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Abstract

There has been much discussion about the impact and future of artificial intelligence (AI) in our lives and future generations.

Many experts even believe that AI will “rule” the world. Artificial Neural Networks (ANN) have provided a convenient and

often extremely accurate solution to problems within all fields, and can be seen as advanced general-purpose regression models

that try to mimic the behavior of the human brain. The adoption and use of ANN-based methods in the Mechanistic-Empirical

Pavement Design Guide is a clear sign of the successful use of neural nets in geomechanical and pavement systems. This work

aims to provide an extensive and detailed state-of-the-art of the application of ANN models to pavement management, materials

and design problems. Unlike former review articles published before 2014, this work is more descriptive and makes the review

much more appealing to the reader by highlighting numerically and/or graphically the effectiveness and possible drawbacks of

each ANN application.
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Abstract 

There has been much discussion about the impact and future of artificial intelligence (AI) in our lives 

and future generations. Many experts even believe that AI will “rule” the world. Artificial Neural Networks 

(ANN) have provided a convenient and often extremely accurate solution to problems within all fields, and 

can be seen as advanced general-purpose regression models that try to mimic the behavior of the human 

brain. The adoption and use of ANN-based methods in the Mechanistic-Empirical Pavement Design Guide 

is a clear sign of the successful use of neural nets in geomechanical and pavement systems. This work aims 

to provide an extensive and detailed state-of-the-art of the application of ANN models to pavement 

management, materials and design problems. Unlike former review articles published before 2014, this 

work is more descriptive and makes the review much more appealing to the reader by highlighting 

numerically and/or graphically the effectiveness and possible drawbacks of each ANN application.  
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1. Introduction 

1.1 Artificial Intelligence and Machine Learning 

There has been much discussion about the impact and future of artificial intelligence 

(AI) in our lives and future generations, and it has even been said by many experts that 
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AI will “rule” the world. But what exactly is AI? It has been defined in several ways 

based on the four approaches described below (Russell and Norvig 2010), namely (i) 

Thinking Humanly (Bellman 1978) – AI is the automation of activities that we associate 

with human thinking, such as decision-making, problem solving or learning, (ii) Thinking 

Rationally (Winston 1992) – AI is the study of the computations that make it possible to 

perceive, reason and act, (iii) Acting Humanly (Rich and Knight 1991) – AI is the study 

of how to make computers do things at which, for now at least, people are better, and (iv) 

Acting Rationally (Poole et al. 1998) – AI is The study of the design of intelligent agents. 

Learning is central to human knowledge and intelligence, and, likewise, it is also 

essential for building intelligent machines. Years of work in AI have shown that trying to 

build intelligent computers by programming all the rules is unfeasible; thus, automatic 

learning is crucial. Machine learning is a set of tools that, broadly speaking, allow us to 

“teach” computers how to perform tasks by providing examples of how they should be 

done (Hertzmann and Fleet 2012) – basically, a machine learning system learns by 

experience. The world is quietly being reshaped by machine learning, and the most 

powerful form of it used today is called “deep learning”, which builds a complex 

mathematical structure called an Artificial Neural Network (ANN) based on vast 

quantities of data (Hern 2016) (the term “neural net” is also used throughout this 

manuscript). All the biggest technology companies (e.g., Facebook, Microsoft, Skype, 

Google) rely on ANN-based technologies (Scott 2016). Other than machine learning, 

there are other AI techniques that allow machines to act human-like, and one of the firstly 

https://hal.archives-ouvertes.fr/hal-02066889
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employed is called Expert System (ES). For instance, in a rule-based ES, the knowledge 

and experience of the expert are coded as a series of if-then rules (Basheer and Hajmeer 

2000). But what does the decision about which modelling technique (e.g., ANN, ES or 

theoretical / mechanistic modelling) to use in an arbitrary problem depend on? Primarily, 

on the availability of both the theory, explaining the underlying phenomenon, and the 

data. When the latter is abundant but there is unclear theory, machine learning techniques 

can be a perfect tool. Conversely, when both the data and theory are insufficient, an ES 

is normally sought. An illustration of the several possible scenarios is shown in Fig. 1 

(shadowed areas represent regions where any of the contiguous tools might me used). 

 

 

Fig. 1. Suitable techniques as function of theory/data richness (based on Basheer and Hajmeer 2000). 
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Although ANN is the oldest AI technique, whose initial development dates back to 

1943 (McCulloch and Pitts 1943), it is still the leading application if one counts the 

number of practical applications (Wilamowski and Irwin 2011), such as Civil 

Engineering, Bioinformatics, Chemistry, Finances, Internet, Medicine, Organization and 

Management, Robotics, Speech Processing or Meteorology, just to name a few (Prieto et. 

al 2016). In its most general form, an ANN is a hardware or software “machine” designed 

to perform a particular task or function of interest based on the way the human brain 

processes information, i.e. with the help of its billions of processing units, the neurons. 

ANNs have been employed to perform several types of relevant “real-world” basic tasks, 

such as (i) classification, like (i1) sequence / pattern recognition, (i2) identification of new 

data, or (i3) decision-making, where the goal is to map each input with an output class, 

(ii) functional approximation / forecasting, (iii) clustering (grouping data into classes by 

analyzing the similarities or dissimilarities between input patterns), etc. – some of these 

tasks are illustrated in Fig. 2. Furthermore, ANNs have proven to be very competitive 

when compared to more popular data analysis methods, usually based on explicit 

statistical modeling. The work on ANN was and has been motivated by the recognition 

that the human brain computes in a totally different way when compared to the 

conventional digital computer. The brain is a highly complex, nonlinear and parallel 

processing system which has the capacity to perform certain computations (e.g., pattern 

recognition, perception, motor control) many times faster than the most powerful 

computer ever developed (Haykin 2009). Just like a nervous system, which needs to 

https://hal.archives-ouvertes.fr/hal-02066889
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evolve in order to adapt to the surrounding environment, ANNs need to go through an 

adaptation/learning process in order to perform well. ANNs can be seen as advanced 

general-purpose regression models that try to mimic the behavior of the human brain, 

although at present no ANN is anywhere near to recreating the complexity of the brain. 

However, the progress that has been made since their inception is remarkable, and it is 

certain that the development and applications of these algorithms will keep growing in the 

future (Flood 2008, Haykin 2009). 

 

1.2 Application of ANN in Civil Engineering 

Although genetic algorithms (GA) have often been employed successfully (e.g., Santos 

and Ferreira 2012, Jorge and Ferreira 2012, Santos et al. 2017, to cite some recent work from 

the second author), ES and ANN have been the most commonly used AI techniques in Civil 

Engineering since the latter’s inception in the mid-1980s (Mosa et al. 2013). ANN have 

provided a convenient and often highly accurate solution to problems within all branches, 

appearing from the statistics on publications to be one of the great successes of computing 

(Flood 2008). The first journal article on civil engineering applications of neural networks 

https://hal.archives-ouvertes.fr/hal-02066889
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(a) pattern classification (b) clustering 

  
(c) functional approximation (d) forecasting 

  

  Fig. 2. Some typical problems solved by ANN (based on Basheer and Hajmeer 2000). 

 

was published by Adeli and Yeh (1989). Since then, many other applications of ANN within 

all fields of Civil Engineering have arisen with increased complexity and sophistication 

(Adeli 2001). Because of their much faster response in comparison to FEA, they are often 

used in approximation for structural analysis (in particular, parametric analysis can then be 

performed without spending so much time), as well as in the active control of structures 

(Sheidaii and Bahraminejad 2012). Areas like (i) buckling and bearing capacity prediction 
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(e.g., Sharifi and Tohidi 2014b), (ii) constitutive modeling (e.g., Oeser and Freitag 2016), (iii) 

structural reliability and/or optimization (e.g., Papadrakakis and Lagaros 2016), (iv) structural 

health monitoring (e.g., Min et al. 2012), or (v) transportation engineering (e.g, Dougherty 

1995, Flintsch et al. 2004, Kim et al. 2009, Ceylan et al 2014, Alkheder et al 2016), have all 

received special focus. The adoption and use of ANN-based methods in the Mechanistic-

Empirical Pavement Design Guide (NCHRP 2004) is a clear sign of the successful use of 

neural nets in geomechanical and pavement systems. 

 

1.3 Aim 

Due to (i) the extent of ANN-based applications in pavement engineering since the 1990´s, 

and (ii) the rising potential of neural nets to the performance of more accurate and efficient 

engineering, this work aims to provide an extensive and detailed state-of-the-art application 

of ANN models in the design and management of pavements. Unlike previous review articles 

published on these topics before 2014 (Dougherty 1995, Flintsch et al. 2004, Kim et al. 2009, 

Ceylan et al 2014), it is worth noting that the present work is far more descriptive and makes 

the review much more appealing to the reader by highlighting numerically and/or graphically 

the effectiveness and possible drawbacks of each ANN application.  

After briefly addressing the ANN features and fundamentals in the next section, the 

applications of neural nets to several types of pavement problems are described in detail 

in section 3. 

 

https://hal.archives-ouvertes.fr/hal-02066889
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Fig. 3. Example of a Multi-Layer Feedforward Network. 

 

2. Brief Overview of ANN Features and Fundamentals 

This section addresses the main neural network features and gives a short overview 

about the main concepts inherent to the most typical ANN models employed in pavement 

engineering so far. Further details about virtually any topic regarding ANN can be found in 

well-known books like Haykin (2009) or Du and Swamy (2014). 

The general ANN structure can be seen as several partially or fully connected processing 

units (neurons), which are disposed in several vertical layers (the input layer, hidden layers 

– if there are some, and the output layer), as illustrated in Fig. 3. Associated to each neuron 

is a linear or nonlinear transfer (also called activation), function, which receives an input 

and transmits an output – a typical neuron’s model is described in 2.1. Each connection 

(link between two nodes in the network), is associated to a synaptic weight, which is a typical 

example of a network unknown to be determined during the network design process. The 

ANN’s computing power, making them suitable for efficiently solving complex (small to 

https://hal.archives-ouvertes.fr/hal-02066889
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large-scale), intractable problems, can be attributed to their (i) massive parallel distributed 

structure and (ii) ability to learn and generalize, i.e, produce reasonably accurate outputs for 

inputs not used during the training phase. Besides, neural networks offer the following useful 

features: 

(i) Nonlinearity: guaranteed when at least one neuron’s transfer function is nonlinear. 

(ii) Input-output mapping: in the context of nonlinear vector mapping problems comprising 

a fixed set of independent variables, ANN-based solutions are frequently more accurate 

than the ones provided by traditional approaches (e.g., multi-variate nonlinear regression), 

despite the fact they do not require a good knowledge of the function shape being modeled 

(Flood 2008). 

(iii) Adaptivity: a neural network trained to operate in a specific environment can be easily 

retrained to deal with minor changes in that environment (e.g., when operating in a 

nonstationary environment). 

(iv) Ability to handle imprecise / noisy and/or missing data (Basheer and Hajmeer 2000). 

The way in which the neurons of a neural net are structured and linked define what is 

known as the network architecture. In general, one may identify three fundamentally 

different classes of network architectures: (i) Single-Layer Feedforward Network, (ii) 

Multi-Layer Feedforward Network, and (iii) Recurrent Networks (RNN) (Haykin 2009). In 

sub-section 2.2, the multi-layer perceptron (MLP) is briefly addressed since it is the most 

commonly used network type in pavement engineering applications. 

 

https://hal.archives-ouvertes.fr/hal-02066889
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2.1 Model of a Neuron 

Each processing unit (sometimes called computation node) of an ANN is called a 

neuron, and it plays a crucial role in the network’s behavior. There are three basic 

elements in a typical model of a neuron, as depicted in Fig. 4: (i) connecting links (also 

called synapses) between each “input” signal (xj , j=1,...,J) and the kth neuron, which are 

characterized by their synaptic weights (wjk R ), (ii) a summing junction (sk = xj wjk) – 

Einstein summation convention employed, to add up the weighted input signals that 

converge to the neuron, and (iii) an activation (or transfer) function φk, which receives sk 

plus neuron’s bias (bk R ) as input – also known as the induced local field, and provides 

neuron’s output yk. In ANN design, the activation functions are user-defined (e.g., 

logistic, linear). 

 

 

 

 

 

 

Fig. 4. A typical model of a neuron. 
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2.2 The Multi-Layer Perceptron (MLP) 

This is a feedforward ANN, i.e. the signal flow through the network progresses in a 

forward direction from left to right, and on a layer-by-layer basis, and exhibits at least two 

neuron-based layers and the input node layer. Each layer of neurons that is not the output 

layer is called a “hidden layer” and the corresponding units are called “hidden neurons”. By 

adding one or more hidden layers, the network is enabled to extract higher-order statistics 

from its input (Haykin 2009). Fig. 3 represents a 3-layer feedforward network, also referred 

to as 3-4-2 (3 input nodes, 4 hidden neurons in the single hidden layer, and 2 output neurons). 

As can be seen, each node in each layer links to every node in the next layer (typically called 

a fully-connected network), i.e. the output signals of the 2nd (hidden) layer will serve as input 

signals of the 3rd (output) layer – unless stated otherwise (e.g., PC - partially connected), all 

MLP networks mentioned in this paper are fully-connected. Nodes in each layer do not 

connect to each other and no connections across layers (between the input and output layers, 

in this case) are allowed. The synaptic weights and bias mentioned in 2.1 are network 

unknowns to be computed through the learning process, which is addressed next. 

 

2.3 Knowledge and Learning 

In ANN, as in any other machine learning technique, a good solution depends on a 

good representation of knowledge (Woods 1986), which makes the development of such 

networks a real design challenge. For a specified network architecture, that knowledge 

representation is defined by the values taken on by the free parameters (or unknowns) of 

https://hal.archives-ouvertes.fr/hal-02066889
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the network (e.g., synaptic weights and bias), which are determined by a major task for 

any ANN, called Learning. This stage typically consists of two phases: (i) training and 

(ii) validation. From the obtained knowledge, examples (also known as “data points” or 

“training set”) are selected to train the neural network. These examples are said to be 

“labeled” or “unlabeled”, depending on whether they represent an input paired with the 

target output (desired “response”) or just the input itself – in most cases addressed so far 

in pavement engineering, the performed learning is called “supervised”, since all the 

examples considered are “labeled”. One of the convergence criterion most often 

employed in the design of ANNs is called “early stopping”, and it is a cross-validation of 

the network performance during training. This means, as Fig. 5 suggests, that while the 

network performance measure (e.g., average relative error of all output values) is 

computed and stored after each training iteration, a completely different data set (often 

smaller) is used for (cross-)validation purposes (not training) and the corresponding 

performance measure after each iteration is determined and stored. Whereas the training-

based performance curve usually decreases monotonically during training, the cross-

validation counterpart most often exhibits a global minimum after a certain amount of 

iterations, as shown in Fig. 5. That singularity is called early-stop, and heuristics suggests 

it be used as the stop point in neural network training. In order to assess if the first 

minimum found is local or global, one should keep increasing the amount of iterations 

according to some trade-off between training time and generalization ability. In 

particular, if the validation curve keeps decreasing monotonically after a significant (user-

https://hal.archives-ouvertes.fr/hal-02066889
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defined) amount of training, one should define thresholds for the validation and training 

performance values. At this point, after the “optimum” network parameters are defined, 

some authors (e.g., Fonseca et al. 2003) still perform a final assessment of the model 

quality by evaluating its results for a third distinct data set called “testing set”. 

 

Fig. 5. Cross-validation in training - ANN generalization ability. 

 

Among the most popular training techniques that can be employed to get the neural 

network free parameters (or unknowns), namely the Back-Propagation (BP) and the 

Levenberg-Marquard (LM) algorithms, the most effective and robust is the latter 

(Wilamowski and Yu 2010a, b). More recently, a new algorithm called Extreme Learning 

Machine (ELM) was proposed by Huang et al. (2006a, b) and since its inception several 

variants / improvements of it have been proposed in the literature (e.g., Liang et al. 2006, 

Huang and Chen 2007, Miche et al. 2010, Huang et al. 2011). In the authors’ opinion, ELM 

is quite easy to implement and is the most powerful of all training methods developed so far. 

However, it hasn´t been applied in pavement engineering because it might not be 

implemented in commercial machine learning codes yet. 
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2.4 The Universal Approximation Theorem 

For a nonlinear input-output mapping, this theorem states (Haykin 2009) that a single 

hidden layer MLP, with (i) any bounded, monotone-increasing and continuous activation 

function for the hidden neurons, and (ii) an identity (linear) transfer function for the output 

neurons, is sufficient to compute an arbitrarily good approximation of any continuous 

function in a general n-dimensional space – the absolute difference between any estimated 

and target outputs can be less than any ε > 0, for all input space values. However, it is 

worth recalling that this theorem does not guarantee great network behavior for learning 

time and/or generalization. 

 

2.5 Data Pre-Processing and Tuning of Network Layout 

In order to get the most out of the neural network abilities, it is highly recommended that 

the data is correctly selected and pre-processed before learning starts. To that end, there are 

several approaches worth considering, such as (i) input variable selection algorithms (e.g., 

May et al. 2011), (ii) dimensional analysis (e.g., Bhaskar and Nigam 1990), (iii) 

dimensionality reduction techniques (e.g., principal component analysis) (e.g., May et al. 

2011), and (iv) normalization (e.g., Flood and Kartam 1994a, Azoff 1994). 

A rule of thumb for obtaining good generalization in systems trained by examples is 

that one should use the smallest system that will fit the data (Reed 1993, May et al. 2011). 

Several guidelines – mostly (if not all) obtained from trial and error, (i) for choosing an 

https://hal.archives-ouvertes.fr/hal-02066889
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adequate initial number of hidden neurons/layers and also (ii) for network pruning (size 

reduction – nodes and/or connections), are available from many sources (e.g., Mozer and 

Smolensky 1989, Weigend et al. 1991, Reed 1993, Basheer and Hajmeer 2000, Rafiq et 

al. 2001, Olden and Jackson 2002). 

 

3. ANN Applications in Pavement Engineering 

3.1 Pavement Management  

3.1.1 Pavement Distresses  

Roughness 

A pavement profile (also called roughness) is one of the most effective vehicle 

environmental conditions that influences ride, handling, fatigue, fuel consumption, tire wear, 

maintenance costs and vehicle delay costs.  

Roberts and Attoh-Okine (1998) compares the use of two ANN models to predict 

roughness based on pavement condition characteristics and traffic. The study uses 105 data 

points characterized by 11 variables of 5 types (rutting, fatigue cracking, transverse 

cracking, block cracking, equivalent axle loads and the international roughness index 

(IRI)), with IRI being the target variable of the problem and the others the input counterpart. 

From that dataset, 75 examples were taken for training purposes and 30 for validation. One 

of the proposed neural net is a BP-based 10-5-1 MLP, and the comparison model is called 

quadratic function ANN. It is a feedforward net exhibiting a generalized adaptive 

architecture, which uses a combination of supervised and self-organized (unsupervised) 

learning. This type of network uses an evolutionary mechanism to fit the problem at hand 

https://hal.archives-ouvertes.fr/hal-02066889
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and does not require the modeler to specify the number of layers / nodes. It was shown that 

the latter model (R2 = 0.74) outperforms the traditional MLP network (R2 = 0.57).  

Yildirim and Uzmay (2001) employed a BP-based 1-20-3 Radial Basis Function neural 

net (RBFNN) using Gaussian transfer functions for the prediction of vehicle’s 

acceleration amplitudes. Velocities of the vehicle are used as inputs of the network, and 

training was performed using a dataset of 80000 instances. The method was successfully 

employed to predict random vibration theory results.  

Choi et al. (2004) developed an ANN for the prediction of IRI values using a BP-based 

6-10-1 MLP network. In order to determine the network topology resulting in acceptable 

performance, several nets were designed by increasing hidden nodes 1 by one from 1 to 

15. Ninety-two data points were considered in learning, 25 of which were set aside for 

validation purposes. Yielded results indicate that the designed network can be effectively 

used in pavement performance prediction.  

Yousefzadeh et al. (2010) developed a LM-based x-6-6-4 RNN (no. of input nodes not 

clear) for the prediction of pavement profiles of a vehicle’s four wheels (4 outputs). In 

addition to the vehicle´s accelerations, the profiles themselves were also input (network 

feedback). It was shown that ANN estimated the pavement profiles quite reasonably.  

Solhmirzaei et al. (2012) developed a truly accurate model for the prediction of pavement 

profiles making use of a BP-based x-15-4 Wavelet Neural Network (WNN). The inputs were 

accelerations of a vehicle moving along a road and the outputs were vertical displacement 

profiles of each vehicle wheel during the trip.  

https://hal.archives-ouvertes.fr/hal-02066889
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An ANN-based prediction of road profiles has been demonstrated by Ngwangwa et. al 

(2014), who developed a LM-based 3-50-50-2 MLP network trained with 3964 data 

points obtained numerically. Validation was carried out using measured data. The results 

show very good correlations, even over discrete obstacles. 

Ziari et al (2016) proposed an ANN to predict IRI values in the short- and long-term 

for flexible pavements. Sensitivity analysis using several LM-based MLP networks was 

performed, parameterizing the number of hidden layers (1 to 3) and nodes (3 to 100) in 

order to find an optimal model. From the databank used in learning (205 data points), 154 

samples were used in training, 41 in validation and 10 in testing. It was concluded that 

ANN models predict the future of pavement condition with satisfactory accuracy in the 

short- and long-term. Whereas (i) the best performance regarding the first category (short 

term) was obtained for the topology 9-80-50-30-1, (ii) structure 9-3-1 yielded the best 

performance in the second category (short term), and (iii) 9-8-1 proved to be the best 

layout in the third category (long term). Even so, layouts like 9-5-1, 9-7-1, 9-20-1 and 9-

50-1 exhibited MAPE < 10% and R2 > 0.9 for the testing set. 

 

 

Skid Resistance 

It is well known that weather and traffic influence the degradation of skid resistance 

between the tire and pavement surface over time.  
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Owusu-Ababio (1995) implemented an ANN to predict skid resistance of flexible 

pavements in order to assess future rehabilitation needs. Only original bituminous concrete 

pavements with no overlays were considered. The data used were 45 observations for training 

and 15 for validation, featuring (i) skid number (output or target variable), (ii) pavement 

surface age, (iii) pavement regional location, (iv) accumulated AADT (Annual Average Daily 

Traffic) and (v) posted speed limit. A partially connected 4-3-2-1 MLP was employed, as 

shown in Fig. 6. The software used to design the ANN (Autonet) uses adaptive modeling 

procedures – the basic approach is that (i) exactly two nodes must connect to any neuron in 

the next layer and (ii) the number of layers and neurons per layer are limited once the network 

performance gets worse. It was observed that the ANN validation error is much lower than 

that obtained from the linear regression approach.  

Bosurgi and Trifirò (2005) developed a neural net-based “sideway force coefficient” 

prediction model to be applied on a motorway. The database included 713 samples, from 

which 463 were selected at random for training and the remainder for validation. A LM-based 

2-3-1 MLP was adopted. The results confirmed that the neural network had interpreted the 

phenomenon well, since an error inferior to 7% was observed in 91% of the cases in the 

training phase and 86% in the validation phase. 
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Fig. 6. ANN final layout in Owusu-Ababio (1995). 

 

Cracking 

Cracking is one of the primary forms of distress in hot-mixed asphalt pavements. In 

recent years, Paris’ law, which is based on linear elastic fracture mechanics, has been 

adopted to analyze pavement cracking problems. However, one of the drawbacks of this 

model regards the quick and accurate computation of the stress intensity factors (SIF), a 

parameter that amplifies the magnitude of applied stress, at crack tips. Finite element 

analysis (FEA) is a powerful tool for that purpose, but the 3D pavement behavior can 

only be accurately predicted using 3D FEA, and unfortunately that computation is still 

too heavy (slow) when using today’s available resources in practical applications. 

Kaseko (1993) proposed an ANN for automatic detection, classification and 

quantification of pavement surface cracking, based on processing pavement images. 

Pavement cracks can accurately be classified by type (e.g., transverse, longitudinal, 

alligator and block), severity and extent. For that purpose, binary images are divided into 

tiles and each tile is analyzed to determine the existence and orientation of any crack in 
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it. A BP-based 5-5-5 MLP was used for this task. Twenty images were selected for 

training and validation purposes. Overall, the neural net classified more than 96% of the 

tiles in the training images and 93% in the validation counterpart. 

Owusu-Ababio (1998) developed an ANN for the prediction of flexible pavement 

cracking. In learning, 60 observations were split into 45 for training and 15 for validation. 

Network architecture was determined by trial-and-error by variation of the amount of 

hidden units (in a single hidden layer) from 2 to 12 in unitary increments. The BP-based 

3-5-1 MLP network was found to be optimal and yielded satisfactory results. 

Due to limitations in traditional destructive and non-destructive testing approaches for the 

determination of surface-initiated fatigue crack depths, Mei et al. (2004) proposed an ANN 

for that purpose. A total of 1074 data points were collected from 75 road sections, from which 

430 were used in training, 430 in validation and 214 in testing. Parametric analysis on the 

number of hidden layers/nodes and the learning algorithm showed that a LM-based 8-10-8-1 

MLP yields the best performance - reasonably accurate results were obtained. 

Lee (2004) presented three ANN to classify crack types from digital pavement images, 

as an alternative to pixel-based ANN (higher processing time), designated as image-based 

(INN), histogram-based (HNN) and proximity-based (PNN). Each model has a different 

number of input nodes and each output neuron represents a crack type. Several different 

three-layered BP-based MLP networks were explored with a different number of hidden 

nodes (30, 60, 90, 120, 150) in order to find an optimal layout. The best performance was 

obtained with architectures 180-90-5 (INN), 27-60-5 (HNN) and 3-150-3 (PNN). Each 
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model was trained using 300 artificial images, and validated using 124 real and 150 

artificial images. The INN is similar to the pixel-based neural net except that it uses crack 

tiles. The matrix of crack tiles (1 if there is crack, 0 it there isn´t) is injected into the ANN 

input layer as an array with 180 binary values (12 rows x 15 columns in the “tiled” digital 

image) – inputs are read sequentially from the upper left corner tile to the bottom right 

corner tile, as illustrated in Fig. 7. HNN networks inject two histogram arrays into input 

layer (27 nodes – 12 for the horizontal histogram and 15 for the vertical counterpart), as 

illustrated in Fig. 8. PNN nets’ input layer is defined by three variables, which, to be 

determined, requires computing the following quantities: (i) vertical proximity (Pv), 

defined as  

1
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where Hv is the vertical histogram and Nc the number of columns of the “tiled” image, (ii) 

horizontal proximity (Ph), defined as 
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where Hh is the horizontal histogram and Nr the number of rows of the “tiled” image, and 

(iii) the number of cracked tiles in the image. The final results indicate that the PNN 

produced the best result, with a 95.2% accuracy on real validation images, despite its 

simpler structure with the lesser computing requirement (INN and HNN corresponding 

performances were 70.2% and 75%, respectively). 
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Ceylan et al. (2011) successfully used ANNs to model the stress intensity factor (SIF) 

as cracks grow upward through a hot mix asphalt overlay due to thermal effects. 

Numerical estimation of SIFs in front of a crack tip is traditionally obtained via FEA. The 

database of SIFs was modeled with 6 separate BP-based MLP ANNs exhibiting the 

following layouts and learning datasets: 8-40-40-1 (training=2990, validation=250), 8-

40-40-1 (training=2990, validation=250), 8-40-40-1 (training=2990, validation=250), 9-

40-40-1 (training=1681, validation=250), 7-40-40-1 (training=1064, validation=250), 9-

40-40-1 (training=871, validation=250). The results obtained are nearly perfect, as can be 

attested by Fig. 9 for the 1st model. 

Thube (2012) suggested appropriate ANNs to predict the progression of different 

pavement distresses. ANN model outputs included total cracking area (%), total raveling 

area (%), total rut depth progression (mm), and total roughness progression (IRI). For each 

pavement deterioration type a different ANN was proposed. For {training, validation, 

testing} datasets used in learning, there are (i) {228, 57, 20} examples for cracking, (ii) 

{228, 57, 20} examples for raveling, (iii) {247, 70, 25} examples for rut depth, and (iv) 

{not disclosed, 70, 25} examples for roughness. Sixteen BP-based MLP architectures were 

assessed (2-3 hidden layers, 4-7 hidden nodes) and models corresponding to the best 

performance were selected. Fig. 10 shows the evolution of performance measures as a 

function of the ANN topology used for the raveling progression models. The best ANNs 

exhibit the following layouts: (i) 26-7-7-7-1 (cracking), (ii) 26-5-5-1 (raveling), (iii) 29-7-

7-7-1 (roughness), (iv) 31-6-6-1 (rut-depth). 
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Wu et al. (2014) developed neural network models to estimate SIFs at fatigue and reflective 

cracking, in order to remedy the lack of precision of multivariate regression models and the 

computation burden of FEA. Around 2 million crack SIFs on various pavement structures under 

different traffic loads were gathered from semi-analytical FEA. Eight and 32 ANN models were 

developed for fatigue and reflective crack prediction, respectively. Each of the former models 

made use of 36750 data points (29400 for training), whereas the latter used either 43200 (34560 

for training) or 57600 (46080 for training) samples each. Several LM-based MLP topologies 

were investigated for every neural net model and the results showed that 7-60-60-1 (fatigue 

cracking) and 9-60-60-1 (reflective cracking) layouts yield the best performance. Besides the 

fact that ANN models are quite efficient in getting results once designed (> 30000 cases in less 

than a second), it also was shown that their performance clearly surpasses the nonlinear 

regression counterpart. 

Gajewski and Sadowski (2014) proposed a FEA-ANN system, based on BP-based 4-7-2 

MLP network and 4-5-2 RBFNN for the prediction of crack sensitivity in a subgrade layer. 

Input variables included asphalt pavement layer parameters and different load modes, and the 

expected output response would predict crack occurrence. FEA results were used as learning 

data (quantity not disclosed). The MLP performed far better than the RBFNN in the 

classification task, having yielded accuracies of (i) 94% vs. 65% in learning, (ii) 98% vs. 62% 

in validation and (iii) 92% vs. 77% in testing, respectively.  

Yoo and Kim (2016) proposed a BP-based 8-12-8-2 MLP network to distinguish 

pavement cracks from noise objects in pavement images. Datasets consisting of 7075 and 
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10607 examples were used for training and validation, respectively, and the model 

demonstrated highly accurate prediction ability (99.9%). 

 

Fig. 7. Image-based neural network input layer (based on Lee 2004). 

 

 

Fig. 8. HNN (a) vertical and (b) horizontal histogram (Lee 2004). 
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Fig. 9. ANN performance – AC overlay over AC (low slip interface) (based on Ceylan et al. 2011). 

 

 
Fig. 10. Variation in MSE and R2 for the ravelling progression ANN models (based on Thube 2012). 
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Joint Faulting 

Transverse joint faulting is one of the main types of distresses in jointed Portland 

cement pavements. It can be defined as the difference in elevation between adjacent slab 

edges at a transverse joint. 

Saghafi et al. (2009) applied an ANN to estimate the effect of base layer conditions and 

pavement age on transverse joint faulting. For the databank used, 405 random observations 

were taken (250 for training, 75 for validation and 80 for testing). Several BP-based MLP 

networks were assessed parametrically in order to find the optimal layout, which was 8-8-8-1. 

The proposed ANN was able to successfully predict the measured joint faulting with R2=0.94 

for the testing set. However, there are significant relative errors concerning small value faulting, 

especially for the testing set. 

 

3.1.2 Pavement Condition Indexes  

Present Serviceability Index (PSI) / Ratio (PSR) 

Prediction modelling of pavement deterioration (a stochastic and nonlinear phenomenon) 

is crucial for an effective PMS, where the goal is to find the appropriate period and method 

of rehabilitation. 

Banan and Hjelmstad (1996) proposed an algorithm called Monte Carlo Hierarchical 

Adaptive Random Partitioning (MC-HARP) that produces a model that can be classified as 

a neural network. The authors showed that a model of that type can be constructed for 

AASHO road-test data in order to compare the results with the AASHO formula. The training 

set contains 6192 data points and the validation counterpart has 6762 samples. Five input 
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variables (surface, base and subbase thicknesses, axle load and the logarithm of accumulated 

single axle load applications) and one output variable (PSI) were considered. It was 

concluded that the neural net-type MC-HARP model outperforms the AASHO formula in 

the determination of PSI. 

Terzi (2007) developed an ANN for the estimation of PSR values. Dataset taken from 

AASHO test results includes 74 samples, from which 59 and 15 were used for training and 

validation, respectively. Several topologies were tested but the LM-based 5-4-1 MLP 

appeared to be the most suitable. It was concluded that the ANN model produces better 

results than PSI equation when predicting the AASHO panel data for both training (R2 (PSI) 

= 0.83; R2 (ANN) = 0.99) and validation (R2 (PSI) = 0.82; R2 (ANN) = 0.87) sets. 

Tabatabaee et al. (2013) proposed a two-stage soft computing model to properly classify 

(using a support vector classifier - SVC) and accurately predict pavement performance. A PC 

LM-based 8-5-1 RNN is used for the second stage to predict performance in terms of PSI, as 

illustrated in Fig. 11. The database used in learning involves 14 mainline AC test cells. Three 

cells were used for testing purposes. The two-stage model results were compared with those 

yielded from a RNN-based single model, and it was concluded that the latter was less effective 

in the prediction of PSI values (R2=0.95 vs. R2=0.98).  
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Fig. 11. The RNN used in a two-stage soft computing model for PSI estimation (Tabatabaee et al. 2013).  

 

Condition Rating 

One of the important activities of highway engineers is the determination of pavement 

condition ratings (PCR), i.e. the assignment of relative weights to various levels of 

pavement distresses in order to obtain a combined score that indicates the current 

condition of a roadway section. 

According to Pant et al. (1993), no specific guidelines were available for condition 

evaluation of utility cuts and in the last decade of the last century engineers mostly relied 

on their experience. Those authors proposed a neural net model to predict utility cut 

condition index (UCCI) values considering nine types of predominant distresses found at 
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utility cuts, namely alligator cracking, edge cracking, transverse cracking, potholes, 

rutting, raveling and weathering, pavement drop-off, edge separation and corner breaks. 

Datasets used in ANN modelling include 709 and 323 observations for training and 

validation, respectively. The neural net employed is a BP-based 30-10-1 MLP, which 

showed that a larger discrepancy between the predicted and actual outputs existed when 

the UCCIs were very large or very small, which is believed to have been caused by small 

sample sizes within these ranges. 

Eldin and Senouci (1995a) developed an ANN for pavement condition rating. A BP-

based 17-6-1 MLP was used. The number of hidden neurons was selected from 2, 4, 6, 8 

and 10, with 6 being the number that yielded the lowest average validation error. Sets of 

744 and 1736 examples were prepared for network training and validation, respectively. 

The results showed that the ANN (i) was able to correctly predict condition ratings even 

when designed for input data containing high levels of noise, and (ii) outperformed the 

ODT’s prediction model for subjective ratings. Pavement performance (or deterioration) 

assessment, a key vector of PMS, is usually undertaken through prediction of roughness 

progression. 

Eldin and Senouci (1995b) proposed an ANN based on the condition rating scheme 

established by Oregon Department of Transportation (ODT). The PCR is computed based 

on ODT’s cracking and rutting indices, including distress type, severity and extent present 

in the pavement surface. Sets of 744 and 1736 examples were prepared for training and 

validation purposes, respectively. After a trial-and-error process to find the adequate 
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number of hidden neurons (2, 4, 6, 8 or 10), a BP-based 22-6-1 MLP network was 

proposed in this study, which showed good generalization ability. 

It is generally difficult to identify what types of variables really influence pavement 

performance, and for that reason Attoh-Okine (2001) effectively developed a type of 

ANN called Self-Organizing Map (SOM) for the previous grouping (or clustering) of 

pavement condition variables (distresses) influencing pavement performance the most. 

SOM networks are based on (unsupervised) competitive learning (Haykin 2009), which 

is suitable for classifying a given pattern (or data point) into exactly one of the mutually 

exclusive classes (the dependent variables of the problem). Pavement condition variables 

are grouped according to their similarities. 

Amin and Amador-Jiménez (2016) applied BP-based 5-3-2-1 MLP networks to predict 

the pavement condition index (PCI) as function of (i) AADT, Equivalent Single Axle Loads 

(ESALs), Structural Number (SN), Pavement Age, and the difference in the PCI between the 

current and last year (∆PCI) - flexible pavements, and (ii) AADT, ESALs, Slab Thickness, 

Pavement Age and ∆PCI - rigid pavements. The study categorizes road segments into four 

categories based on pavement types (e.g., flexible or rigid) and road hierarchies (e.g., arterial 

or collector), so four ANN models were developed. Although no reference is made to the size 

of each data set used, it can be assumed that the total amount of data available for this study 

did not surpass the 6868 examples. As for accuracy, the relative errors obtained in {training, 

validation, testing} subsets were approximately {5, 9, 9}%, {11, 23, 72}%, {3, 3, 4}% and 
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{4, 4, 4}% for Arterial-Flexible, Arterial-Rigid, Collector-Flexible and Collector-Rigid road 

segments, respectively. 

 

3.1.3 Maintenance  

Due to time, budget and other resource constraints, it is not always possible for a 

highway agency to attend all road sections requiring maintenance within a given period, 

which calls for a scheme to rank road sections for maintenance treatment according to 

priority. Traditionally, ranking of highway sections requiring maintenance is based on 

experience of qualified personnel. Mathematical decision-making criteria have been 

proposed through the so-called “aggregate condition index”, which has shown several 

drawbacks (Fwa and Chan 1993). 

In order to overcome the aforementioned limitations, Fwa and Chan (1993) developed 

BP-based 6-1-1 MLP neural nets based on 428 (30% - training, 70% - validation), 1272 

(76% - training, 24% - validation), 4396 (93% - training, 7% - validation) and 12800 data 

points (98% - training, 2% - validation). It was concluded that all ANNs were able to 

predict priority ratings within an average absolute error of about 5%. It was shown that if 

noise as high as 50% of the maximum rating score was introduced in the data, the error 

would rise to about 14%. 

Hajek and Hurdal (1993) compared an ANN to an existing knowledge-based expert 

system called ROSE, designed to determine the need for a specific asphalt concrete (AC) 

pavement maintenance treatment (routing and sealing). A random training data set of 148 

pavement sections was used in this study, whereas validation was carried out by means of a 
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random set of 20 instances. The developed ANN is a BP-based 40-x-1 MLP and the obtained 

results were considered to be reasonably good since the final number of hidden neurons (not 

disclosed in the paper) was automatically computed by the software used in order to have a 

maximum tolerance of 10% when comparing ANN and target outputs. 

Flintsch et al. (1996) described an ANN-based simulator to develop and implement an 

automatic procedure for screening and recommending roadway sections for pavement 

preservation. A total of 418 examples were available for training (314) and validation 

(104). After several trials, the BP-based 18-15-1 MLP network was found to be 

appropriate for selecting candidate sections for a preservation program, since it was able 

to predict a correct output for 76% of the validation examples. 

Alsugair and Al-Qudrah (1998) developed ANN models to select appropriate maintenance 

and rehabilitation (M&R) action based on pavement condition, which is evaluated as a 

function of the types of distresses present and their severity levels. Twelve distress types 

(input variables) and five M&R actions (output variables) are taken into account (appropriate 

action was established by experts and/or a pavement management system (PMS) software). 

The number of examples used in training and validation phases were 9311 and 1862, 

respectively. In order to alleviate the closeness of the solution spaces, input data was divided 

into three groups (PCI ≤ 70, 70 < PCI ≤ 85, PCI > 85) and one different BP-based MLP ANN 

was designed for each one. A sensitivity analysis has been conducted varying the number (20 

to 36) of hidden nodes in 7 trials, in order to assess the reliability level of each model. In 
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general, high levels were obtained and the selected network architectures for each 

aforementioned PCI range were 12-28-5, 12-22-5 and 12-34-5, respectively. 

Abdelrahim and George (2000) evaluated the use of neural nets to predict the optimum 

maintenance strategy on the basis of realistic (i.e., noisy) data. A set of 144 examples is derived 

from expert opinions – 74 for training and 70 for validation. A genetic adaptive algorithm is 

employed to train a 10-10-6 MLP network. Six outputs result from the fact that there are six 

different maintenance strategies to be considered - the selected strategy is coded 1 and the others 

0. The number of hidden units was chosen by trial-and-error. The proposed ANN was able to 

predict 83% of the validation examples. 

 

3.2. Materials and Pavement Design 

3.2.1 Material Physical Properties  

Saffarzadeh and Heidaripanah (2009) simulated the variation of Marshall Stability (MS) 

with asphalt content by an LM-based 8-8-1 MLP network. Eighty-five data points were used 

in training and 25 for cross-validation. The variation of the MS with asphalt content was 

assessed by a sensitive analysis using the designed ANN and the results were in good agreement 

with the theory. 

Xiao et al. (2011) developed several ANNs to predict the viscosity of various CRM 

binders at three mixing durations. A LM-based 4-3-1 MLP network was trained with 

experimental data. Of 216 data points containing three binder sources, 162 were selected 

for training and the remainder for validation. As can be attested by Fig. 12, the quality of 

the ANN prediction was quite satisfactory. 
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Abo-Hashema (2013) developed an ANN for the prediction of AC layer temperature. 

Pavement temperature data and some other related parameters have been numerically obtained 

(690 data points). BP-based 4-25-25-1 MLP model was chosen as the most appropriate after 

sensitivity analysis, having yielded an average accuracy of 81% in the validation stage. 

Ozturk and Kutay (2014) introduced an ANN model to predict the design properties of 

superpave asphalt mix, such as percentage of air voids at different gyration levels and the 

maximum specific gravity. Dataset used comprises 1617 mix designs randomly chosen for 

training and 200 set aside for validation. The ANN structure was selected after 800 trials, with 

the LM-based 18-300-300-600-4 MLP net being the most accurate scheme. It was able to 

produce good results and save at least 3-6 days in the design process. 

 

 

Fig. 12. ANN performances: (a) ambient and (b) cryogenic rubber (based on Xiao et al. 2011). 

 

Specht and Khatchatourian (2014) successfully proposed a LM-based 5-8-6-1 MLP 

network, trained through 448 examples, to determine the viscosity of asphalt-rubber binders. 
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3.2.2 Layer Moduli / Thickness, Poisson’s Ratio 

Backcalculation is an inverse methodology to determine in situ materials stiffness of 

pavement layer by matching the measured and theoretical deflection with iteration and 

optimization schemes. One of the drawbacks, besides time, is that minor deviations between 

measured and computed deflections usually result in significantly different moduli. 

Khazanovich And Roesler (1997) implemented an ANN to backcalculate the layer 

moduli of a three-layer system for a range of pavement layer thicknesses. The necessary 

data (25000 examples) was obtained by a computer program. Three independent ANN 

were trained to find (i) modulus of elasticity of the upper constructed layer (E1), (ii) 

modulus of elasticity of the lower layer (E2), and (iii) coefficient of subgrade reaction (k). 

Whereas (i) the first ANN calculates the pavement deflection profile for a range of 

pavement layer parameters, in order to reduce the computational time in forward 

calculations using the aforementioned program, (ii) the second and third ANNs provide 

E2 / k and E1 / E2 outputs, making use of the estimated E2 / k obtained through the second 

ANN. All networks were based on an adaptive interpolation methodology with fuzzy 

subdomains, and they were trained until the relative error was smaller than 1%. Their 

layout is similar to that of a hierarchical adaptive random partitioning (HARP) network. 

When an impact is made on a pavement surface of a semi-infinite half-space, surface 

waves are generated and travel along the surface of the half-space. These surface waves 

penetrate different depths depending on their wavelengths. 
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Kim and Kim (1998) trained several MLP neural nets (learning algorithm not 

disclosed) to map phase velocities with the corresponding layer moduli (no. of layer 

moduli are the number of output nodes). Learning data was generated numerically and 

consisted of 600, 1000 and 2000 data points (training - 50%, validation - 50%) for two, 

three and four-layered pavement systems, respectively. In addition to thickness-related 

variables (one, two or three variables for two-, three- or four- layered systems, respectively), 

19 phase velocity variables were considered as input variables. The MLP network layouts 

20-28-2, 21-34-3 and 22-45-4, respectively regarding two-, three- and four-layered 

pavements, were employed (learning algorithm not disclosed). Very good results were 

obtained, namely average and maximum errors lower than 2.5% and 8.7%, respectively. 

Ceylan et al. (2007) validated ANN models to predict layer moduli as a function of 

FWD deflections and layer thicknesses. A total of 24093 runs in a FE program were 

carried out for data generation (1000 points used for validation and 23094 for training). 

The BP-based 6-60-60-2 MLP was chosen as the best model for elastic moduli prediction, 

and the BP-based 12-60-60-1 MLP was adopted to estimate the K-parameter from the K-

Θ granular base relationship, having yielded an average absolute error of 3.4%. 

Sharma and Das (2008) proposed several ANN models to backcalculate layer moduli 

from normal and noisy deflection basins and layer thicknesses. After trial-and-error of 

several BP-based MLP topologies (1-2 hidden layers, 7-20 hidden nodes per layer), it was 

concluded that one hidden layer and 10-15 neurons yields the best results. A total of 6000 

sets of deflection basin data are used, 5800 of those employed in network training. The 
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performance of the ANN was found to be satisfactory in terms of (i) computation time 

and (ii) accuracy. 

Gopalakrishnan (2008) developed an ANN to backcalculate airport flexible pavement 

moduli based on heavy weight deflectometer (HWD) test data. Three thousand, seven 

hundred and fifty data vectors were used in training and 1250 in validation. Separate ANN 

models were used for each output variable and parametric analysis was carried out to 

select the best architectures. Concerning AC and subgrade moduli prediction, the BP-based 

6-40-40-1 (average absolute error in validation = 8.2%) and 8-40-40-1 (average absolute error 

in validation = 7.6%) MLP nets produced the best results, respectively. 

Gopalakrishnan and Ceylan (2008) employed ANN-based structural models to accurately 

predict flexible airport pavement layer moduli from realistic FWD deflection basins. Data for 

ANN learning was numerically obtained, with 23093 points for training and 1000 for 

validation. Two separate models were proposed for the prediction of AC and subgrade Young 

modulus, as a function of six pavement surface deflections and two layer thicknesses (8 input 

variables). The developed BP-based 8-60-60-1 MLP models exhibited average absolute 

errors smaller than 1.5% for the validation subset, as shown in Fig. 13. 

Bayrak and Ceylan (2008) proposed two ANNs to backcalculate rigid pavement 

parameters using FWD data. To train those models, 39026 and 49539 FEA-based samples 

were used in the training of elastic modulus and coefficient of subgrade reaction, respectively, 

whereas 2000 different examples were taken for validation of each ANN. The designed 
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models were BP-based 8-60-60-1 and 7-60-60-1 MLP nets, respectively, both associated with 

average absolute errors smaller than 0.3%. 

Park et al. (2009) proposed several neural networks to predict RM of subgrade and 

subbase pavement materials from several basic soil properties. For subgrade soils, 236 and 

36 data points were employed for training and validation, respectively, with 164 and 26 

being the size of the subbase soil-related subsets. The best performing ANN schemes were 

the BP-based 6-4-1 (subgrade) and 3-5-1 (subbase) MLPs, which yielded great results (e.g., 

R ≥ 0.975 for the best subbase material model). 

                                                               

Fig. 13. FEA vs ANN validation results: (a) AC, (b) Subgrade (based on Gopalakrishnan & Ceylan 2008). 

 

 

Abdallah and Nazarian (2009) proposed five ANNs to estimate the moduli of three 

pavement layers and the thickness of AC and base layers, namely BP-based MLPs with the 

following layouts: 10-28-1, 13-25-1, 14-28-1, 15-30-1, 19-14-1. The validation results (250 
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data points) showed that, for all models except the base thickness, at least 90% of the results 

had a relative error equal or smaller than 20%, which is quite satisfactory. 

Xiao and Amirkhanian (2009) proposed four neural nets to estimate the stiffness behavior 

of modified asphalt mixtures at 5ºC and 20ºC. BP-based 5-3-1 and 5-6-1 MLP networks 

were designed. In the learning stage, each temperature included 64 and 84 (63 for training 

and 21 for validation) sample datasets for the specimens containing cryogenic and ambient 

rubbers, respectively. Obtained results for ambient rubberized mixes were quite accurate for 

the training set (R2 ≥ 0.95) but not so for the validation (R2=0.57 at 5ºC and R2=0.71 at 

20ºC). 

Solanki et al. (2009) compared two ANN models (RBF and MLP nets), to correlate 

RM with routine properties of subgrade soils and state of stress. Ninety-eight examples 

were used, 64 in training and 34 in validation. The 7-6-6-1 MLP model (learning 

algorithm not disclosed) exhibited the best performance and predicted RM for pavement 

design with reasonable accuracy. 

Zaman et al. (2010) developed several types of ANN models to correlate RM with 

routine properties of subgrade soils and state of stress. RBF, MLP and Generalized 

Regression (GRNN) neural networks are performing best, characterized by the following 

layouts: 7-1250-2-1 (GRNN), 7-100-1 (RBFNN), 7-6-6-1 (MLP) (learning algorithms not 

disclosed). Ninety-eight soils made up the total data available, from which 64 were used 

for training and 34 for validation. The MLP model proved to be best when considering 

the whole dataset. 
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Kim et al. (2010) assessed the influence of using different input normalization methods 

in the prediction of pavement layer moduli using an ANN. Five normalization schemes 

were tested and it was concluded that the results were highly dependent on the selected 

technique. Six thousand and four hundred data samples were used in training and a 

different subset of the same amount was used for validation. A BP-based 16-38-1 MLP 

network was used in this research, and the best normalization method for the pth example 

of variable u reads 

,max

,max

,max ,min

,max

, 0

, 0

u u

p p u

pu uu
p pp

u u

p p

x x
x

x xx

x x

 −


−= 




   (3) 

where xu
p,max and xu

p,min are the maximum and minimum values among all variable values 

for all samples used in training. 

Kok et al. (2010) implemented an ANN to estimate the complex modulus of Styrene-

Butadiene-Styrene polymer modified bitumen. LM-based 3-2-1 MLP network yielded 

highly accurate results after testing several numbers of hidden nodes. The database used 

was made of 192 samples, which were used in a five-fold cross-validation scheme, i.e. 

the data is randomly split into five exclusive subsets of approximately equal size, and at 

each time one of them is used for validation and the other four put together to form a 

training subset. 

Nazzal and Tatari (2013) used GA and BP-based ANNs to predict subgrade RM based 

on soil index properties. RM test results were collected to construct a databank. MLP and 
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RBF nets with different numbers of hidden nodes were tested, and the selected models 

for the prediction of several coefficients were: 5-4-1 MLP (k1), 4-7-1 MLP (k2), 5-8-1 

MLP (k3). GA were then used to analyze whether better prediction models could be 

devised by selecting the ANN input variables, resulting in the following optimal models: 

10-10-1 MLP (k1), 9-9-1 MLP (k2), 7-6-1 MLP (k3), which outperformed the former ones 

and yielded great validation results (R2 > 0.92). However, it should be borne in mind that 

the models that did not use GA did not employ any technique for input variable selection, 

which means it is not a fair comparison with the GA-based counterpart. 

Singh et al. (2013) developed an ANN that integrates aggregate shape parameters in 

the estimation of dynamic modulus. A total of 1440 dynamic moduli measured values 

were used in learning - 1152 data points were used for training and 288 for validation. A 

LM-based 8-20-20-1 MLP network was designed after hidden node-based sensitivity 

analysis. It was shown that the inclusion of aggregate shapes enhanced the prediction 

capability of the model, which exhibited a mean absolute relative error of 10.2% and 

17.5% for the training and validation subsets, respectively. 

Saltan et al. (2013) developed an ANN-based backcalculation procedure where the 

data used were obtained through 114 FEA, including surface deflections for long-term 

pavement performance (input variables) and AC elastic modulus and Poisson’s ratio. In 

this data, 95 data points were used for training and the remainder for validation. The final 

design was obtained with a LM-based 7-15-3 MLP network, which yielded a mean 

absolute relative error less than 3.5% for any subset. 
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By means of an ANN model, Tarawneh and Nazzal (2014) improved the RM 

prediction from falling weight deflectometer (FWD) results. After sensitivity analysis, 

LM-based 10-4-1 MLP network yielded the smallest error and one of the highest R2 

(amount of learning data not disclosed). 

Kim et al. (2014) developed an ANN to predict subgrade RM using physical properties 

and stress state. The training and validation subsets contain 195 and 75 observations, 

respectively. The chosen network is a BP-based 15-9-1 MLP, and there is a fairly good 

alignment between the ANN-estimated and the lab-measured RM. 

Pożarycki (2015) developed an ANN to predict bituminous layer thickness, where 147, 

31 and 31 data point subsets were employed in training, validation and testing, 

respectively. The Broyden–Fletcher–Goldfarb–Shanno-based (learning algorithm) 5-9-1 

MLP network was proposed, with the inputs being (i) FWD deflection data in 3 points, 

(ii) temperature and (iii) applied stress. Validation mean absolute percentage error was 

inferior to 14%. 

Leiva-Villacorta et al. (2016) developed ANN models capable of reliably predicting 

pavement layer moduli. A database was generated using layered-elastic analysis for a 

three-layered flexible pavement structure. For each ANN, a total of 100000 data points 

were generated. A BP-based 13-20-20-3 MLP network was found to be the most 

appropriate and proved to yield highly correlated estimations (R2 ≥ 0.99). 
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3.2.3 Stress, Strain, Deflections and Creep 

Attoh-Okine and Fekpe (1997) examined the use of generalized adaptive ANN for 

modeling field strength characteristics of lateritic soils. In these types of networks, there 

is no a priori specification of the architecture - it grows to fit the problem at hand. A total 

of 45 observation data were used, 25 for training and 20 for validation. A BP-based 7-5-

2-1 MLP network was developed for comparison purposes (R2=0.580). The designed 

adaptive ANN is a 5-3-2-1 partially connected MLP based on an evolutionary learning 

algorithm (R2=0.735). 

Meier et al. (1997) implemented an ANN where the goal was to compute forward-

problem solutions, i.e. surface deflections as a function of layer moduli. Ten thousand 

examples were used in learning for each network. Various architectures were investigated 

and four BP-based 5-15-15-10 MLP networks were successfully proposed. 

Ceylan et al. (1999) developed an ANN based on 38000 FEA results (35280 for 

training) for the prediction of stresses and deflections in jointed concrete airfield 

pavements. A BP-based 6-29-29-3 MLP network was selected as optimal after sensitivity 

analysis among 21 two-hidden layered different topologies. The average error associated 

to ANN results was smaller than 0.5%. 

Ceylan et al. (2005) developed ANN-based structural models to accurately predict 

pavement critical stresses/strains and layer moduli based on realistic FWD deflection 

profiles. A total of 2000 FEA results were employed in learning (1800 for training) for 

each network. Two ANN were developed, namely a BP-based MLP with layouts 5-60-

60-2 (A) and 5-60-60-3 (B). Four surface deflections and AC layer thickness are the 
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inputs; layer moduli and critical stress/strains the outputs in models A and B, respectively. 

In model A, the maximum absolute average error for deflection data with 20% of noise 

level was 5.2%. For model B without noise, the maximum error was 1.1%. 

Zofka and Yut (2012) analysed the feasibility of using three ANNs for the prediction 

of hot mix asphalt creep compliance from the binder creep compliance and vice-versa. 

Each network dataset (600, 594 and 594 points each) was randomly divided into training 

(60%), validation (20%) and testing (20%) subsets. The proposed networks were BP-

based 11-20-6, 15-20-6 and 12-20-6 MLPs. The ANN models demonstrated very high 

correlation (97-99 %) when their results were compared to the target counterpart. 

Tapkin et al. (2012) developed ANNs to predict (i) strain accumulation and creep 

stiffness and (ii) stability, flow and Marshall Quotient of AC specimens, from a series of 

Marshall designs based on experimental results (number of data samples not disclosed). 

Optimal networks were found to be (i) LM-based 7-9-1 and 6-8-1 MLPs (strain and 

creep), and (ii) LM-based 6-8-1 (stability), 6-3-1 (flow), 6-10-1 (Marshall Quotient) 

MLPs. Obtained results are very close to actual test results. 

Ghanizadeh and Fakhri (2014) proposed an ANN model to predict the effective length 

of longitudinal and transverse stress and strain pulses at the bottom of the asphalt layer. 

In order to obtain data for this study, 5000 flexible pavement sections were analyzed using 

layered elastic theory (3000 in training, 500 for cross-validation and 1500 for testing). 

The LM-based 7-15-4 MLP network has proven to be a highly accurate model 

(R2=0.999). 
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Ceyan et al. (2014) developed a hybrid evolutionary global optimization algorithm 

(shuffled complex evolution - SCE) integrated with an ANN model, where the latter 

serves as a surrogate forward model to map pavement layer moduli to surface deflections 

for a variety of scenarios. Data (41106 points, 150 of those used for validation) was 

simulated using FEA. The LM-based 3-60-60-6 MLP network was used, and the hybrid 

model ANN-SCE yielded virtually perfect results (average error smaller than 1%). 

Raab et al. (2015) applied three ANNs for the analysis of interlayer bonding properties 

change over time. The datasets used come from different research projects and laboratory 

studies – 182 samples for lab A (25 for validation), 140 samples for lab B (20 for 

validation), and 138 samples for lab C (22 for validation). The output variables considered 

are the maximum shear force and maximum nominal shear stress. The three neural nets 

obtained for each dataset were BP-based MLP with the following structures: (i) 4-3-2 (lab A) 

and (ii) 6-3-2 (labs B and C). The results obtained were similar to the ones yielded by 

conventional techniques. 

Saleh (2015) developed an ANN to predict stresses and deflections in rigid pavements. 

Different loading combinations, layer moduli and pavement composition were modeled by 

finite elements (1037 analysis results used in training, 259 in validation/testing). The network 

8-12-7-6 MLP (learning algorithm not disclosed) was designed and proved to be very accurate, 

except for shear stress prediction. 

Shafabakhsh et al. (2015) developed ANNs for the prediction of longitudinal strains at the 

bottom of the asphalt layer of flexible pavements subjected to moving loads. Data is obtained 
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using 350 advanced FEA (334 used for training). After sensitivity analysis regarding the 

number of hidden nodes, the LM-based 7-13-1 MLP network was deemed to be the best 

alternative for this problem. It was found that the correlation between prediction and target 

values is very high for all datasets (e.g., R2 > 0.99). 

Plati et al. (2016) developed an ANN model for the prediction of strains based on in 

situ gathered data – 240 pavement sections were considered for training, and another 240 

for validation/testing. The built network is a Quasi-Newton-based 5-4-1 MLP. The neural 

net investigated proved to be an effective tool to assist decision makers in PMS, as shown 

in Fig. 14. 

 

3.2.4 Equivalent Single Axle Load (ESAL)  

AASHTO (American Association of State Highway and Transportation Officials) 

design equation has been used in pavement thickness design to calculate the structural 

number, i.e., the required pavement strength. 

Tigdemir (2014) developed two BP-based 7-20-1 MLP neural networks (same input 

variables) aiming at predicting (i) AASHTO-based design life and (ii) the relation between 

the AASHTO-based (computed by the first model) and the real design life of pavements, in 

terms of ESAL. From a total of 234 sections, the training dataset is comprised of 164 random 

sections, while the remainder is equally split for validation and testing purposes. The first 

model produced excellent results (R2 = 0.999), whereas the second model yielded acceptable 

results only for the training and testing datasets (R2 > 0.90) - significant errors were found for 

the validation counterpart. Lastly, Tigdemir (2014) proposed a BP-based 7-20-2 MLP net 
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that integrates both outputs mentioned before and keeps the same input variables. Good 

correlations were obtained for each output variable, namely R2={0.97, 0.94}. 

 

 

Fig. 14. (a) Training, validation and (b) testing ANN predictions (based on Plati et al. 2016). 

 

 

3.3 Frequency of application of each ANN feature 

In this final sub-section, Tabs. 1-4 summarize the main ANN design features employed per 

pavement engineering problem addressed in this paper, so that the reader can decide much 

quicker which features to include in a neural net-based parametric analysis of similar problems. 

Moreover, histograms covering three important pavement engineering fields (first column of 

Tabs. 1-4) are presented in Figs. 15-17 to give a graphical insight of the frequency of use of 

each ANN feature in the final design. It is possible to conclude that: 
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1 Hidden Layer-MLP BP Logistic Logistic 
2 Hidden Layer-MLP LM Hyperbolic Tangent - 
1 Hidden Layer-RNN Genetic Adaptive - - 

MC-HARP - - - 

Fig. 15. Frequency of ANN features in pavement management problems (distresses not covered – Tab. 1) 

 

(i) The one hidden layer-MLP has been the most used neural net architecture by far in 

both pavement management (except distresses) (75.0 %) and pavement materials & 

design (60.7 %) problems, while it comes in second behind the two hidden layer-MLP 

(44.4%) for pavement distress studies. 

(ii)  The error backpropagation has been the most employed learning algorithm in any of the 

three pavement engineering fields addressed, having been used in more than 55 % of the works. 

(iii) The logistic hidden node transfer function is by far (90.9 %) the “winner” in pavement 

management problems. In the other two fields, it also takes the lead but by less than an 

eleven percent point difference over the hyperbolic tangent function. 
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Table 1. ANN features employed in pavement management problems (distresses not covered). 

Field Problem 

ANN Feature 

Quality Ref 
Architecture 

Learn. 
Algorit. 

Hid./ Out. 
Transfer 

Functions 
10

Log  (LD)
IV  

Pavement 
Manag. 

Skid 
Resistance 

PC 4-3-2-1 MLP - - 3 
Good 
(G) 

Owusu-Ababio 
1995 

2-3-1 MLP LM - 27 
Very 
Good 
(VG) 

Bosurgi & 
Trifirò 2005 

Maintenance 

6-1-1 MLP BP Logistic 5 VG 
Fwa & 

Chan 1993 

40-x-1 MLP BP Logistic 1 G 
Hajek & 

Hurdal 1993 

18-15-1 MLP BP Logistic 1 G 
Flintsch et al. 

1996 

12-22-5 MLP 
12-28-5 MLP 
12-34-5 MLP 

BP Logistic 1 VG 
Alsugair & Al-
Qudrah 1998 

10-10-6 MLP 
Genetic 
Adapt. 

Logistic 2 G 
Abdelrahim & 
George 2000 

Condition 
Rating 

 

30-10-1 MLP BP Logistic 1 NG Pant et al. 1993 

22-6-1 MLP BP Logistic 1 G 
Eldin & 

Senouci 1995b 

17-6-1 MLP BP Logistic 1 G 
Eldin & 
Senouci 
1995a 

5-3-2-1 MLP BP Logistic - VG 
Amin & 

Amador-
Jiménez 2016 

Present 
Serviceability 
Index (PSI) / 
Ratio (PSR) 

Monte Carlo 
HARP 

- - 7 G 
Banan & 

Hjelmstad 1996 

5-4-1 MLP LM Logistic 2 G Terzi 2007 

8-5-1 RNN LM Hyp. Tg / - - VG 
Tabatabaee et 

al. 2013 

 

(iv) For the output neurons, the logistic transfer function predominates in all fields except 

pavement distresses, where the linear function was employed in 63.6 % of the cases.  

(v) Fig. 18 presents the distribution of the “ANN feature” in the fourth column of Tabs. 1-4 

for all the references analyzed. That value represents the round of the constant amount of 

values (a) per input variable that needed to be considered if LD (total amount of learning data 

points) equaled the total number of input data combinations – “a” from aIV=LD was computed 

and then rounded to the closest integer, where IV is the number of input variables. 
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Table 2. ANN features employed in pavement distress problems. 

Field Problem 

ANN Feature 

Quality Ref 
Architecture 

Learning 
Algorithm 

Hid./Out. 
Transfer 
Function 

10
Log  (LD)

IV  

Pavement 
Distresses 

Joint 
Faulting 

8-8-8-1 MLP BP - 2 G 
Saghafi et al. 

2009 

Roughness 

PC 4-5-4-2-1 
Generalized 

Adaptive ANN 

Self-
Organized 

Linear 2 G 
Roberts & 

Attoh-Ok 98 

1-20-3 RBFNN BP 
Gaussian 
/ Linear 

80000 G 
Yildirim & 

Uz. 01 

6-10-1 MLP BP Logistic 2 G 
Choi et al. 

2004 

x-6-6-4 RNN LM 
Hyp. Tg / 

Linear 
- G 

Yousefzadeh 
et al. 
2010 

x-15-4 WNN BP 

Mexican 
Hat 

Wavelet / 
Linear 

- VG 
Solhmirzaei 
et al. 2012 

3-50-50-2 MLP LM 
Hyp. Tg / 

Linear 
16 VG 

Ngwangwa 
et al 14 

9-80-50-30-1 
MLP 

9-3-1 MLP 
9-8-1 MLP 

LM 
Hyp. Tg / 

Linear 
2 VG 

Ziari et al 
2016 

Cracking 

5-5-5 MLP BP - - VG Kaseko 1993 

3-5-1 MLP BP Logistic 4 G 
Owusu-

Ababio 98 

8-10-8-1 MLP LM - 2 G 
Mei et al. 

2004 

3-150-3 MLP BP - 8 VG Lee 2004 

8-40-40-1 MLP 
9-40-40-1 MLP 
7-40-40-1 MLP 
9-40-40-1 MLP 

BP Logistic 

3 
2 
3 
2 

VG 
Ceylan et al. 

2011 

26-7-7-7-1 MLP 
26-5-5-1 MLP 

29-7-7-7-1 MLP 
31-6-6-1 MLP 

BP Hyp. Tg / - 

1 
1 
1 
- 

VG Thube 12 

7-60-60-1 MLP 
9-60-60-1 MLP 

LM 
Logistic / 

Linear 
4 
3 

G 
Wu et al. 

2014 

4-7-2 MLP 
4-5-2 RBFNN 

BP - - 
VG 
NG 

Gajewski 
Sadowski 

2014 

8-12-8-2 MLP BP Logistic 3 VG 
Yoo & Kim 

2016 
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2 Hidden Layer-MLP BP Logistic Linear 
1 Hidden Layer-MLP LM Hyperbolic Tangent Logistic 
3 Hidden Layer-MLP Self-Organized Mexican Hat Wavelet - 

RNN, WNN,  
Generalized Adaptive 

- Linear - 

1 Hid. Layer-RBFNN - Gaussian - 

Fig. 16. Frequency of ANN features in pavement distress problems (Tab. 2). 

 

 

 

1 Hidden Layer-MLP BP Logistic Logistic 
2 Hidden Layer-MLP LM Hyperbolic Tangent Linear 
PC 2 Hid. Layer-MLP, 

HARP 
Quasi-Newton-

type 
- Hyperbolic Tangent 

3 Hidden Layer-MLP Evolutionary-type - - 
1 Hidden Layer-RBFNN - - - 
2 Hidden Layer-GRNN - - - 

Fig. 17. Frequency of ANN features in pavement materials and design problems (Tabs. 3-4). 
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Table 3. ANN features employed in pavement materials and design problems: layer moduli / thickness and 

Poisson’s ratio. 

Field Problem 

ANN Feature 

Quality Ref 
Architecture 

Learn.
Alg. 

Hid./Out. 
Transfer 
Function 

10
Log  (LD)

IV  

Materials 
and Pav. 
Design 

Layer 
Moduli / 

Thickness, 
Poisson’s 

Ratio 

HARP - 
3rd order 

interp. 
- VG 

Khaz., Roes. 
97 

20-28-2 MLP 
21-34-3 MLP 
22-45-4 MLP 

- - 
1 
1 
1 

VG 
Kim & Kim 

1998 

6-60-60-2 MLP 
12-60-60-1 MLP 

BP - 
5 
2 

VG 
Ceylan et al. 

2007 

x-[10, 15]-x MLP BP Logistic - G 
Sharma, Das 

08 

6-40-40-1 MLP 
8-40-40-1 MLP 

BP - 
4 
3 

G 
Gopalakrishnan 

2008 

8-60-60-1 MLP BP - 4 VG 
Gopalakrishnan 
& Ceylan 2008 

8-60-60-1 MLP 
7-60-60-1 MLP 

BP - 
4 
5 

VG 
Bayrak & 

Ceylan 2008 

6 - 4 - 1 MLP 
3 - 5 - 1 MLP 

BP 
Logistic / 

Linear 
3 
6 

VG Park et al. 2009 

10-28-1 MLP 
13-25-1 MLP 
14-28-1 MLP 
15-30-1 MLP 
19-14-1 MLP 

BP - - G 
Abdallah & 

Nazarian 2009 

5-3-1 MLP 
5-6-1 MLP 

BP Logistic 
2 
2 

VG 
Xiao & 

Amirkhan. 2009 

7-6-6-1 MLP - Logistic 2 G 
Solanki et al. 

2009 

7-1250-2-1 GRNN 
7-100-1 RBFNN 

7-6-6-1 MLP 
- - 2 G 

Zaman 
et al. 2010 

16-38-1 MLP BP Logistic 2 G Kim et al. 2010 

3-2-1 MLP LM Hyp. Tg 6 VG Kok et al. 2010 

10-10-1 MLP 
9-9-1 MLP 
7-6-1 MLP 

BP 

 
Hyp. Tg / 
Logistic 

Hyp. Tg / 
Linear 

Logistic / 
Linear 

- VG 
Nazzal & Tatari 

2013 

8-20-20-1 MLP LM 
Hyp. Tg / 

Linear 
2 G 

Singh et al. 
2013 

7-15-3 MLP LM - 2 VG 
Saltan et al. 

2013 

10-4-1 MLP LM Hyp. Tg - G 
Tarawneh & 
Nazzal 2014 

15-9-1 MLP BP Logistic 1 G Kim et al. 2014 

5-9-1 MLP BFGS 
Logistic / 

Linear 
3 G Pożarycki 2015 

13-20-20-3 MLP BP Hyp. Tg 2 VG 
Leiva -Villac. et 

al. 2016 

 

https://hal.archives-ouvertes.fr/hal-02066889


 

Abambres M, Ferreira A (2017). Application of ANN in Pavement Engineering: State-of-Art, hal-02066889 

© 2017 by Abambres and Ferreira (CC BY 4.0) 

 
 
 
 

 
53 

 

 

Table 4. ANN features employed in pavement materials and design problems: stress, strain, deflections, 

creep, material physical properties and ESAL. 

Field Problem 

ANN Feature 

Quality Ref 
Architecture 

Learn. 
Alg. 

Hid./Out. 
Transfer 
Function 

10
Log  (LD)

IV  

Materials 
and Pav. 
Design 

Stress, 
Strain, 

Deflections 
&  

Creep 

PC 5-3-2-1 MLP Evolutionary - 2 G 
Attoh-Okine 

& Fekpe 
1997 

5-15-15-10 MLP BP 
Logistic / 

Linear 
6 G 

Meier et al. 
1997 

6-29-29-3 MLP BP Logistic 6 VG 
Ceylan et 

al. 
1999 

5-60-60-2 MLP 
5-60-60-3 MLP 

BP Logistic 5 VG 
Ceylan et 
al. 2005 

11-20-6 MLP 
15-20-6 MLP 
12-20-6 MLP 

BP 
Hyp. Tg / 

Linear 

2 
2 
2 

VG 
Zofka & Yut 

2012 

7-9-1 MLP 
6-8-1 MLP 
6-3-1 MLP 

6-10-1 MLP 

LM 
Logistic / 
Hyp. Tg 

- VG 
Tapkin et 
al. 2012 

7-15-4 MLP LM 
Hyp. Tg / 

Linear 
3 VG 

Ghanizadh 
& Fakhri 

2014 

3-60-60-6 MLP LM Logistic 35 VG 
Ceyan et al. 

2014 

4-3-2 MLP 
6-3-2 MLP 
6-3-2 MLP 

BP Hyp. Tg 
4 
2 
2 

G 
Raab et al. 

2015 

8-12-7-6 MLP - - 2 G Saleh 2015 

7-13-1 MLP LM - 2 VG 
Shafabakhs

h et al. 
2015 

5-4-1 MLP Quasi - Newt 
Hyp. Tg / 

Linear 
3 G 

Plati et al. 
2016 

Material  
Physical 

Properties 

8-8-1 MLP LM 
Hyp. Tg / 

Linear 
2 G 

Saffarzadeh 
& Heidarip. 

2009 

4-3-1 MLP LM Logistic 4 VG 
Xiao et al. 

2011 

4-25-25-1 MLP BP Hyp. Tg 5 G 
Abo-

Hashema 
2013 

18-300-300-600-4 
MLP 

LM Hyp. Tg 2 G 
Ozturk & 

Kutay 2014 

5-8-6-1 MLP LM Logistic 3 G 
Specht & 
Khatchat. 

2014 

 
ESAL 

 

 
7-20-2 MLP 

 

 
BP 

 

 
Logistic 

 

 
2 
 

 
VG 

 

 
Tigdemir 

2014 
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Fig. 18. Fictitious number of values per input variable according to the amount of learning data. 

 

4. Final Remarks 

An extensive state-of-the-art application of ANN in pavement engineering has been 

presented, which has covered fields such as pavement (i) management and (ii) materials and 

design. This work intends to motivate and support the related expert community in the use of 

neural nets in problems where there is abundant data but the solving methods usually adopted 

are too lengthy and/or inaccurate. A graphical insight of the usage frequency of the main ANN 

features in pavement (i) management (distresses excluded), (ii) distresses and (iii) materials and 

design problems, is presented. Lastly, it should be noted that despite the great amount of 

applications and quite satisfactory results found in the literature, there is a lack of utilization of 

more advanced techniques in the design of ANNs - in most cases, the more traditional 

architecture (MLP) and learning algorithms (BP, LM) were employed, and not much reference 

was made to special trimming and data preprocessing techniques for the improvement of the 
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network generalization ability. The authors of this paper are currently working to make a 

contribution to change this scenario in the near future. 
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