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Abstract

Abstract

Radio frequency interference (RFI) is occurring in both satellite and terrestrial communication systems. In order to mitigate

RFI efficiently, it has to be detected robustly. Toward this end, through the computation of an eigenvalue-based test statistic, an

eigenvalue-based blind RFI detector is proposed for single-input multiple-output systems that may suffer from RFI. For medium

to large interference-tonoise ratio (INR) regimes and under sample starved settings, Monte-Carlo simulations corroborate that

the proposed blind detector manifests a comparable detection performance with a generalized likelihood ratio test (GLRT)

detector fed with the knowledge of the signal of interest (SOI) channel, and a matched subspace detector fed with the knowledge

of the SOI and RFI channels. Such performance signifies the applicability of the proposed RFI detector for real-time applications.
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I. INTRODUCTION

A. Related Works

Due to out-of-band emissions by nearby transmitters and harmonics, jammers, spoofers, and

meaconers, radio frequency interference (RFI) is being increasingly common in microwave

radiometry [1], radio astronomy (RA) [2], and satellite communications (SatCom) [3], [4].

Regarding SatCom, 93% of the industrial applications suffer from interference—as reported

in [5]—and RFI is a potential threat to global navigation satellite system [6]. RFI also happens

in cognitive radio systems for imperfect spectrum sensing [7] (as also analytically implicated

through [8]); ultra-wideband communications due to the prevalent narrowband interferers [9];

and radar because of the inevitable jammers [10]. As such a widely occurring RFI must be first

detected so as to be excised efficiently, researchers have paid attention, throughout the years, to

the research field of RFI detection.

In the aforementioned regard, the state-of-the-art encompasses considerable number of RFI

detectors. Mentioning the main ones, the RFI detector in asynchronous pulse blanking [11],

kurtosis detector (KD) [12], fast Fourier transforms-based RFI detector [13], a precorrelation-

based RFI detector [14], and transformed-domain detectors [15]. In general, these RFI detectors

deployed frameworks that did not lead to analytical performance characterizations, which are

often missing. On the other hand, the performance characterization of a given RFI detector is

not a straightforward undertaking, as the distribution and parameters of the impinging RFI are

generally unknown. Such a lack of knowledge makes the existing hypothesis testing frameworks

[16], [17] hardly useful with regard to the aforementioned undertaking. Highlighting the latest

research advancements pertaining to this research field, meanwhile, a power-based broadband

RFI detector and an energy-based RFI detector are investigated in [18] and [19], respectively.

However, these RFI detectors rely on the knowledge of the noise power and they are detectors

proposed, mainly, for single-antenna systems. Thus, it is of an academic and practical significance

to develop robust multi-antenna RFI detectors whose performance characterizations shall also

be pursued.

Mathematically, the multi-antenna RFI detection problem can be related to the adaptive radar

detection problem—considered in [20]–[23]—by exchanging the underlying RFI and the signal

of interest (SOI) while presuming a receiving reference antenna. For the adaptive signal detection

in homogeneous Gaussian disturbance and structured interference, [21] has derived several
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theoretically founded detectors which are proved to be the function of the maximal invariant

statistic (MIS) corroborating their constant false alarm rate (CFAR) property. Following [10],

[22] exploits the principle of invariance to surmount the problem of adaptive vector subspace

signal detection in a partially homogeneous Gaussian disturbance plus structured interference. In

particular, [22] derives an MIS which is shown to coincide with the adaptive normalized matched

filter [24] (adaptive coherence estimator [25]) in a complementary subspace of the structured

interference. Thereafter, several well-known test statistics are derived and shown to be statistically

equivalent to the MIS. Similarly, [23] deals with the adaptive detection of point-like targets in

a possibly heterogeneous environment. In a mathematical sense, some of the electronic counter-

countermeasures (ECCM) techniques [26]–[28] are also related to the problem of multi-antenna

RFI detection.

B. Motivation

Despite the mathematical resemblance, the detection techniques of [20]–[23] cannot be adopted

as robust multi-antenna RFI detection techniques. The presumption of known left and right

subspaces for the signal and interference makes the unifying framework of [21] hardly practical

for multi-antenna RFI detection. Similarly, the assumptions that a target signature and a structured

interference belong to known subspaces make [22] unattractive for multi-antenna RFI detection.

Because of the assumption regarding a known subspace spanned by the interference steering

vectors, [23] is also unattractive. Meanwhile, adapting the techniques of [29] devised for a

mismatched signal model is either challenging or complex, as the RFI target vectors are generally

unknown and time-variant. Furthermore, as the impinging RFI may not be Gaussian and its

distribution is generally unknown, adapting the ECCM related techniques—such as [26], [27],

and [28, Ch. 12]—as robust multi-antenna RFI detection techniques would be hardly realistic.

Because it requires identifying the type of RFI which could be narrowband, broadband,

continuous wave, or pulsed RFI [3], [6], the development of a robust multi-antenna RFI detector

is challenging. In this regard, an RFI detector should robustly detect any kind of RFI unlike

KD which fails to detect Gaussian (near Gaussian) RFI(s) [12]. To be attractive for real-time

applications, an RFI detector should not also rely on a large number of samples. Moreover, an

RFI detector shall also be able to detect very weak RFI, as several such RFIs can make the

communication (system) unreliable, especially in SatCom and RA which manifest a received

signal whose strength is usually under the noise floor [2].
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In another regard, eigenvalue-based detectors [30]–[32] have been proposed for spectrum sens-

ing in the context of cognitive radios. These detectors exhibit an attractive detection performance

and their blindness makes them practically appealing. They do not also rely on the power spectral

density of the noise unlike conventional energy detectors [33]–[37]. Meanwhile, eigenvalues

in the Karhunen-Loève transform domain were deployed to detect RFI, as detailed in [38].

Nonetheless, time-domain eigenvalue detection had not been investigated until recently. In line

with this specific motivation, [39] has disseminated a preliminary study regarding an eigenvalue-

based multi-antenna RFI detection. Following this lead, we make the following contributions.

C. Contributions

Based on the lead of [39], this article presents a full-fledged investigation on eigenvalue-based

RFI detector and its performance assessment. Being consequences of the conducted investigation,

the contributions of this paper are itemized beneath.

• For single-input multiple-output (SIMO) systems that may suffer from RFI, an eigenvalue-

based RFI detector is proposed and studied in detail.

• The performance of the investigated RFI detector is assessed extensively via Monte-Carlo

simulations.

D. Organization

Section II describes the considered system model. Section III presents the problem formulation

and the proposed detection. Section IV reports the simulation results. Finally, Section V presents

the concluding remarks and research outlook of this paper.

E. Notation

Italic letters, lower-case boldface letters, and upper-case boldface letters denote scalars, vectors,

and matrices, respectively. CNR , CN×M , and HNR×NR are the sets of NR–dimensional vectors

of complex numbers, of N × M complex matrices, and of NR × NR Hermitian matrices,

respectively. ∼, |, ,, (·)T , and (·)H denote distributed as, conditioned on (under), equal by

definition, transpose, and Hermitian, respectively. ∈, A(:, i), A(:, i : j), and diag(·) stand for

element of (belongs to), the i-th column of A, the columns of A between its i-th and j-th

columns including its i-th and j-th columns, and (block) diagonal matrices, respectively. || · ||,

INR
, and 0N×M denote Euclidean norm, an NR×NR identity matrix, and an N×M zero matrix,
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Fig. 1. A baseband schematic of the considered SIMO system suffering from an RFI.

respectively. N (0, σ2INR
), and CN (0, INR

) represent normal distribution with mean zero and

covariance matrix σ2INR
and circularly symmetric complex normal distribution with mean zero

and covariance matrix σ2INR
, respectively.

II. SYSTEM MODEL

First, we assume that the received passband signal is downconverted to its baseband equivalent

and sampled at the Nyquist rate. In line with this assumption, we consider a SIMO system that

may suffer from an RFI as depicted in Fig. 1. Along with the reception of the transmitted SOI,

an RFI emitted by a nearby single-antenna source might also be received by the NR antennas.

For this scenario, the received signal contaminated by noise and an impinging RFI is expressed

as

y[k] = hs[k] + gv[k] + z[k] ∈ CNR , (1)

where y[k] is the k-th sample of the received multi-antenna signal; h = [h1, h2, . . . , hNR
]T

∈ CNR is the flat fading SOI channel gain vector assumed constant during the RFI detection

interval; s[k] is the k-th unknown and deterministic symbol of the SOI; g = [g1, g2, . . . , gNR
]T ∈

CNR is the flat fading RFI channel gain vector assumed constant during the RFI detection interval;

v[k] is the k-th unknown and deterministic symbol of the RFI; and z[k] ∼ CN (0, σ2INR
)
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is—with an unknown power of σ2—a zero mean circularly symmetric complex additive white

Gaussian noise (AWGN) vector, which manifests a spatially uncorrelated noise.

Inferring from (1), the RFI-free received multi-antenna signal is equated as

y[k] = hs[k] + z[k] ∈ CNR . (2)

Referring to the maximum number of sources—of our problem setting—being two, we assume

that NR > 2. Moreover, the remainder of this manuscript presumes that h, g, and z[k] are

independent random variables.

III. PROBLEM FORMULATION AND PROPOSED DETECTION

A. Problem Formulation

A binary hypothesis test is formulated from (1) and (2) as

y[k] =

hs[k] + gv[k] + z[k] : H1

hs[k] + z[k] : H0,
(3)

where {H0, H1} are, respectively, hypotheses regarding the absence and presence of the RFI and

1 ≤ k ≤ N for N being the number of intercepted per-antenna samples. Stacking the observation

vectors of N sampling intervals,

y =

Hs+Gv + z : H1

Hs+ z : H0,
(4)

where y =
[
yT [1],yT [2], . . . ,yT [N ]

]T ∈ CNRN is the stacked multi-antenna received signal

samples, H = diag(h,h, . . . ,h) ∈ CNRN×N is the SOI channel matrix, G = diag(g, g, . . . , g) ∈

CNRN×N is the RFI channel matrix, s =
[
s[1], s[2], . . . , s[N ]

]T ∈ CN is the SOI vector, v =[
v[1], v[2], . . . , v[N ]

]T ∈ CN is the RFI vector, and z =
[
zT [1], zT [2], . . . ,zT [N ]

]T ∈ CNRN ∼

CN (0, σ2INRN) is the stacked multi-antenna noise vector. If H and G were known in the

matched subspace detection problem stated via [40, eq. (2.4)], (4) and [40, eq. (2.4)] would be

equivalent problems for S =H , φ = s; and µ = 1, H = G, and θ = v.1

The problem formulated in (4) can also be related to the adaptive radar signal detection

problems of [20]–[23]. However, adopting these techniques is challenging, since they rely on

known subspace(s). The problem can also be posed as a source enumeration problem [41]–[43]:

1With regard to [40], please note that µHθ and Sφ denote an information-bearing signal and an interference, respectively.
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“two sources” versus “one source”. Nonetheless, the technique of [41] cannot be adopted here,

as {s[k], v[k]} are not necessarily Gaussian random variables (RVs). Besides, the information

criterion rules [42], [43] are computationally complex, as they rely on the minimization of

highly non-linear functions made of several maximum-likelihood estimates [44]. For known h

and Gaussian {s[k], v[k]}, it is worth mentioning that the problem can also be recast in terms of

a unified generalized likelihood ratio test (GLRT) based spectrum sensing framework of [45].

B. Proposed Detection

At first, the proposed eigenvalue-based RFI detector computes the sample covariance matrix

(SCM) as

R̂yy =
1

N

N∑
k=1

y[k]yH [k] =
1

N
Y Y H ∈ HNR×NR , (5)

where Y =
[
y[1],y[2], . . . ,y[N ]

]
∈ CNR×N . Hereinafter, we assume that N > NR to ensure

that all eigenvalues of the SCM are positive with probability one. Computing the singular value

decomposition (SVD) of (5),

R̂yy = ÛΣ̂V̂ H = [Û1 Û2:NR
]Σ̂V̂ H (a)

= ÛΣ̂ÛH , (6)

where Û1 = Û(:, 1), Û2:NR
= Û(:, 2 : NR), and Σ̂ = diag

(
σ̂1, σ̂2, . . . , σ̂NR

)
for {σ̂i}NR

i=1 being

the singular values—in a decreasing order—of the SCM, and (a) emanates from the fact that

an SCM is both a positive semi-definite and Hermitian matrix.

It shall be recalled that {σ̂i}NR
i=2 and {σ̂i}NR

i=3 are the noise eigenvalues under H0 and H1,

respectively. Under H1, if the interference-to-noise ratio (INR) is greater than the signal-to-

noise ratio (SNR), σ̂2 is contributed by the signal and the noise; whereas σ̂2 is contributed by

the interference and the noise provided that the SNR is greater than the INR. Employing this

intuition, the test statistic—that can flag the impinging RFI—is defined as

T ,
σ̂2∑NR

i=3 σ̂i
. (7)

For λ being the decision threshold often set as per the desired false alarm rate (FAR), a decision

rule follows as

T
H1

R
H0

λ. (8)

Remark 1. Once the trace of the SCM is obtained, (7) can be computed via the first two

dominant eigenvalues obtained efficiently using the power method [46, Chs. 7 and 8].
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Parameters Assigned Value

NR 5

γsnr 0 dB

Ps 10 W

No. of realizations 105

TABLE I

SIMULATION PARAMETERS IF NOT EXPLICITLY MENTIONED.

IV. SIMULATION RESULTS

Evaluated for a SIMO system, this section reports the simulation results regarding the per-

formance of the proposed RFI detector, matched subspace detector (MSD) [40], and multi-

antenna detectors [47]–[49]. Unless otherwise mentioned, the conducted simulations employ the

parameters of Table I. Without loss of generality and similar to [50], [51], the independently

distributed complex channel gains pertaining to the SOI and RFI—unless stated differently—are

modeled by a Rayleigh fading, i.e., h ∼ CN (0, INR
) and g ∼ CN (0, INR

). Unless otherwise

mentioned and without loss of generality, we consider a quadrature phase shift keying (QPSK)

modulated SOI and RFI, i.e, s[k] =
√
Ps/2

[
sIk + jsQk

]
and v[k] =

√
Pv/2

[
vIk + jvQk

]
for

{sIk, s
Q
k } ∈ {−1, 1} × {−1, 1} and {vIk, v

Q
k } ∈ {−1, 1} × {−1, 1}.

The subsequent Monte-Carlo simulations of the proposed detector deploy the test statistic

given by (7) and the decision rule expressed in (8). These simulations consider that the SNR

and INR are, respectively, defined as γsnr =

∣∣∣∣Hs∣∣∣∣2
NNRσ2

and γinr =

∣∣∣∣Gv∣∣∣∣2
NNRσ2

. Having adjusted the

power of the received SOI and the received RFI per these definitions of SNR and INR, the Monte-

Carlo simulations regarding the exhibited Pd—by any considered detector—assume the reception

of H1 per a realization and average over the number of assumed realizations. Along with the

simulation of Pd, the probability of miss-detection (Pm) exhibited by any considered detector is

simulated as Pm = 1−Pd. On the other hand, the simulations concerning the FAR—manifested

by any detector—assume a per-realization reception of H0, whose SOI component is adjusted as

per the SNR definition provided above, and average over the number of presumed realizations.

Meanwhile, fixed for the detection performance assessment of the considered detectors, the

decision thresholds rendering the desired FARs are obtained via Monte-Carlo simulations that

average over 106 independent realizations under H0. Regarding the proposed eigenvalue-based
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RFI detector, hereinafter, performance comparison with MSD; performance comparison with

multi-antenna detectors; and assessment of the manifested FAR and complementary receiver

operating characteristics (CROC) are reported.

To imply that the y-axes of the subsequent plots are scaled using logarithmic scale, we labeled

them as logPd, logPm, or logPf .

A. Performance Comparison with MSD

To compare the proposed detector and an MSD [40] which assumes real-valued signals, we

emulate the transmission of a binary phase shift keying (BPSK) modulated SOI and BPSK mod-

ulated RFI over real-valued Rayleigh fading channels, i.e., h ∼ N (0, INR
) and g ∼ N (0, INR

).

With respect to the desired FAR of 0.01, we detect the presence of RFI using the proposed

detector and the MSD derived for a subspace signal detection in subspace interference and noise

of unknown level [40, Sec. VIII]. For a given realization, the performance of MSD is assessed

via the PD expression given by [40, eq. (8.10)] and its respective FAR threshold is obtained via

the PFA expression, also, equated in [40, eq. (8.10)]. As the NCP [40, eq. (8.7)] that comprises

the closed-form detection expression [40, eq. (8.10)] varies for every realization, we average

the per-realization detection performance of MSD over 105 realizations. Similarly, the detection

performance of the proposed RFI detector is assessed through Monte-Carlo simulations that also

average over 105 realizations. Whereas for the respective Pm simulations, averaging over 106

realizations is considered.

With respect to the aforementioned simulation settings, Figs. 2 and 3, respectively, depict the

Pd and Pm exhibited by the proposed RFI detector and MSD. As seen in Fig. 2 for γinr ≥ 5

dB, the proposed RFI detector has a comparable detection performance with MSD fed with the

knowledge of H and G though the proposed detector is a blind one. Concerning Fig. 3, even

though it is outperformed—in the low INR regimes—by MSD fed with the knowledge of H

and G, the proposed blind detector also enjoys a considerably small Pm, especially in the high

INR regimes, manifested even for a sample starved setting as small as N = 50.

B. Performance Comparison with Multi-Antenna Detectors

We compare the performance of the proposed detector with multi-antenna detectors [47]–

[49] proposed for spectrum sensing in the context of cognitive radios [52]. To simulate the

RFI detection performance of these detectors [47]–[49], we first assume the availability of the



10

-5 0 5 10 15
0.99

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

Fig. 2. Pd versus γinr: Pf = 0.01.

knowledge of h and execute projection orthogonal to the SOI subspace using a projection matrix

P = INR
− h(hHh)−1hH . Thereafter, along with the proposed blind detector, we simulate the

F–test based detector [47, eqs. (4) and (5)], blind GLRT [48, eq. (39)], multi-channel energy

detection (MCED) [49, eq. (2)], and multi-channel energy detection with noise uncertainty

(MCED-U) [49, eq. (3)].

To simulate the F–test based detector [47], the test statistic in [47, eq. (5)] is computed via

a projection matrix P ′ = INR
− g(gHg)−1gH , by also assuming the knowledge of g, after

projecting orthogonal to the SOI using P . Having projected orthogonal to the SOI subspace,

blind GLRT is simulated via [48, eq. (39)]. Note that such a GLRT statistic was also reported

in [49, eq. (13)]. After also projecting orthogonal to the SOI subspace, MCED and MCED-

U are, respectively, simulated via [49, eq. (2)] and [49, eq. (3)]. To simulate the detection
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Fig. 3. Pm versus γinr: Pf = 0.01 and 107 channel realizations.

performance of MCED-U, we employ a constant noise uncertainty factor ξnu = 10 log10 ηnu

which is valid when the observation time is short [49]. Following the lead of [53], we assume

that MCED-U overestimates σ2 by a factor of uncertainty denoted by ηnu, i.e., σ̂2 = ηnuσ
2,

and compute its respective threshold rendering the considered desired FAR. Nevertheless, the

detection performance of MCED-U is simulated using data with the exact noise variance σ2.

Observing Fig. 4, the proposed blind RFI detector has a comparable detection performance

with a GLRT fed with a perfect estimate of the SOI channel for the medium to high INR regimes.

For the small INR regimes, the proposed detector outperforms the F -test detector [47, eqs. (4)

and (5)], MCED [49, eq. (2)], and MCED-U [49, eq. (3)] with ξnu = 1 dB though the latter

detectors are fed with the knowledge of the SOI channel. Such a performance manifested for a

sample starved setting—as few as N = 50—implicates the applicability of the proposed blind
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detector for a real-time detection of weak RFI(s) which usually occurs in SatCom and RA.
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Fig. 4. Pd versus γinr: N = 50 and Pf = 0.01.

In order to offer further insight, we simulate the Pm versus γinr performance curves as depicted

in Fig. 5. For the small INR regimes, the proposed blind detector manifests a comparable miss-

detection performance with GLRT fed with the knowledge of the SOI channel. As the strength

of the received RFI increases, MCED and MCED-U fed with both the knowledge of the SOI

channel and the noise power—as ED requires the knowledge of the noise power—outperforms the

proposed RFI detector. It is visible in Fig. 5 that the performance gains of MCED and MCED-

U are evident with a significantly small Pm for a given INR. Summarizing the observations,

however, from practicality and real-time processing perspectives, the proposed blind detector is

attractive as manifested through its detection and miss-detection performance for both the small

and the high INR regimes.
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Fig. 5. Pm versus γinr: N = 50 and Pf = 0.01.

C. Assessment of the Manifested FAR and CROC

The impact of the number of received signal samples on the manifested FAR is assessed

through Fig. 6. As depicted, the probability of false alarm becomes infinitesimally small as N

gets larger. It is also demonstrated that the CFAR constraint is not satisfied in the finite length

regime if the threshold is set using asymptotic false alarm probability—like GLRT [48], [49].

As originally addressed by [54], the proposed detector also exhibits difficulties to satisfy the

FAR constraint exactly like complex detectors.

At last, the simulation assessments are culminated by the assessment of the CROC exhibited

by the proposed RFI detector. In order to depict the underlying CROC, the Pm versus Pf curves

are depicted for different NR and γinr that comprise Fig. 7. As corroborated via Fig. 7, since

the increment in INR or NR provides an improvement in an RFI detection and hence a smaller
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Fig. 6. Impact of N on Pf : 104 realizations.

likelihood of missing the impinging RFI, the CROC curves shift inward with respect to γinr and

NR. In addition, Fig. 7 demonstrates the natural trade-off between Pm and Pf .

V. CONCLUDING REMARKS AND RESEARCH OUTLOOK

A. Concluding Remarks

An eigenvalue-based blind RFI detector is proposed and studied for SIMO systems that may

suffer from RFI. For sample starved settings and medium to large INR regimes, the conducted

simulations corroborate that the proposed detector exhibits a comparable detection performance

with a GLRT detector fed with the knowledge of the SOI channel, and an MSD fed with the

knowledge of the SOI and RFI channels. Such performance reveals the attractiveness of the

proposed RFI detector for real-time applications.
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Fig. 7. Complementary ROC: N = 100.

B. Research Outlook

If the values of h were known and {s[k], v[k]} were Gaussian RVs, the underlying RFI

detection problem could also be reformulated as the detection of rank-1 signals, which is a special

case of the hypothesis test in [55, eq. (3)]. With respect to [55] which considers the detection of

rank-R (R ≥ 1) signals with uncalibrated multiple antennas, the proposed eigenvalue detector

can also be extended to the detection of rank-R (R > 1) RFI(s). To practically realize such an

extension, the channel order of the SOI and the RFI(s) are required and hence source enumeration

techniques [41], [43], [56] would be, preliminarily, needed. In addition to the aforementioned

extension, extension of the proposed RFI detector to the multiple-input multiple-output (MIMO)

and massive MIMO systems [57], [58]—that might also consider a rank-R (R > 1) RFI(s)—

is worth addressing. Accounting for the inevitable calibration uncertainties of the NR antenna
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frontends similar to [53], [55], [59], consideration of independent and non-identically distributed

(i.ni.d.) noises is also worth investigating for SIMO, MIMO, and massive MIMO systems [57],

[58].

The exact performance analysis of the proposed eigenvalue-based RFI detector requires the

probability distribution function (PDF) and cumulative distribution function (CDF) of (7). Un-

fortunately, deriving the CDF and PDF of (7) is mathematically intractable. While announcing

this open problem, we encourage the interested reader to take courage so as to come up

with the exact performance analysis of the proposed eigenvalue-based RFI detector by seizing

these advancements [30], [60]–[66] regarding the PDFs and CDFs of different eigenvalue-based

distributions. Eventually, having witnessed the emerging wide-applicability of high-dimensional

probability and statistics [67], [68], future works shall devise a detailed exposition on the

performance bounds of the proposed RFI detector.
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