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Abstract

Corrugated webs are used to increase the shear stability of steel webs of beam-like members and to eliminate the need of

transverse stiffeners. Previously developed formulas for predicting the shear strength of trapezoidal corrugated steel webs,

along with the corresponding theory, are summarized. An artificial neural network (ANN)-based model is proposed to estimate

the shear strength of steel girders with a trapezoidal corrugated web, and under a concentrated load. 210 test results from

previous published research were collected into a database according to relevant test specimen parameters in order to feed the

simulated ANNs. Seven (geometrical and material) parameters were identified as input variables and the ultimate shear stress

at failure was considered the output variable. The proposed ANN-based analytical model yielded maximum and mean relative

errors of 0.0% for the 210 points from the database. Moreover, still based on those points, it was illustrated that the ANN-based

model clearly outperforms the other existing analytical models, which yield mean errors larger than 13%.
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Abstract 

Corrugated webs are used to increase the shear stability of steel webs of beam-like members and to eliminate the 

need of transverse stiffeners. Previously developed formulas for predicting the shear strength of trapezoidal 

corrugated steel webs, along with the corresponding theory, are summarized. An artificial neural network (ANN)-

based model is proposed to estimate the shear strength of steel girders with a trapezoidal corrugated web, and 

under a concentrated load. 210 test results from previous published research were collected into a database 

according to relevant test specimen parameters in order to feed the simulated ANNs. Seven (geometrical and 

material) parameters were identified as input variables and the ultimate shear stress at failure was considered the 

output variable. The proposed ANN-based analytical model yielded maximum and mean relative errors of 0.0% 

for the 210 points from the database. Moreover, still based on those points, it was illustrated that the ANN-based 

model clearly outperforms the other existing analytical models, which yield mean errors larger than 13%. 

 

Keywords: shear strength; corrugated webs; trapezoidal corrugation; steel girders; artificial neural networks; 

analytical model 

1. Introduction 

Corrugated steel plates without additional stiffeners are characterized by high shear 

buckling strength and out-of-plane flexural stiffness, having been widely used in structural 

engineering applications, such as large span roof, steel plate shear walls, and bridge girders 

(Wu et al. 2006, He et al. 2012, Emami et al. 2013, Jiang et al. 2015). The concept of replacing 
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flat webs with corrugated webs in bridge structures was first proposed in France at 1986, then 

successfully applied worldwide in the past 30 years (Combaut 1988, Kondo et al. 1994). 

Typically, the corrugations in the web are trapezoidal, but forms like sinusoidal, triangular, and 

rectangular have also been considered. Corrugations are used to increase the shear stability of 

webs in beam-like members, thus eliminating the need of transverse stiffeners. This paper 

focuses on the shear strength of steel webs with trapezoidal corrugations, a topic that has been 

extensively studied since the end of 20th century, covering both buckling and plasticity 

phenomena (e.g., Bergfelt & Leiva-Aravena, 1984, Leiva-Aravena & Edlund 1987, Johnson & 

Cafolla 1997, Metwally 1998, Sayed-Ahmed 2001, 2007, Abbas 2003). Shimada (1965) was 

the first to study the shear strength of steel girders made of folded-plate webs. Easley and 

McFarland (1969) proposed the global shear buckling equation of corrugated webs by treating 

them as flat and orthotropic. Lindner & Aschinger (1988) carried out experimental tests to 

assess the shear strength of trapezoidal corrugated steel webs, and suggested using 70% of the 

elastic shear buckling stress as the nominal strength for design purposes. Luo & Edlund (1994, 

1996) analysed the buckling of trapezoidal corrugated panels under in-plane loading by spline 

finite strip and finite element (FE) methods. The influence on the elastic buckling load of 

various parameters, such as geometry, loading patterns and boundary conditions, was assessed. 

Elgaaly et al. (1996) presented experimental and analytical results for steel beams with 

trapezoidal corrugated webs loaded predominantly in shear, and proposed bucking formulas 

based on (i) the local deformation of the corrugation folds modelled as isotropic flat plates, or 

(ii) the global deformation of the entire web panel modelled as an orthotropic plate. Metwally 
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(1998) investigated the behavior of steel girders with trapezoidal corrugated webs, and 

proposed a formula for predicting their nominal shear strength. Yamazaki (2001) proposed 

formulae for the computation of the buckling strength of corrugated webs, based on results 

from 6 full-scale models of steel bridge girder webs. Driver et al. (2006) tested full-scale 

corrugated web girders made of HPS 485W steel, assessed the effect of web initial geometric 

imperfections through measurements of the out-of-plane displacements, and proposed a lower 

bound design equation that accounts for both local and global buckling of the web in the elastic 

and inelastic domains. Watanabe et al. (2007) presented test results for the shear capacity of 

steel girders using four different trapezoidal corrugation shapes. Yi et al. (2008) studied the 

nature of the interactive shear buckling of corrugated webs, and concluded that the first order 

interactive shear buckling equation not accounting for material inelasticity provides a good 

estimation of the shear strength of corrugated steel webs by comparison with 15 tests and finite 

element analysis (FEA) results. Moon et al. (2009) presented 3 test results, described the shear 

strength formula previously presented by Yi et al. (2008), and compared the proposed formula 

and several other formulas with results from 17 tests. Sause & Braxtan (2011) summarized 

previously developed formulas for predicting the shear strength of trapezoidal corrugated steel 

webs, along with the corresponding theory, and proposed a novel formula. Nie et al. (2013) 

conducted an experimental and analytical study to investigate the shear strength of trapezoidal 

corrugated steel webs. The experimental program involved testing eight H-shaped steel girders 

with trapezoidal webs. Hassanein and Kharoob (2013a, b) carried out geometrically and 

materially nonlinear imperfect analyses (GMNIA) of full-scale bridge girders with corrugated 
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steel webs failing by shear, and found that when the ratio of flange’s thickness to corrugated 

web’s thickness was greater than 3, the boundary conditions between flange and web were 

approximately fixed; a formula for computing the interactive shear buckling of corrugated 

webs under fixed boundary conditions was proposed. Leblouba et al. (2017a, b) conducted 

laboratory tests on a series of corrugated steel web beams to investigate their shear behaviors; 

three typical failure modes were observed and the failure mechanisms on the post-buckling 

phase were assessed; besides, five analytical models for the estimation of the critical shear 

buckling stress based on FE analysis results were proposed and validated against test data.  

Despite all the research done on the shear behavior of steel members with corrugated webs, 

design codes or guidelines, with the Eurocode (2005) and JSCE (1998) as exceptions, are still 

lacking specifications for this type of structural elements (Papangelis et al. 2017). Moreover, 

there are still many uncertainties and discrepancies associated with test data and proposed 

models due to many factors, including geometric imperfections of the web, material properties, 

shear bucking modes, and inconsistencies between the assumed test conditions and the 

theoretical models. In order to effectively (accurately and efficiently) estimate the shear 

capacity of corrugated web steel girders, this paper proposes the use of artificial neural 

networks (also referred in this manuscript as ANN or neural nets), a popular machine learning 

technique. Machine learning, one of the six disciplines of Artificial Intelligence (AI) without 

which the task of having machines acting humanly could not be accomplished, allows us to 

‘teach’ computers how to perform tasks by providing examples of how they should be done 

(Hertzmann and Fleet 2012). When there is abundant data (also called examples or patterns) 
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explaining a certain phenomenon, but its theory richness is poor, machine learning can be a 

perfect tool; as such, its application to the problem of shear in corrugated steel web is suitable 

and timely. The artificial neural network is the (i) oldest (McCulloch and Pitts 1943) and (ii) 

most powerful (Hern 2016) technique of machine learning. ANNs also lead the number of 

practical applications, virtually covering any field of knowledge (Wilamowski and Irwin 2011, 

Prieto et al. 2016). In its most general form, an ANN is a mathematical model designed to 

perform a particular task, based in the way the human brain processes information, i.e. with the 

help of its processing units (the neurons). ANNs have been employed to perform several types 

of real-world basic tasks. Concerning functional approximation, ANN-based solutions are 

frequently more accurate than those provided by traditional approaches, such as multi-variate 

nonlinear regression, besides not requiring a good knowledge of the function shape being 

modelled (Flood 2008). The proposed ANN was designed based on 210 experimental results 

available to date in the literature (see section 2). The focus of this study was not to understand 

the mechanics underlying the shear behavior of corrugated steel webs, but parametric studies 

by means of accurate and robust ANN-based models make it possible to evaluate and improve 

existing mechanical models. 

.  

2. Data Gathering 

Many shear strength tests of I-shaped beams and girders with trapezoidal corrugated webs 

have been conducted. The 210-point dataset (available in Developer 2018a) used to feed the 
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ANN software employed in this work, was assembled from the following experimental results: 

Lindner & Aschinge (1988), Elgaaly et al. (1996), Peil (1998), Yamazaki (2001), Sause et al. 

(2003), Abbas (2003), Sause and Clarke (2003),  Gil et al. (2005), Watanabe et al. (2007), Moon 

et al. (2009), Sause & Braxtan (2011), He (2011), Nie et al.(2013), Leblouba et al. (2017 a,b).  

Seven independent variables were adopted as inputs in ANN simulations, as described and 

illustrated in Table 1 and Fig. 1, respectively. In Fig.1(a), a simply supported girder with 

corrugated steel web (height hw) is subjected to a concentrated load (Q) distanced a (shear span) 

from the left support, until (web) shear failure occurs. Fig.1(b) depicts details of the corrugated 

web mid surface (top-view of a single “wavelength”), namely the widths of parallel and 

inclined folds (b and c, respectively), the projected width of the inclined fold (d), the 

corrugation depth (hr), and the thickness of the corrugated plate (tw). The maximum shear stress 

(assumed uniform over web’s height) when failure occurs (τe) is the target/output (dependent) 

variable considered in all assessed ANNs. Target values were either reported by the authors of 

the experimental tests or calculated as τe = Ve/ (hwtw), being Ve the maximum shear force carried 

by the test specimen.   

 

Tab. 1. Variables (and some stats on their values) considered for ANN simulations. 

Input variables ANN inputs 
Values 

min max average 

Geometry 

a (mm) shear span 1 287 4500 990 

hw (mm) web height 2 260 2005 744 

tw (mm) web thickness 3 0.1 8 1.6 

b (mm) width of the parallel fold 4 19.8 300 112 

d (mm) 
projected width of the 

inclined fold 
5 11.9 220 71.8 

hr (mm) corrugation depth 6 12 150.2 66.9 
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Material fy (MPa) steel nominal yield stress 7 171 714 377.69 

Target variable ANN output 
Values 

min max average 

Strength τe (MPa) ultimate shear stress 1 19.0 375.9 160.1 
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Fig. 1. (a) Simple supported corrugated web steel girder under concentrated load, and (b) mid surface 

profile of a single “wavelength” of the trapezoidal corrugated web. 
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3. Artificial Neural Networks 

3.1 Introduction 

The general ANN structure consists of several nodes disposed in L vertical layers (input 

layer, hidden layers, and output layer) and connected between them, as depicted in Fig. 2. 

Associated to each node in layers 2 to L, also called neuron, is a linear or nonlinear transfer 

(also called activation) function, which receives the so-called net input and transmits an output. 

All ANNs implemented in this work are called feedforward, since data presented in the input 

layer flows in the forward direction only, i.e. every node only connects to nodes belonging to 

layers located at the right-hand-side of its layer, as shown in Fig. 2. ANN’s computing power 

makes them suitable to efficiently solve small to large-scale complex problems, which can be 

attributed to their (i) massively parallel distributed structure and (ii) ability to learn and 

generalize, i.e, produce reasonably accurate outputs for inputs not used during the learning 

(also called training) phase.  

 

Fig. 2. Example of a feedforward neural network. 
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3.2 Learning 

Each connection between 2 nodes is associated to a synaptic weight (real value), which, 

together with each neuron’s bias (also a real value), are the most common types of neural net 

unknown parameters that will be determined through learning. Learning is nothing else than 

determining network unknown parameters through some algorithm in order to minimize 

network’s performance measure, typically a function of the difference between predicted and 

target (desired) outputs. When ANN learning has an iterative nature, it consists of three phases: 

(i) training, (ii) validation, and (iii) testing. From previous knowledge, examples or data points 

are selected to train the neural net, grouped in the so-called training dataset. Those examples are 

said to be ‘labelled’ or ‘unlabeled’, whether they consist of inputs paired with their targets, or 

just of the inputs themselves – learning is called supervised (e.g., functional approximation, 

classification) or unsupervised (e.g., clustering), whether data used is labelled or unlabeled, 

respectively. During an iterative learning, while the training dataset is used to tune network 

unknowns, a process of cross-validation takes place by using a set of data completely distinct 

from the training counterpart (the validation dataset), so that the generalization performance of 

the network can be attested. Once ‘optimum’ network parameters are determined, typically 

associated to a minimum of the validation performance curve (called early stop – see Fig. 3), 

many authors still perform a final assessment of model’s accuracy, by presenting to it a third 

fully distinct dataset called ‘testing’. Heuristics suggests that early stopping avoids overfitting, 

i.e. the loss of ANN’s generalization ability. One of the causes of overfitting might be learning 
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too many input-target examples suffering from data noise, since the network might learn some 

of its features, which do not belong to the underlying function being modelled (Haykin 2009). 

 

Fig. 3. Cross-validation - assessing network’s generalization ability. 

 

3.3 Implemented ANN features 

The ‘behavior’ of any ANN depends on many ‘features’, having been implemented 15 ANN 

features in this work (including data pre/post processing ones). For those features, it is important 

to bear in mind that no ANN guarantees good approximations via extrapolation (either in functional 

approximation or classification problems), i.e. the implemented ANNs should not be applied 

outside the input variable ranges used for network training. Since there are no objective rules 

dictating which method per feature guarantees the best network performance for a specific 

problem, an extensive parametric analysis (composed of nine parametric sub-analyses) was carried 

out to find ‘the optimum’ net design.  A description of all methods/formulations implemented 

for each ANN feature (see Tabs. 2-4) – they are a selection from state of art literature on ANNs, 

including both traditional and promising modern techniques, can be found in previous 

published works (e.g., Abambres et al. 2018) – the reader might need to go through it to fully 
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understand the meaning of all variables reported in this manuscript. The whole work was coded 

in MATLAB (The Mathworks, Inc. 2017), making use of its neural network toolbox when dealing 

with popular learning algorithms (1-3 in Tab. 4). Each parametric sub-analysis (SA) consists of 

running all feasible combinations (also called ‘combos’) of pre-selected methods for each ANN 

feature, in order to get performance results for each designed net, thus allowing the selection of the 

best ANN according to a certain criterion. The best network in each parametric SA is the one 

exhibiting the smallest average relative error (called performance) for all learning data.  

Tab. 2. Implemented ANN features (F) 1-5. 

FEATURE 
METHOD 

F1 F2 F3 F4 F5 

Qualitative 
Var Represent 

Dimensional 
Analysis 

Input Dimensionality 
Reduction 

% 
Train-Valid-Test 

Input 
Normalization 

1 Boolean Vectors Yes Linear Correlation 80-10-10 Linear Max Abs 

2 Eq Spaced in ]0,1] No Auto-Encoder 70-15-15 Linear [0, 1] 

3 - - - 60-20-20 Linear [-1, 1] 

4 - - Ortho Rand Proj 50-25-25 Nonlinear 

5 - - Sparse Rand Proj - Lin Mean Std 

6 - - No - No 

 

Tab. 3. Implemented ANN features (F) 6-10. 

FEATURE 
METHOD 

F6 F7 F8 F9 F10 

Output  
Transfer 

Output  
Normalization 

Net  
Architecture 

Hidden  
Layers 

Connectivity 

1 Logistic Lin [a, b] = 0.7[φmin, φmax] MLPN 1 HL Adjacent Layers 

2 - Lin [a, b] = 0.6[φmin, φmax] RBFN 2 HL Adj Layers + In-Out 

3 Hyperbolic Tang Lin [a, b] = 0.5[φmin, φmax] - 3 HL Fully-Connected 

4 - Linear Mean Std - - - 

5 Bilinear No - - - 

6 Compet - - - - 

7 Identity - - - - 
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Tab. 4. Implemented ANN features (F) 11-15. 

FEATURE 
METHOD 

F11 F12 F13 F14 F15 

Hidden  
Transfer 

Parameter  
Initialization 

Learning 
Algorithm 

Performance 
Improvement 

Training  
Mode 

1 Logistic Midpoint (W) + Rands (b) BP NNC Batch 

2 Identity-Logistic Rands BPA - Mini-Batch 

3 Hyperbolic Tang Randnc (W) + Rands (b) LM - Online 

4 Bipolar Randnr (W) + Rands (b) ELM - - 

5 Bilinear Randsmall mb ELM - - 

6 Positive Sat Linear Rand [-Δ, Δ] I-ELM - - 

7 Sinusoid SVD CI-ELM - - 

8 Thin-Plate Spline MB SVD - - - 

9 Gaussian - - - - 

10 Multiquadratic - - - - 

11 Radbas - - - - 

 

3.4 Network Performance Assessment 

Several types of results were computed to assess network outputs, namely (i) maximum 

error, (ii) % errors greater than 3%, and (iii) performance, which are defined next. All 

abovementioned errors are relative errors (expressed in %) based on the following definition, 

concerning a single output variable and data pattern, 

100
qp qLp

qp

qp

d y

d
e

−
=

                               ,   (1) 

where (i) dqp is the qth desired (or target) output when pattern p within iteration i (p=1,…, Pi) 

is presented to the network, and (ii) yqLp is net’s qth output for the same data pattern. Moreover, 

denominator in eq. (1) is replaced by 1 whenever |dqp| < 0.05 – dqp in the nominator keeps its 
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real value.  This exception to eq. (1) aims to reduce the apparent negative effect of large relative 

errors associated to target values close to zero. Even so, this trick may still lead to (relatively) 

large solution errors while groundbreaking results are depicted as regression plots (target vs. 

predicted outputs).     

 

3.4.1 Maximum Error 

This variable measures the maximum relative error, as defined by eq. (1), among all output 

variables and learning patterns. 

 

3.4.2 Percentage of Errors > 3% 

This variable measures the percentage of relative errors, as defined by eq. (1), among all 

output variables and learning patterns, that are greater than 3%. 

 

3.4.3 Performance 

In functional approximation problems, network performance is defined as the average 

relative error, as defined in eq. (1), among all output variables and data patterns being evaluated 

(e.g., training, all data).  

3.5 Software Validation  

Several benchmark datasets/functions were used to validate the developed software, involving 

low- to high-dimensional problems and small to large volumes of data. Due to paper length limit, 

validation results are not presented herein but they were made public online (Researcher 2018b).  
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3.6 Parametric Analysis Results  

Aiming to reduce the computing time by cutting in the number of combos to be run – note 

that all features combined lead to hundreds of millions of combos, the whole parametric 

simulation was divided into nine parametric SAs, where in each one feature 7 only takes a 

single value. This measure aims to make the performance ranking of all combos within each 

‘small’ analysis more ‘reliable’, since results used for comparison are based on target and 

output datasets as used in ANN training and yielded by the designed network, respectively 

(they are free of any postprocessing that eliminates output normalization effects on relative 

error values). Whereas (i) the 1st and 2nd SAs aimed to select the best methods from features 1, 

2, 5, 8 and 13 (all combined), while adopting a single popular method for each of the remaining 

features (F3: 6, F4: 2, F6: {1 or 7}, F7: 1, F9: 1, F10: 1, F11: {3, 9 or 11}, F12: 2, F14: 1, F15: 1 – 

see Tabs. 2-4) – SA 1 involved learning algorithms 1-3 and SA 2 involved the ELM-based 

counterpart, (ii) the 3rd – 7th SAs combined all possible methods from features 3, 4, 6 and 7, 

and concerning all other features, adopted the methods integrating the best combination from 

the aforementioned first SA, (iii) the 8th SA combined all possible methods from features 11, 

12 and 14, and concerning all other features, adopted the methods integrating the best 

combination (results compared after postprocessing) among the previous five sub-analyses, 

and lastly (iv) the 9th SA combined all possible methods from features 9, 10 and 15, and 

concerning all other features, adopted the methods integrating the best combination from the 

previous analysis. Summing up the ANN feature combinations for all parametric SAs, a total 

of 475 combos were run for this work.   
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ANN feature methods used in the best combo from each of the abovementioned nine 

parametric sub-analyses, are specified in Tab. 5 (the numbers represent the method number as 

in Tabs 2-4). Tab. 6 shows the corresponding relevant results for those combos, namely (i) 

maximum error, (ii) % errors > 3%, (iii) performance (all described in section 3, and evaluated 

for all learning data), (iv) total number of hidden nodes in the model, and (v) average computing 

time per example (including data pre- and post-processing). All results shown in Tab. 6 (i) were 

obtained for single ANNs only, since no NNC networks yielded better results for this particular 

problem, and (ii) are based on target and output datasets computed in their original format, i.e. 

free of any transformations due to output normalization and/or dimensional analysis.  The 

microprocessors used in this work have the following features: OS: Win10Home 64bits, 

RAMs: 48 GB, Local Disk Memory: 1 TB, CPUs: Intel® Core™ i7 8700K @ 3.70-4.70 GHz. 

 

Tab. 5. ANN feature (F) methods used in the best combo from each parametric sub-analysis (SA). 

SA F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 

1 1 2 6 2 5 1 1 1 1 1 3 2 3 1 3 

2 1 2 6 2 2 7 1 2 1 1 9 2 5 1 3 

3 1 2 6 3 5 1 1 1 1 1 3 2 3 1 3 

4 1 2 1 1 5 1 2 1 1 1 3 2 3 1 3 

5 1 2 1 2 5 1 3 1 1 1 3 2 3 1 3 

6 1 2 6 4 5 7 4 1 1 1 3 2 3 1 3 

7 1 2 6 3 5 5 5 1 1 1 3 2 3 1 3 

8 1 2 6 3 5 5 5 1 1 1 3 5 3 1 3 

9 1 2 6 3 5 5 5 1 2 3 3 5 3 1 3 
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Tab. 6. Performance results for the best design from each parametric sub-analysis. 

SA 

ANN 

Max Error 
(%) 

Performance 
All Data                                   

(%) 

Errors > 3% 
(%) 

Total Hidden 
Nodes 

Running Time / 
Data Point 

(s) 

1 0.7 0.0 0.0 28 1.93E-04 

2 265.3 15.6 72.4 90 9.80E-05 

3 0.8 0.0 0.0 28 1.51E-04 

4 0.9 0.0 0.0 28 1.29E-04 

5 0.8 0.0 0.0 28 1.44E-04 

6 0.1 0.0 0.0 28 1.01E-04 

7 26.6 1.5 14.3 28 1.26E-04 

8 17.0 1.2 12.4 28 1.41E-04 

9 0.0 0.0 0.0 28 1.35E-04 

 

3.7 Proposed ANN-Based Model 

The proposed model is the one, among the best ones from all parametric SAs, exhibiting the 

lowest maximum error (SA 9). That model is characterized by the ANN feature methods {1, 2, 6, 

3, 5, 5, 5, 1, 2, 3, 3, 5, 3, 1, 3} in Tabs. 2-4. Aiming to allow implementation of this model by any 

user, all variables/equations required for (i) data preprocessing, (ii) ANN simulation, and (iii) data 

postprocessing, are presented in 3.7.1-3.7.3, respectively. The proposed model is a single MLPN 

with 4 layers and a distribution of nodes/layer of 7-14-14-1. Concerning connectivity, the network 

is fully-connected, and the hidden and output transfer functions are all Hyperbolic Tangent and 

Bilinear, respectively. The network was trained using the Levenberg-Marquardt algorithm (978 

epochs). After design, the average network computing time concerning the presentation of a single 

example (including data pre/postprocessing) is 1.35E-04 s – Fig. 4 depicts a simplified scheme of 

some of network key features. Lastly, all relevant performance results concerning the proposed 
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ANN are illustrated in 3.7.4. The obtained ANN solution for every data point can be found in 

Developer (2018a). 

 

Fig. 4 Proposed 7-14-14-1 fully-connected MLPN – simplified scheme. 

 

 

It is worth recalling that, in this manuscript, whenever a vector is added to a matrix, it means 

the former is to be added to all columns of the latter (valid in MATLAB). 

 

3.7.1 Input Data Preprocessing 

For future use of the proposed ANN to simulate new data Y1,sim (7 x Psim matrix), concerning 

Psim patterns, the same data preprocessing (if any) performed before training must be applied 

to the input dataset. That preprocessing is defined by the methods used for ANN features 2, 3 

and 5 (respectively 2, 6 and 5 – see Tab. 2), which should be applied after all (eventual) 

qualitative variables in the input dataset are converted to numerical (using feature 1’s method). 

Next, the necessary preprocessing to be applied to Y1,sim, concerning features 2, 3 and 5, is fully 

described.  
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Dimensional Analysis and Dimensionality Reduction 

Since dimensional analysis (d.a.) and dimensionality reduction (d.r.) were not carried out, 

one has 

   1, 1, 1,. . . .
   

after after

sim sim simd r d a
Y Y Y= =  

.   (2)

 

 

Input Normalization 

After input normalization, the new input dataset {𝑌1,𝑠𝑖𝑚}𝑛
𝑎𝑓𝑡𝑒𝑟

 is defined as function of the 

previously determined {𝑌1,𝑠𝑖𝑚}𝑑.𝑟
𝑎𝑓𝑡𝑒𝑟

, and they have the same size, reading 

 

   ( )1, 1, .

990.400346190476 668.905673826269

744.012857142857 396.481809107959

1.55576190476190 1.28849686190348

111.986666666667 71.5898412598522INP

71.8395776190476

 =  - (:,1)  ./ (:,INP INP 2)
after after

sim simn d r
Y Y

=      

52.3896551822015

66.8513071428572 47.7496285409415

377.690000000000 133.759804523706

 
 
 
 
 
 
 
 
 
 

 

,  (3) 

where one recalls that operator ‘./’ divides row i in the numerator by INP(i, 2).  

 

3.7.2 ANN-Based Analytical Model 

Once determined the preprocessed input dataset {Y1,sim}n
after(7 x Psim matrix), the next step is 

to present it to the proposed ANN to obtain the predicted output dataset {Y4,sim}n
after (1 x Psim 
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vector), which will be given in the same preprocessed format of the target dataset used in 

learning. In order to convert the predicted outputs to their ‘original format’ (i.e., without any 

transformation due to normalization or dimensional analysis – the only transformation visible 

will be the (eventual) qualitative variables written in their numeric representation), some 

postprocessing is needed, as described in detail in 3.7.3. Next, the mathematical representation 

of the proposed ANN is given, so that any user can implement it to determine {Y4,sim}n
after

 , thus 

eliminating all rumors that ANNs are ‘black boxes’. 

 ( )
 ( )

   ( )

1 2

3 1 3 2 3 2

1 4 2 4 2 3 4

1,

1,

4, 1, 3

2 2 2

3 3

4 4

afterT

n

afterT T

n

after afterT T T

sim

sim

sim simn n

Y

Y

Y

Y W b

Y W W Y

WY

b

W Y W Y b







−

− −

− − −

= +

= + +

= + + +

 

,  (4) 

where 

4 4

2 3 ( )

, 0
( )

0, 0

s s

s s

e e
s

e e

s s
s

s



 

 
−

−

−
= = =

+


= = 



 

.  (5) 

Arrays Wj-s and bs are stored online in Developer (2018b), aiming to avoid an overlong article 

and ease model’s implementation by any interested reader. 
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3.7.3 Output Data Postprocessing 

In order to transform the output dataset obtained by the proposed ANN, {Y4,sim}n
after (1 x Psim 

vector),  to its original format (Y4,sim), i.e. without the effects of dimensional analysis and/or output 

normalization (possibly) taken in target dataset preprocessing prior training, one has 

 4, 4, = sim s

a e

im

ft r

n
Y Y  

,   (6) 

since no output normalization nor dimensional analysis were carried out. 

3.7.4 Performance Results 

Finally, results yielded by the proposed ANN, in terms of performance variables defined in 

sub-section 3.4, are presented in this section in the form of several graphs: (i) a regression plot 

(Fig. 5) where network target and output data are plotted, for each data point, as x- and y- 

coordinates respectively – a measure of linear correlation is given by the Pearson Correlation 

Coefficient (R); (ii) a performance plot (Fig. 6), where performance (average error) values are 

displayed for several learning datasets; and (iii) an error plot (Fig. 7), where values concern all 

data (iii1) maximum error and (iii2) % of errors greater than 3%. 
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Fig. 5. Regression plot for the proposed ANN (see output variable in Fig. 1). 
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Fig. 6. Performance plot (mean errors) for the proposed ANN. 
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Fig. 7. Error plot for the proposed ANN. 

4. ANN-based vs. Existing Models 

Shear strength of steel I-girders is controlled by buckling and/or shear yielding of the 

corrugated web. Shear buckling of corrugated webs is often classified as local buckling, global 

buckling, and interactive buckling, as exemplified in Fig.8 via the FEA-based displacement 

contours for those elastic buckling modes. Global buckling involves multiple folds and the 

buckled shape extends diagonally over the height of the web. Local buckling is controlled by 

deformations within a single “fold” of the web. The interactive shear buckling mode is 

attributed to the interaction between local and global shear buckling modes. 
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(a) Local buckling 

 
(b) Interactive buckling 

 

 
(c) Global buckling 

 
Fig.8. Shear buckling modes via FEA. 

 
 
 

4.1 Local shear buckling 

The local elastic shear buckling stress of a corrugated web can be predicted using classic 
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plate buckling theory (Timoshenko and Gere 1961). A single parallel or inclined fold is 

assumed to be supported by the adjacent folds and steel flanges. The corresponding local elastic 

shear buckling stress, τe
cr,L is 

( )

22

, 212 1

e w
cr L L

tE
k

w






 
=  

−  
 

,   (7)

 

 

where (i) w is the maximum fold width, max(b, c), and (ii) kL is the local shear buckling 

coefficient, which depends on the boundary conditions and the fold aspect ratio – kL lies 

between 5.34 (assuming simply supported edges) and 8.98 (assuming fixed edges). For 

practical design purposes, kL=5.34 is recommend by Moon et al. (2009). 

 

4.2 Global shear buckling 

An expression for the global elastic shear buckling stress of a corrugated steel plate (τe
cr,G) 

was developed by Easley and McFarland (1969) using orthotropic plate theory, reading 

3/4 1/4

,G 2

x ye

cr G

w w

D D
k

t h
 =

                                                 ,   (8) 

being (i) kG, the global shear buckling coefficient, and (ii) Dx and Dy, the bending stiffnesses 

per unit length of the corrugated web with respect to its central principal axes x and y, 

respectively. Easley (1975) proposed that kG varies between 36 (assuming the web pin-ended 

by the flanges) and 68.4 (assuming the web fix-ended by the flanges). Elgaaly et al (1996) 
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suggested that kG should be taken as 31.6 for simply supported boundaries and 59.2 for the 

clamped counterpart. Dx and Dy for trapezoidal corrugated webs can be determined as: 

x
x

r

EI
D

b h
=

+
                                 (9) 

3

12

w
y

Et b d
D

b c

+
=

+                    ,   (10) 

where Ix is the moment of inertia about the x-axis, 
2 32 ( / 2) / (6sin )x w r r wI bt h h t = + . 

4.3 Interactive shear buckling 

The interactive shear buckling mode is attributed to the interaction between local and global 

modes and governs shear buckling strength. Lindner & Aschinger (1988) first proposed the 

corresponding elastic shear buckling stress formula (τe
cr,I,)  

( ) ( )

, ,

. 1/

, ,

=
n n

e e

cr L cr Ge

cr I n

e e

cr G cr L

 


 



 
+ 

                         ,   (11) 

being exponent n an integer – several researchers have proposed distinct values (Yi et al. 2008, 

Sause & Braxtan 2011, Hassanein & Kharoob 2013a, Leblouba et al. 2017b). 

 

4.4 Shear strength 

Previous studies (Yi et al. 2008, Sause & Braxtan 2011) have shown that shear strength of 

corrugated steel webs was generally controlled by interactive shear buckling. In this context, 
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the shear buckling non-dimensional slenderness (λI,n) of a corrugated steel web is defined as 

,/ e

I y cr I  =
                                          ,   (12) 

where τy is the tangential yield stress (typically fy / √3, being fy the normal yield stress). 

Driver et al. (2006) proposed eq. (11) to calculate the shear capacity of corrugated steel webs 

for all types of shear failures, reading (n=2) 

( )

( ) ( )

2

, ,

2 2

, ,

=

e e

cr L cr G

D
e e

cr G cr L

 


 



+
                                           . (13) 

In case any elastic shear buckling stress (τe
cr, G or τe

cr, L) exceeds 80% of the shear yield stress τy, its 

value in eq. (13) should be replaced by an inelastic counterpart given by (Elgaaly et al. 1996)  

0.8in e

cr y cr y   = 
                                         .   (14) 

El-Metwally (1998) proposed the following equation to calculate the shear capacity of 

corrugated steel webs (using n=2 in eq. (11)) 

( )( )( )
1/2

4
1/ 1EL y I  =  +

                                   
 .   (15) 

Sauce and Braxtan (2011) summarized a large number of previous experimental data, and 

selected 22 groups of results to fit eq. (16), for the prediction of the shear capacity of corrugated 

steel webs (using n=3 in eq. (11)) 

( )( )( )
1/3

6

auce 1/ 2S y I  =  +
                             

.   (16) 

Leblouba et al. (2017a), based on 113 test results collected from the literature, and 12 tests 
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carried out by themselves, developed the following analytical model (based on the hyperbolic 

Richards equation) to calculate the shear strength of corrugated steel webs (using n=4 in eq. (11)) 

( )( )( )
1.15

1.6

Leblouba 1/ /1.58 1y I  =  +                              .   (17) 

Fig.9 compares the shear strengths yielded by the analytical models presented before (τD, 

τEL, τSauce, τLeblouba, τANN) to those obtained experimentally (τe), for the 210 steel girders assessed 

in this work (dataset in Developer 2018a). The average ratios τD/τe, τEL/τe, τSauce/τe, τLeblouba/τe 

are 0.78, 0.87, 0.82 and 0.83, with standard deviations of 0.13, 0.16, 0.13 and 0.11, respectively. 

It can be found that all those models underestimate the shear strength of trapezoidal corrugated 

web girders. For comparison, the average value of τANN /τe is 1.00, with a standard deviation of 

0.00. The major improvement of the proposed ANN-based analytical model (see sub-section 

3.7), as compared to the existing calculation methods, is quite clear in Fig. 9, where x-axis 

shows the predicted shear capacity τmodel (τANN, τD, τEL, τSauce, τLeblouba) and the y-axis shows the 

experimental counterpart τe.  
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Fig. 9. Comparison between tested and predicted shear strength for several proposed models. 

 

5. Discussion 

Regardless the high quality of the predictions yielded by the proposed model, the reader 

should not blindly accept it as accurate for any other instances falling inside the input domain 

of the design dataset. Any analytical approximation model must undergo extensive validation 

before it can be taken as reliable (the more inputs, the larger the validation process). Models 

proposed meanwhile are part of a learning process towards excellence. 

 

6. Conclusions 

This paper describes how artificial neural networks (ANN) can be used to predict the shear 

capacity of steel girders with a trapezoidal corrugated web, and proposes an analytical model 

for that purpose. The developed model was designed from a 210-point database of test results 

available in the literature. Seven governing (geometrical and material) parameters were 

identified as input variables, and the ultimate shear stress (assumed uniform along web’s 
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height) at failure was considered as the target/output variable for the ANN simulations. The 

proposed ANN-based analytical model yielded maximum and mean relative errors of 0.0% 

concerning all the 210 test results previously collected. Fig. 9 shows that the ANN-based 

approach clearly outperforms the existing calculation models assessed in this work, for the 

dataset considered (made available at Developer 2018a) – latter models exhibit mean errors 

greater than 13%.  

The focus of this study was not to assess the mechanics underlying the behavior of 

corrugated web steel girders, but parametric studies by means of accurate and robust ANN-

based models make it possible to evaluate and improve existing mechanical models.  
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