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Abstract
In distributed reinforcement learning, it is common
to exchange the experience memory of each agent
and thereby collectively train their local models.
The experience memory, however, contains all the
preceding state observations and their correspond-
ing policies of the host agent, which may violate
the privacy of the agent. To avoid this problem,
in this work we propose a privacy-preserving dis-
tributed reinforcement learning (RL) framework,
termed federated reinforcement distillation (FRD).
The key idea is to exchange a proxy experience
memory comprising a pre-arranged set of states and
time-averaged policies, thereby preserving the pri-
vacy of actual experiences. Based on an advantage
actor-critic RL architecture, we numerically evalu-
ate the effectiveness of FRD, and investigate how
the performance of FRD is affected by the proxy
memory structure and different memory exchang-
ing rules.

1 Introduction
Recent advances in mobile computing power has led to the
emergence of intelligent autonomous systems [Park et al.,
2018, Shiri et al., 2019], ranging from driverless cars and
drones to self-controlled robots in smart factories. Each
agent therein interacts with its environment, and carries out
decision-making in real time. Distributed deep reinforcement
learning (RL) is a compelling framework for such applica-
tions, in which multiple agents collectively train their local
neural networks (NNs). As illustrated in Figure 1(a), this is
often done by: (i) uploading every local experience memory
to a server, (ii) constructing a global experience memory at
the server, and (iii) downloading and replaying the global ex-
perience memory at each agent to train its local NN [Rusu et
al., 2016]. However, a local experience memory contains all
local state observations and the corresponding policies (i.e.,
action logits), and exchanging this may violate the privacy of
its host agent.

To obviate this problem, we propose a distributed RL
framework based on a proxy experience memory, which is
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Figure 1: Comparison between (a) a baseline distributed reinforce-
ment learning (RL) framework, policy distillation with experience
memory [Rusu et al., 2016], and (b) the proposed federated rein-
forcement distillation (FRD) with proxy experience memory.

termed federated reinforcement distillation (FRD) and de-
picted in Figure 1(b). In contrast to conventional experience
memories containing actual states and policies, a local proxy
experience memory at each agent consists of a set of pre-
arranged proxy states and locally averaged policies. In this
memory structure, the actual states are mapped into the proxy
states, e.g., based on the nearest value rule, and the actual
policies are averaged over time. Exchanging the local proxy
memories of agents thereby preserves their privacy by hiding
each agent’s actual experiences from the others.

In this work, we consider actor-critic RL architecture com-
prising two separate NNs, i.e., policy (actor) and and value
(critic) NNs, and study how to construct the local and global
proxy memories, how often the proxy memories are ex-
changed, and finally how to update each agent’s local NN
using the global proxy memory.



Related Works. Distributed deep RL has been investigated
as policy distillation [Rusu et al., 2016] and advantage actor-
critic (A2C) [Mnih et al., 2016] algorithms, under policy NN
and actor-critic based RL architectures, respectively. Both
algorithms rely on exchanging actual experience memories.
For classification tasks, distributed machine learning via ex-
changing NN outputs has been proposed as federated distilla-
tion (FD) in our preceding work [Jeong et al., 2018]. In FD,
the outputs are quantized based on the classification labels,
for maximizing communication efficiency. FRD leverage and
extend this idea to distributed RL scenarios, in the context of
its preserving privacy, rather than improving communication
efficiency. It is noted that federated learning [McMahan et
al., 2017] is another promising enabler for private distributed
RL by exchanging NN model parameters, which has been
recently studied as federated reinforcement learning (FRL)
in [Zhuo et al., 2019]. In view of this, we conclude this paper
by comparing FRL and our proposed FRD in the last section.

2 Background: Distributed Reinforcement
Learning with Experience Memory

We consider the episodic, distcrete state and action space
Markov decision process, with state space S, action space A
and reward at each time slot denoted by rt ∈ R. The policy
is stochastic and denoted by πθ : S → P(A), where P(A)
is the set of probability measures on A. The parameters of
local model are denoted by θ ∈ Rn, and πθ(a|s) is the con-
ditional probability of a when the state is s. The reinforce-
ment learning (RL) interacts with the environment without
any prior knowledge about the environment.

In policy distillation presented in [Rusu et al., 2016], the
agents i = 1, · · · , U construct the dataset named experience
memory for training local model θi. The experience memory
M = {(sk, π(ak|sk))}Nk=0 consists of the state sk and the
policy vector π(ak|sk) tuple, where a = (a1, · · · , a|A|) is
action vector. As illustrated in Figure 1(a), the experience
memroyM is collected with following procedures.

• Each agent records the local experience memoryMi =
{(sk, πθi(ak|sk))}

Ni

k=0 tuple during E episodes. The
size of local experience replay Ni is identical with the
learning steps. In this paper, we assume that all the
agents wait for the last agent completing the episode.

• After all the agents complete the E episodes, the server
collectsMi of each agent.

• Then, the server constructs a global experience memory
M = {(sk, π(ak|sk))}Nk=0, where N =

∑U
i=1Ni and

π denotes the arbitrary policy of agents.

After the global experience memoryM is constructed, the
agents update their local model θi with following procedures.

• To reflect the knowledge of other agents, the agents
download the global experience memory M from the
server.

• Similar to the conventional classification setting, each
agent i fits the local model θi minimizing the cross en-
tropy loss Li(M, θi) between the policy of local model

πθi(ak|sk) and the policy π of global experience mem-
oriesM, where

Li(M, θi) = −
N∑
k=1

π(ak|sk) log (πθi(ak|sk)) . (1)

Unfortunately, direct exchaging the local experience mem-
ories of agents has the privacy leakage issues. The server can
get the all information about the state visited by the host agent
and the corresponding policy of the host agent. To utilize the
policy distillation, privacy leakage is inevitable.

3 Federated Reinforcement Distillation (FRD)
with Proxy Experience Memory

In this section, we introduce the novel federated re-
inforcement distillation (FRD) method that provides
communication-efficient privacy-preserving federated re-
inforcement distillation. The agents utilizing the FRD
construct the novel dataset named proxy experience memory
MP = {(spk, πp (ak|s

p
k)}N

P

k=0, where the sp denotes the
proxy state and the πp (ak|spk) denotes average policy. The
proxy state is representative state of state cluster Cj ∈ C.
Note that the union of proxy state cluster sets is the state
space S, i.e., S =

⋃|C|
j=1 Cj and none of the state cluster has

the joint set, i.e., Ci ∩ Cj = ∅, i 6= j.
As illustrated in Figure 1(b), the proxy experience memory

MP is formed with following procedures.

• Each agent categorizes the policy πθi(a|s) along the
states s included in the proxy state cluster, i.e., s ∈ Cj .

• After all the agents complete the E episodes, each
agent calculates local average policy πpθi (ak|s

p
k) by av-

eraging the policy πθi(a|s) in the proxy state cluster
Cj and make local proxy experience memory MP

i =

{(spk, π
p
θi
(ak|spk)}

NP
i

k=0. The size of local proxy experi-
ence memory NP

i is identical with the number of proxy
state cluster that visited by the agent. Note that the
πpθi (ak|s

p
k) is not generated by the local model of agent.

• When the local proxy experience memories of every
agent is ready, the server collectsMP

i of each agent.

• Then, the server constructs the global proxy experience
memoryMP = {(spk, πp (ak|s

p
k)}N

P

k=0 by averaging the
local average policy of local proxy experience memory
along the state cluster. The size of global proxy experi-
ence memory NP is identical with the number of proxy
state cluster that visited by entire agents.

As same as the policy distillation case, the agents utilizing the
FRD update their local model θi with following procedures.

• As the distritubed RL procedure, the agents download
the global proxy experience memory MP from the
server.

• Each agent i fits the local model θi minimizing the
cross entropy loss LPi (MP , θi) between the policy of
local model πθi(ak|sk) and the global average policy



Figure 2: Performance comparison according to exchanging model.
The case of exchanging policy network is better than other cases in
terms of performance variation.

πp(spk,ak|s
p
k) of global proxy experience memoryMP ,

where

LPi (MP , θi) = −
NP∑
k=1

πp(ak|spk) log (πθi(ak|s
p
k)) .

(2)

We note that the loss is calculated with the policy pro-
duced by the local model as the input of proxy state.

As we refered above, the size of global proxy experience
memory is much smaller than that of experience memory due
to state clustering. When the memory sharing occurs through
wirelee channel, the payload size is key factor of sharing fis-
ibility. In this point of view, FRD provides communication-
efficient distributed RL framework.

Furthermore, exchanging the proxy experience memories
keeps the privacy of the agents. The server just knows about
a group of states that the agent visited and the policy of the
host agent is totally concealed due to the policy of agent is
shared in the form of averaged policy over the proxy state.

4 FRD under Actor-Critic Architectures
The advantage actor-critic (A2C) algorithm [Mnih et al.,
2016] consists of two parts, actor and critic NNs. The actor
generates the action a ∈ A according to the policy πθ and the
critic evaluates selected action how much is beneficial than
another actions with respect to gaining more expected future
reward. But the actor and the critic have no prior knowledge
of environment, the actor-critic pair have to interact with en-
vironment and learn optimal policy to getting maximum ex-
pected future reward. By adopting neural network structure,
the actor and the critic effectively learn optimal policy π∗.

The advantage function [Wang et al., 2016] is the metric
evaluating the action generated by the actor. If the value of
the advantage function is positive, it means that the selected

action is not the optimal action compare to another actions.
In other words, the The advantage function A is defined as
follows:

Aπ(st, at) =Q
π(st, at)− V π(st) (3)

=r(st, at) + Est+1∼E [V
π(st+1)]− V π(st)

≈r(st, at) + V π(st+1)− V π(st).

where Qπ(s, a) = E [rγ0 |s0 = s, a0 = a;π], the value func-
tion V π(s) = E[rγ0 |s0 = s;π], and r(st, at) is intant reward
at learning step t. As we can see in equations (3), we can
obtain the advantage function with just only value function.
As a result, the neural network of the critic approximates the
value function and estimate the advatage function in every
updating step of policy network.

Under A2C algorithm, we have to select which model to
learn using FRD framework - only one among two models or
both? As we mensioned in section 2 and 3, the policy network
forms the experience memory with the policy π. Similarly,
the value network forms the value memory that consists of
the state and corresponding value pairs. In the FRD case,
average policy is replaced by the average value.

In Figure 2, we represent the performance comparison in
each case: both, policy network, and value network. Three
cases have similar performance in terms of the number of
episodes until complete the mission. Unlike two other cases,
the case exchanging the policy network shows stable learn-
ing results, i.e., the variation of mission completion time is
smaller than two other cases. For this reason, we select the
policy network to applying FRD framework. In the rest of the
paper, we utilize FRD framework with the experience mem-
ory made by the output of policy network unless we mention.

5 Experiments
The group of the RL agents share the output of policy network
to construct the proxy experience memoryMP utilizing fed-
erated reinforcement distillation under advatage actor-critic
algorithm. In this paper, we implement the proposed feder-
ated reinforcement distillation framework in the Cartpole-v1
in OpenAI gym environment to evaluating the performance.
We evaluate the performance of propose FRD framework in
terms of the number of episodes until the group of agent com-
plete the mission. The mission of the group of agents is de-
fined as achieve the average standing duration of the pole over
10 episodes exceed the predetermined time duration. We as-
sume that the group of agents complete the mission if just
one of the agents in group completes the mission. Each agent
adopts the advantage actor-critic model for local model and
the model size of policy network presented in Table 1. Note
that the model size of the value network is identical with that
of policy network.

Before implement the federate reinforcement distillation,
pre-arranging of the state clustering is needed. The state
of Cartpole environment consists of four component, which
is position of cart, velocity of cart, angle of pole, ve-
locity of pole tip. We evenly divide the each compo-
nent with the number as S subsections. Then, we form



(a) Setting 1. (b) Setting 2. (c) Setting 3. (d) Setting 4.

(e) Setting 5. (f) Setting 6. (g) Setting 7.

Figure 3: Simulation results in Cartpole environment. The x-axis label of all graphs is the number of agents in cooperative group and the
y-axis label of all graphs is the number of episodes until the agent group completes the mission. The mission of the group of agents is achieve
the average standing duration of the pole over 10 episodes exceed the predetermined time duration. We assume that the group of agents
complete the mission if one of the agents in group completes the mission. The agents make the proxy experience memory with the output of
policy network only.

Table 1: Hyper parameters of federated reinforcement distillation.

Setting # of proxy
states (S4)

Memory exchange
period (E)

Initial learning
time (I)

# of weights per
hidden layer (n)

# of
hidden layers

1 1004 25 50 24 2
2 1004 25 50 100 2
3 1004 25 100 100 2
4 504 25 50 100 2
5 1004 10 0 24 1
6 1004 50 0 24 1
7 1004 25 125 24 1

the state cluster as the combination of divided compo-
nents. As a result, the number of state cluster |C| is iden-
tical with S4. The proxy state of each state cluster is de-
fined as the middle value of each subsection of compo-
nents. For example, the proxy state of the corresponding
state cluster Cj is sp = [0.5,−0.75, 0.75, 0.05] when Cj =
{[0, 1), [−1,−0.5), [0.5, 1), [0, 0.1)}.

We perform the simulations with various hyper parameter
settings presented in Table 1 and corresponding results are
presented in Figure 3. We investigate the impact of each hy-
per parameter in terms of the number of episodes until the
agent group complete the mission. The box in Figure 3 repre-
sents the data from 25% to 75%. The blue star represents the
average of data. The red line represents the median of data.

Impact of the Proxy State Size. In the Setting 2 and Set-

ting 4, we can observe the impact of the proxy state size on
the performance of FRD. When the multiple agents cooper-
ate, the performance of Setting 4 is better than that of Setting
2 in terms of average number and the variance of episodes.
As the number of agents is increase, the relation is reversed.
Because the policy resolution of proxy state with smaller size
is low, the knowledge of agents is blurred compare to that of
proxy state with bigger size. Nevertheless, multiple agents
case of Setting 4 has better performance though the proxy
state size is 16 times smaller than that of Setting 2. It means
that the group of agent choose the proxy state size to reducing
the payload size of exchanging information. If the agents co-
operate through wireless channel, they can select the proper
state cluster size sacrificing a bit of learning performance.

Impact of Memory Exchange Preiod. In the Case 5, the
performance of group agent is getting worse as the number
of agents is increase. Too frequent memory exchange and
local model update has no merit on increasing the number of
agents. As shwon in the Setting 6, moderate frequency of
memory exchange brings stable performance enhancement.

Impact of Initial Learning Time. If there is no initial
learning time before exchanging the experience memory, the
performance of FRD is degraded as well as unstable. In
the Setting 5, absence of initial learning time results in per-
formance degradation as the number of agents is increase.



The local model of agent is not trained enough to exchange
there proxy experience memory. Furthermore, too long ini-
tial learning time is also negative to the performance of FRD.
Because too long initial learning time may give a chance of
learning bad policy of indivisual local model of agent, the
cooperation of agents is getting worse the training of local
model of each agent. Comparing the Setting 2 and Setting 3,
the performance of the Setting 2 is better than that of the Set-
ting 3. As a result, the initial learning time should be selected
properly to achieve higher performance.

Impact of Neural Network Model Size. As we can see in
Setting 1 and Setting 2, smaller NN has better performance in
terms of the number of episodes until the group agent com-
plete the mission. Because we measure how fast the group
agent complete the mission, bigger NN has disadvantage in
terms of convergence duration. In future work, the advan-
tage of big NN compare to small NN can be evaluated in the
more complicate and score-pursuing environment like Atari
games in OpenAI gym. On the other hand, too small NN
has marginal gain about FRD. In Setting 6 and Setting 7, the
performance enhancement along increment of the number of
agents is limited in certain average value boundary.

6 Discussion and Concluding Remarks
In this paper we introduce privacy-preserving distributed re-
inforcement learning framework, termed federated reinforce-
ment distillation (FRD). The key idea is to exchange a proxy
experience memory comprising a pre-arranged set of states
and time-averaged policies. It makes possible to conceal
the actual experience and additionally has benefit of reduced
memory size. When the distributed learning is conducted in
communication-constrained situation, e.g., through wireless
channel, proposed FRD framework has advantage to existing
policy distillation.

Based on advantage actor-critic (A2C) algorithm, we eval-
uate the performance of FRD in various proxy memory struc-
ture and different memory exchanging rules. First, we inves-
tigate the impact of proxy memory structure which network
is used for FRD in A2C algorithm - policy network, value
network or both. Second, based on the first investigation,
we implement policy network based FRD and evaluate the
performance in various setting of memory exchanging rules -
when, how often, how large.

As the future work, performance comparison between the
federated learning and FRD is promising. We evaluate the
performance in simple setting when the multiple agents col-
laborate. The performance in terms of average number of
episodes until the group of agent complete the mission is
fairly equivalent. But in terms of variation, FRD has better
performance than federated learning. The performance dif-
ference is due to the amount of noise when knowlede transfer
occur. It means that the noise of FRD is less than that of
federated learning.
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