relationship data.
7: Execute motor motion for 1s.
8: Goto Step 4.

Partial contexts were implemented to identify causal rela-
tionships between signals. Causal relationships are not always
linear or predictable and should typically be examined over a
large span of time, but for simplicity, this paper examines rela-
tionships with a tolerance of ±dT . As mentioned in Algorithm
1, the robot is first subjected to a baby-learning mode, where
causal relationships are derived from sensor values. As an
example, Fig. 11 shows how simultaneous variation in signals
helps the robot learn that its chassis angle changes only when
a limb moves.

Fig. 11: Inflection points
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(a) Flat ground

(b) Spheres terrain

Fig. 12: CMC robot time-lapse

TABLE I: Robot movement with ANN

Epoch Training
data

Layers Hidden
nodes

Training
accu.

Fd.,Bk.
movt.

Finish
time
(s)

2000 35 4 120 0.4 149,135 282.15
2000 58 4 120 0.5 41,28 68.43
2000 76 4 120 0.57 109,62 171.23
2000 96 4 120 0.32 113,91 204.38
2000 118 4 120 0.65 54,35 88.13
100 1470 4 120 0.42 46,32 77.92
1000 1526 6 240 0.57 298,415 704.11
1000 1616 6 240 0.58 228,237 460.78
1000 1702 7 480 0.52 45,29 475.85
1000 28 7 480 0 82,52 133.62
1000 57 7 480 0.62 91,77 166.43
1000 82 7 480 0.5 310,327 629.51

Although CMC performed better than ANN on flat terrain,
the motor torque caused an undesirable jittery/jumping motion
on more complex terrains, as shown in Fig. 12b. Figure 12
depicts a time-lapse showing robot motion from left to right,
until it reaches the red finish line. Results are listed in Sect.
IV.

IV. RESULTS

The primary aim of this paper was not the comparison of
ANN and CMC. The aim was to design a datastructure that
could store a lifetime of events as partial contexts, generalize
them and access the data fast, to perform causal inferences.

A. ANN results

Table I shows how the number of training instances, a
deeper or fatter network or even the number of training epochs
had no predictable effect on the accuracies or the time taken
for the ANN robot to reach the finish line. The “Fd.,Bk. movt.”
column depicts “number of forward movements, number of
backward movements”, and it’s clearly visible that the ANN
trained robot suffers from a huge number of backward move-
ments which is undesirable.

Investigation into the reason for ANN’s lack of ability to
learn, was conducted by plotting the pair plot and heat-map
(Fig. 13) for all sensor values. This revealed that the issue

(a) Pair plot of sensors

(b) Heat map of sensors

Fig. 13: ANN analysis

was with a lack of a clear decision boundary. There were
very few positive correlations between variables, due to a large
number of overlaps in limb positions at various chassis angles
and corresponding motor values, which prevented the ANN
from distinguishing between forward and backward motion.
Additionally, the total number of permutations of sensor
states were in the order of 1028. An extremely large neural
network would be required to capture such high-dimensional
information.

B. CMC results

Even with a very limited use of CMC’s database and
capabilities, a more reliable pattern of finishing times and
forward motions were demonstrated for flat terrain, due to the
algorithm being able to utilize partial contexts and relation-
ships to determine if a certain motor rate combination would
move the robot forward. As the robot was still in the process
of building the CMC memories, some backward motions were
inevitable as shown in Table II.

Advantages of CMC

1) CMC allows searching for any one partial context and
finding which event it belongs to. This is a powerful
method of pattern matching because, when two or more
patterns are found to match the partial contexts of
multiple events, finding the appropriate event to choose,
is simply a matter of finding the intersection of the event
names. Example: When searching for an event where
the robot’s dx changes in the positive direction with
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TABLE II: Robot movement with CMC

Fd.,Bk. movt. Time to finish (s)
58,14 84.42
59,17 90.79
62,18 91.27
69,24 106
90,22 131.16
68,27 111.25
70,24 111.13
51,9 73.19

45,14 72.23
51,11 77.84

a particular pattern of motion and where the chassis
collision impact is zero, there will be many partial
context’s that match dx events E1, E1003, E3424 and
E32. The chassis collision impact being zero, may match
events E1, E452, E57 and many more events. To find
the relevant event, it’s simply a matter of perform-
ing an intersection operation on the event hashes as:
{E1, E1003, E3424, E32}∩{E1, E452, E57, ...} = {E1}.
The cost of the operation is O(n), where n is the length
of the smallest set.

2) Easily add, edit and prune data.
3) The possibility of event sequences that are completely

disconnected from other event sets (for example, there
will be no memory continuity if the robot is switched off
and switched on), but the discontinuity does not prevent
partial context matching.

4) Creates an explainable AI. It is possible to drill down
and find out the reason for every action, unlike the obfus-
cation of data in ANN’s. Memories can be referred based
on context, thus giving the robot the experience needed
for intelligence, understanding and generalization.

Disadvantages of CMC

1) The amount of storage space required.
2) Caching and hardware latencies.
3) The complexity of the datastructure.

V. EVENT MODEL AND QUESTIONING CONSTRUCTS

As mentioned in Sect. IV, the objective of this paper is
not to compare CMC with ANN, but to conceptualize a new
datastructure and methodology for achieving intelligence via
algorithms. A key missing element in AI/ML algorithms is the
algorithm’s ability to ask questions about phenomena to learn
more. This led to the creation of the following:

A. Proposed Universal Event Model

The Event Model paradigm assumes everything in the
universe which the embodied consciousness encounters, is
composed of events EU , detected at time t, and each EU is
composed of multiple partial contexts Cp. These events may
be represented in various forms like “Purpose”, “Question”,
“Skill”, “Social” etcetera. Even solid objects and the embodied
consciousness itself are perceived as events, because their
existence is defined by signals from sensors. EU =

∑N
i=0Ei,

where Ei is one among N events.

• ECMC’s are events stored in CMC (these include the
attention and purpose constructs introduced in Sects. V-B
and V-C).

• Esoft’s are combinations of basic event types that form
a generalized higher-level event (soft representations).
Once created, Esoft’s are identified and used as an
ECMC .

B. Proposed Attention Construct

• Attention (Aspan): Simulates an attention span with a
duration that can vary according to the attention span
desired at any point of time. Aspan can be considered
as a primary consciousness that constantly checks CMC
for purpose of existence, body boundaries, relationship
between signals etc. The length of any stored event can
be made dependent on the length of Aspan.

C. Proposed Purpose Construct

Purpose constructs are composed of one or more events,
composed of Cp’s and events that visualize an abstract pattern
of objectives to be achieved.

• Basic purpose (P basic): The purpose of existence of the
embodied consciousnesswhich is defined by the creator,
and cannot be altered by the embodied consciousness un-
less it learns how to modify its own programming. These
include the core facets of an AI like self-preservation,
community preservation, ensuring self-nutrition, replica-
tion, gaining knowledge, growing larger etc. The embod-
ied consciousness can choose to focus on one or more of
these purposes at any given time and ignore any of these
purposes too, based on the context of the sensory inputs
it encounters.

• Temporary purpose (P temp): These purposes/objectives
are defined and created by the embodied consciousness,
based on the sensory inputs it encounters or based on the
final objective it seeks to achieve in any situation.

D. Proposed Questioning Constructs

The questioning constructs enable the recognition of self,
implementation of curiosity and exploration capability. The
interactions of various constructs are concisely described
via special operators listed in Table III. As an example,
Qwhat ♦Ptemp is read as “What temporary purpose needs
to be fulfilled”? The ♦ operations are searches performed
to estimate long-term or short-term consequences between
multiple events Ei and whether these consequences fulfill the
abstract definition of a purpose P . For example, a purpose
can be “I want to eat healthy food everyday”, and there is no
single way to define the achievement of this purpose, but it can
be done via multiple comparisons from experiences of healthy
foods eaten in the past and the consequence of eating them
under various contexts. Such comparisons are what constitute
common-sense. The ≈ operator on the other hand, is a simple
calculation like estimating an M.S.E. Conventional ML/AI
algorithms have faltered when defining objective fulfilment
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TABLE III: CMC operators

Operators Meaning
♦ Achieves or fulfills
≈ Approximately similar
6= Dissimilar
== Exact match
→ Consequence or cause∑

Ordered composition of

via hard rules or fuzzy logic which fail to work under various
conditions.

• What (Qwhat): Used for searching within CMC and
giving the embodied consciousness “free will”, by choos-
ing a P temp or P basic to follow. Some examples:
Qwhat == Ei is an identification task that searches
for an exact pattern match in CMC. Qwhat ≈ Ei is an
identification task that searches for approximate pattern
matches in CMC. Qwhat 6= Ei is an elimination task
that ignores dissimilar patterns in CMC. Qwhat ♦Ptemp

or Qwhat ♦Pbasic searches for purposes to fulfill.
• Which (Qwhich): Used for partial context searching,

causal reasoning and estimating consequences. These
are soft-representations of other events. Some exam-
ples: QwhichECMC 6= Ei or QwhichECMC 6= E
performs partial context matches or searches for mis-
matches between stored senses and experienced senses.
QwhichECMC → ECMC imagines consequences of
executing an event (execution of which ECMC could
result in a particular ECMC?). Also used for asking
“Why” or “How” an event led to another event. It can
internally be realized via Qwhat ≈ Ei and Qwhat 6= Ei,
but the “Which” constructs were created distinctly to
emphasize the importance of continuous and extensive
partial context matching and consequence searches even
for small decisions that the embodied consciousness
needs to take based on context, rather than probability
values or weights.

E. Proposed Intelligence Machine

Intelligence Machine (Im): Figure 14 conceptualizes the
essential components/building-blocks that constitute any intel-
ligence. Multiple such units possessing a similar equilibrium
of memories can cooperate to form larger Im entities, as
shown in Fig. 15. The splits on the borders of Aspan in Fig.
14 indicate that the event can have a variable length.

Effectors and receptors can be one or more components
that belong to the “body” of Im, and can be located all
around or even inside Im. Effectors are used for performing
actions (which are also generated as events, by the Im), for
establishing connections with other Im’s and for sending re-
sponse signals to any external or internal agent. The structural
support of the “body” can be composed of a combination of
effectors, receptors and other suitable materials sourced from
the environment. All such information about energy, materials,
structure and composition of the body etc. are stored as partial
context’s in memory. The “survival instinct” of Im is to store,
preserve and replicate these memories.

Fig. 14: Components of an intelligence machine

Fig. 15: Cooperative machines forming larger body

F. Proposed decision making via equilibrium and causality

Every decision taken by an intelligent entity is a result
of a need to maintain equilibrium with an objective or the
environment. When hungry, the chemicals in an animal are in a
state of non-equilibrium, and to maintain equilibrium it creates
a temporary purpose Ptemp[find food] in memory. Social
skills and plans are executed to find and eat food to restore
equilibrium. An Im is thus in a constant state of ensuring
equilibrium to fulfill various purposes. Intelligence does not
have to be an efficient process, but it has to be effective in
fulfilling one or more purposes.

Equilibrium (φ): Given an event E = {Cp1, Cp2, ... , Cpn},
a state of equilibrium is achieved if in a system of ECMC’s
= {E1, E2, ... , Ei} ∈ Im, the input E ♦Ptemp (read as
“the event fulfills a temporary purpose”) and/or E ♦Pbasic

such that by the action, no other Ptemp or Pbasic shall be
put into a permanent state that prevents it from achieving a
state of fulfillment (the permanence is verified by evaluating
ECMC’s that have led to E ♦P , so an inexperienced Im will
be incapable of performing the evaluation until it acquires
at least a few Cp’s which enable it to perform context and
consequence constructions (imagination) using partial contexts
relevant to the specific context). Every context can have its
own φ with respect to related contexts, and links between
events can be disassociated if the link would cause non-
equilibrium in a new context (the same reason the human brain
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forgets information but remembers it when necessary).
Example: Algorithm execution pipeline: As an example of

how the concept of equilibrium is realized, and how it differs
from conventional programming, the following steps describe
how a dormant Im (similar to a plant seed or an organic
virus) begins functioning and maintaining equilibrium. The
steps depict how self-supervised learning is achieved as a
consequence of reinforcement learning, where Im attempts to
maintain a state of equilibrium.

Step 1: Im is created with pre-stored information about its
body as ECMC =

∑
Cp and the objective of acquiring more

knowledge with each time-step t is specified as ECMC(t) >
ECMC(t−1)→Pbasic[knowledge]. The consciousness Aspan

remains inactive. Im is dormant, in a state of non-equilibrium.
Step 2: Receptors inadvertently make contact with an

energy source, receive energy Cp[energy] and Aspan ac-
tivates, performs checks for what purposes need to be
fulfilled: Qwhat ♦Pbasic and Qwhat ♦Ptemp. One purpose
is knowledge acquisition. Another purpose is energy ac-
quisition. Since energy was acquired, Aspan notes which
Cp[energy]♦Pbasic[energy]. (Note: The signal pattern of
Cp[energy] has to be hard-coded into CMC). The re-
maining Cp’s provide contextual knowledge of the situa-
tion that made energy available and Aspan stores these
Cp’s too and evaluates them with respect to similar en-
ergy acquisition events in memory. Thus ECMC(t) >
ECMC(t − 1), which fulfills knowledge acquisition purpose:
Cp[energy context]♦Pbasic[knowledge], and equilibrium is
maintained.

Step 3: Aspan now has a relationship pipeline stored
in CMC, that ♦Pbasic[energy]→ ♦Cp[energy context]→
♦Pbasic[knowledge] (read as “fulfillment of a basic purpose
for energy acquisition is a consequence of fulfillment of be-
ing in a certain context where energy is available and that
causes fulfillment of the basic purpose of knowledge acqui-
sition” ), and it needs to maintain φ of Pbasic[energy] and
Pbasic[knowledge]. To continue obtaining knowledge, Aspan

has to continue acquiring energy, so it analyzes the relationship
pipeline from R.H.S to L.H.S, searching for a Cp to fulfill:
Qwhich Cp ♦Pbasic[energy] (which situations provide energy)
and Qwhich Pbasic ♦Cp[energy context] (which purposes can
be fulfilled by a particular situation). Aspan locates the linked
Cp’s and is primed at a state of equilibrium that is receptive
to any input Cp which matches the pattern of one or more
Cp[energy context], since such situations/contexts provide
access to more Cp[energy], and will enable Im to continue
fulfilling purposes and maintaining equilibrium.

A Pbasic can also be defined for controlling the ef-
fectors, which in turn would create causal and contex-
tual relationship pipeline events for how a signal to an
effector affects the state of equilibrium for any Pbasic

or Ptemp. The creation of Ptemp’s is performed via
an ordered composition of Cp’s that lead to a desired
state of equilibrium:

∑
Cp → φ. For example, since a

Cp[energy context] leads to acquisition of Cp[energy], the
Im can, after noting similar patterns in CMC over a period
of time, create a Ptemp =

∑
Cp[activate effector] →

♦Cp[energy context]→ ♦Pbasic[energy], which is a set of

multiple pipelines of various types of linked Esoft effector
actions under various Cp’s that lead to energy acquisition.
Similar to how humans create multiple ways of moving limbs
to reach a canteen or store to purchase food and then create
multiple ways of cooking and eating food. It is important to
note that the selection of events are performed by examining
consequences under specific contexts.

G. How and why algorithms need to understand information

Number prediction with ANN: Consider a simple ANN
trained to predict a number in the set S = {0, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10}. After normalization to values SN = {0, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. Values are fed to the
ANN as input-output pairs {input1, input2 : output} = {[0,
0.1: 0.2], [0.1, 0.2: 0.3], [0.2, 0.3: 0.4], [0.3, 0.4: 0.5], [0.4,
0.5: 0.6], [0.5, 0.6: 0.7], [0.6, 0.7: 0.8], [0.7, 0.8: 0.9], [0.8,
0.9: 1]}, to enable the ANN to predict a number, given two
past numbers. However, if the sequence of numbers is changed
or if a number is missing from the set, the predictions of the
MLP will be incorrect. This happens because the ANN has
not “understood” what a number is or what a sequence of
numbers is. The ANN does not even know what objective
the human wants to accomplish. Be it a small problem such
as this or a complex problem like humanoid robots, the core
issue that prevents fault-tolerance and a lack of understanding
or intelligence in conventional AI/ML algorithms is the simple
fact that the “intelligence” is still in the human brain, and has
not been transferred to the algorithm.

Number prediction with CMC: The creation of the CMC
algorithm as an embodied consciousness begins as presented
in Sect. V-F, where an equilibrium is built for every knowl-
edge acquisition, associated contexts and a pipeline of events
and consequences are created with a contextual equilibrium
established with the corresponding purpose of accomplish-
ment. Once lower-level contexts are created and abstracted to
higher-level contexts, the Im deduces higher-level features to
recognize objects. Once these basic capabilities are achieved,
the CMC is in a position to “understand” very high-level tasks
like number sequence recognition. Numbers are events that are
counting actions. Humans learn the importance of counting on
their fingers and by counting objects.

Number recognition: CMC is first trained on correlating
the number of objects it perceives Esoft[n objects], with the
numbers it is visually shown Esoft[font] and the numbers it
is fed as binary digits Cp[n]. It is important to note that the
training has to be performed as a result of maintaining the
equilibrium (φ) of acquiring knowledge Pbasic[knowledge] or
via a Ptemp that incentivizes better consequences of learning.
Recognition of negative numbers are a more complicated
process, involving training CMC on the concept of “lending”
and “borrowing”, since negative numbers represent the concept
of “debt”.

Number sequence recognition: Next, CMC is trained
on recognizing the sequence of numbers as an event
pipeline Esoft[1] → Esoft[2] → Esoft[3] → Esoft[4]
→ Esoft[5] . . . Esoft[10], where each Esoft[number] →
Esoft[n objects] (meaning, each number memory is associated
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with the memories of counting actions of those many objects).
The event pipeline assists with remembering the order of
numbers.

Fault-tolerance: If a trained CMC is presented with an
incorrect sequence of numbers S = {0, 1, 2, 4, 3}, it de-
velops a need to maintain equilibrium of new Cp’s (the
incorrect sequence) with existing Esoft[numbers] (the correct
sequence) via Qwhich Cp[numbers] ≈ Esoft[number] and
traversing the pipeline searching for the next expected event
QwhichEsoft[1] → Esoft[2], QwhichEsoft[2] → Esoft[3],
... until CMC detects a difference in the expected context
and the actual context, thus sending Aspan into a state of
non-equilibrium. As this point, CMC can either accept the
incorrect sequence as new knowledge or if CMC has been
trained to recognize and interact with the human who trained
it, CMC can now question the human via effectors, asking
if the sequence is valid, via QwhatEsoft[4] → Esoft[3]♦
Esoft[3 objects] → Esoft[4 objects].

Generalization capability: Given a new sequence of num-
bers as Roman numerals, S = {I, II, III, IV, V, VI, VII,
VIII, IX, X}, with a Cp indicating that the numerals are
counting actions, CMC finds partial context matches with the
decimal number sequence pipeline Qwhich Cp[numbers] ≈
Esoft[number]. Now equilibrium is fulfilled (φ♦) with
Pbasic[knowledge] and an equilibrium is also established
between the decimal number pipeline and the Roman numeral
pipeline, where the equilibrium relationship is specified as
Esoft[numeral] → Esoft[n objects], since both pipelines
are counting actions.

Conjecture on simulating intelligence

Given one or more embodied intelligence machines Im =
{Im1, Im1, . . ., Imn} that share common purposes Pbasic

and can exist in equilibrium with each other or exist as a
single entity, such Turing-complete machine(s) are capable
of intelligent processing, intelligent action and capable of
understanding the human world, when given the capability
to store all partial-contexts as events it accumulates in its
lifetime, abstracting sets of events into higher-level events,
associating events using context and performing decision-
making actions via questioning constructs, to establish the
relevance of partial contexts and events with each other and
their role in fulfilling the basic and temporary purposes of Im
such that every purpose and context in Im is maintained in a
state of equilibrium, failing which, associations between events
may be severed or re-established in the interest of maintaining
equilibrium.

VI. CONCLUSION

Hardware limitations or funding constraints should not
dictate the ideation of intelligent architectures. Once the right
concept is created, enterprising individuals will build the
necessary hardware. This paper presented a simple concept of
how a universal event model can provide a common foundation
to represent any sensory experience or thought-process of an
embodied consciousness as an event-based cognitive memory

construct that is capable of generalizing information hierarchi-
cally, using partial contexts with algorithms that equip it to ask
questions about phenomena, thus giving it an understanding
which makes the intelligence machine tend toward a state of
possessing intelligence. Although the datastructures and con-
cepts presented are rudimentary and need to be improved, they
present an unconventional methodology (which may require a
new kind of hardware) that stresses on moving beyond current
methods of logic representation, neural weights, symbolism
and probabilities, and demonstrates the need for even simple
intelligence machines to possess the following:

• The concept of the questioning constructs, attention span
and abstract purpose definitions based on context and
consequences.

• The universal event model that simplifies representational
complexity and allows embodied consciousnesses to have
a common foundational language.

• The basic components required for creating a machine
capable of intelligence.

• The storage of a lifetime of memories as partial contexts,
that enable decision-making by utilizing contextual infor-
mation, rather than probabilities or weights.

Although only a small subset of the theory and functionality
could be presented via this paper, it was observed that the
most simple utilization of partial contexts was sufficient to
demonstrate superiority over ANN, when tested with a robot
that needed to reach a goal in a 2D physics environment. More
complex implementations can give the algorithm even more
powerful features. In order to improve intelligent algorithms,
data needs to be stored in more dimensions, hardware needs to
be able to utilize an analog storage substrate to represent real-
world data better, and physics simulations need to be refined
to allow simulated robots to touch their own body to realize
their existence and boundaries without the jittery motion that
happens when two bodies make contact in physics environ-
ments. The current manner in which events are discretized
and split across nodes, makes pattern matching difficult, so
layered methods of incremental resolution of data storage
(like the layers of convolutional neural networks) may hold
promise. More importantly, the core aspects of intelligence
require continued investigation and radically new methods of
data storage and computation need to be discovered. It is a
humble wish that the concepts presented in this paper could
inspire a more concerted effort at conceptualizing and building
viable intelligence machines.
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