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Abstract

This paper presents and illustrates the application of an elastic-plastic Generalised Beam Theory (GBT) formulation, based on

J2-flow plasticity theory, that makes it possible to perform physically and geometrically non-linear (post-buckling) analyses of

prismatic thin-walled members (i) with arbitrary cross-section shapes, (ii) exhibiting any type of deformation pattern (global,

local, distortional, warping, shear), (iii) made from non-linear materials with isotropic strain-hardening and (iv) containing

initial imperfections, namely residual stresses and/or geometric imperfections, having generic distributions. After providing

a brief overview of the main GBT assumptions, kinematical relations and equilibrium equations, the development of a novel

non-linear beam finite element (FE) is addressed in some detail. Moreover, its application is illustrated through the pre-

sentation and discussion of numerical results concerning the post-buckling behaviour of a fixed-ended I-section steel column

exhibiting local initial geometrical imperfections, namely (i) non-linear equilibrium paths, (ii) displacement profiles, (iii) stress

diagrams/distributions and (iv) deformed configurations. For validation purposes, the GBT results are also compared with

values yielded by Abaqus rigorous shell FE analyses.

1



Abambres M, Camotim D, Silvestre N (2012). Geometrically and Physically Non-Linear GBT-Based Analysis of Thin-Walled Steel 
Members, URL 

 

 

 

Geometrically and Physically Non-Linear  

GBT-Based Analysis of Thin-Walled Steel Members  

Miguel Abambres; Dinar Camotim; Nuno Silvestre  

Department of Civil Engineering and Architecture, ICIST, 

Instituto Superior Técnico, Technical University of Lisbon, Portugal 

abambres@netcabo.pt , dcamotim@civil.ist.utl.pt , nunos@civil.ist.utl.pt 

 

 

This paper presents and illustrates the application of an elastic-plastic Generalised Beam Theory (GBT) 

formulation, based on J2-flow plasticity theory, that makes it possible to perform physically and geometrically 

non-linear (post-buckling) analyses of prismatic thin-walled members (i) with arbitrary cross-section shapes, 

(ii) exhibiting any type of deformation pattern (global, local, distortional, warping, shear), (iii) made from non-

linear materials with isotropic strain-hardening and (iv) containing initial imperfections, namely residual stresses 

and/or geometric imperfections, having generic distributions. After providing a brief overview of the main GBT 

assumptions, kinematical relations and equilibrium equations, the development of a novel non-linear beam 

finite element (FE) is addressed in some detail. Moreover, its application is illustrated through the presentation 

and discussion of numerical results concerning the post-buckling behaviour of a fixed-ended I-section steel 

column exhibiting local initial geometrical imperfections, namely (i) non-linear equilibrium paths, (ii) 

displacement profiles, (iii) stress diagrams/distributions and (iv) deformed configurations. For validation 

purposes, the GBT results are also compared with values yielded by ABAQUS rigorous shell FE analyses. 

 

1. Introduction 

The use of high performance steels leads to considerable weight savings in built structures. In fact, 

steel structural elements, namely cold-formed ones, often exhibit slender thin walls, which makes them 

highly susceptible to global (flexural, torsional and flexural-torsional) and local instability phenomena, 

which play a key role in their ultimate strength and design. Up to now, the numerical determination 

of accurate collapse loads for such elements (e.g., columns or beams) has only been possible by 

resorting to complex non-linear shell finite element analyses (SFEA). Since this task is very time-

consuming, due to the large amount of degrees of freedom (d.o.f.) involved and the laborious/difficult 

data input and result interpretation, a very promising alternative to the above approach is the use of 

one-dimensional (beam) finite element formulations based on Generalised Beam Theory (GBT). 

Due to its unique modal features, GBT is widely recognized as an elegant, computationally efficient 

and structurally clear approach to analyse prismatic thin-walled members and structural systems. The 

displacement field is expressed as a linear combination of cross-section deformation modes whose 

amplitudes vary along the member length. In the last decade, GBT formulations have been developed 

to cover different (i) analyses (first-order, buckling, vibration, post-buckling) and (ii) materials (steel 

and composite − FRP and steel-concrete) [1]. Most of these works assume a linear elastic material 

behaviour, with no plasticity (or any other degradation source) involved. The first physically non-linear 

GBT formulation was developed by Gonçalves and Camotim [2], in the context of elastic-plastic 

bifurcation, and these authors [3, 4] recently proposed GBT-based FE formulations based on 

the J2-flow plasticity theory and intended to perform physically and geometrically non-linear 

analyses. In parallel, Abambres et al. [5, 6] developed alternative GBT first-order elastic-plastic 

formulations, also based on the J2-flow plasticity theory, to analyse members with (i) global 

(axial, flexural, torsional) and (ii) an arbitrary deformation pattern. They differ from those reported 
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in [3, 4] since (i) other deformation modes are adopted, obtained via the GBT cross-section analysis 

procedure proposed in [7], and (ii) warping rotations about each wall through-thickness direction 

are included as additional d.o.f. 

The aim of this paper is to present and illustrate the application of an extension of the previous work 

by the authors, which includes geometrical non-linearity and makes it possible to perform second-

order (post-buckling) elastic-plastic analyses of members (i) with arbitrary thin-walled cross-section 

shapes, (ii) exhibiting any deformation pattern, (iii) having non-linear constitutive laws with isotropic 

strain-hardening and (iv) containing initial imperfections, namely residual stresses and/or geometrical 

imperfections, with generic distributions. Following a brief overview of the main GBT assumptions, 

kinematics and equilibrium equations, the paper addresses the development of a new non-linear beam 

FE and illustrates its application by presenting and discussing numerical results concerning the post-

buckling behaviour of a fixed I-section steel column with local initial geometrical imperfections. Such 

results comprise (i) non-linear equilibrium paths, (ii) displacement profiles, (iii) 2D/3D stress diagrams, 

and (iv) 3D deformed configurations. For validation purposes, the GBT results are also compared 

with values obtained by means of ABAQUS [8] rigorous SFEA. 

 

2. Brief Overview of the GBT Assumptions and Kinematics 

At each wall mid-surface, consider the local coordinate system (x, s, z) illustrated in Fig 1(a), 

where x, s e z are longitudinal (0  ≤ x  ≤ L, L is the member length), transverse (0 ≤ s  ≤ b, b is the wall 

width) and through-thickness (−t/2  ≤ z  ≤ t/2, t is the wall thickness) coordinates. The corresponding 

local displacements are (i) u (along x − warping), (ii) v (along s − transverse) and (iii) w (along z − 

flexural). A GBT analysis consists of (i) a cross-section analysis and (ii) a member analysis. While the 

former comprises the determination of the cross-section deformation modes (uk(s), vk(s), wk(s)) and 

associated mechanical properties, the latter leads to the corresponding modal amplitude functions k(x), 

characterising the variation of the deformation mode amplitude along the member length. Each 

member mid-surface displacement field component is expressed as a linear combination of products 

involving cross-section deformation modes and their amplitude functions, 

   )()(),( , xsusxu xkk =   )( )(),( xsvsxv kk =   )( )(),( xswsxw kk =   ,   (1) 

where subscript k follows the Einstein (summation) convention. 

The cross-section analysis procedure proposed in [7] is adopted: four deformation mode families 

(conventional, warping shear, transverse extension and cell shear flow) are defined and obtained by 

solving a sequence of auxiliary eigenvalue problems − detailed information in [7, 9, 10]. However, 

this cross-section analysis also includes an innovation recently proposed by the authors [11]: the 

inclusion of the warping rotation (about z) as a fifth d.o.f. in each node. Finally, it is worth noting that 

the formulation developed retains the GBT fundamental plane-stress assumption (after all, GBT is a 

theory for thin-walled members), which means that (i) the stress components σxz, σsz , σzz, and (ii) the 

strain components γxz, γsz and εzz (see Fig. 1(a)) are deemed null everywhere, regardless of the 

material behaviour under consideration. 

  

Figure 1: (a) Local coordinates at each section wall and (b) external distributed force q(x,s). 
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3. GBT Formulation for Second-Order Elastic-Plastic Analysis 

3.1 Equilibrium Equations 

The GBT equilibrium equation can be obtained from the Principle of Virtual Work, stating that [11] 

( ) ( ) ( ),          + + = + +      xx xx ss ss xs xs x i i x s i z i i

L b t L b

dz ds dx q u q v q w ds dx   ,   (2) 

where (i) σxx, σss, σxs are the axial normal, transverse normal and shear stress components, (ii) qx, qs, qz 

are the local components of an external distributed force applied at the member mid-surface (see Fig. 

1(b)), and (iii) xx, ss, γxs are the virtual Green-Saint-Venant strain components: axial extension, 

transverse extension and shear strain, expressed in terms of the displacement components u, v, w as  

( ) ( )2 2 2

, , , , , , ,

1

2
 = − + + + − +xx ,x ,xx x x x x xx x xsu zw u v w z u w v w  

( ) ( )2 2 2

, , , , , , ,

1

2
 = − + + + − +ss ,s ,ss s s s s xs s ssv zw u v w z u w v w

 
,  (3) 

( ), , , , , , , , , , , , , , = + − + + + − + + +xs ,s ,x ,xs x s x s x s x xs s xx x ss s xsu v 2zw u u v v w w z u w u w v w v w  

where u, v and w are given in Eq. (1) and α is a factor equal to 0 or 1, depending on whether the 

non-linear bending terms dependent on z are neglected or not. Note that all existing geometrically 

non-linear GBT formulations neglect the non-linear bending terms dependent on z and z2. Although 

this choice has consistently led to fairly accurate results [1, 4], the formulation proposed retains the 

terms dependent on z (not those dependent on z2), in order to assess their relevance. Moreover, all 

stress and strain components are evaluated taking into account the possible presence of initial 

imperfections, namely residual stresses and/or geometrical imperfections. 

3.2 Non-Linear Beam Finite Element  

In non-linear analysis, reaching an equilibrium configuration requires using an incremental-iterative 

strategy. This work adopts the cylindrical arc-length method [12, 13], whose implementation involves 

evaluating internal force vectors f 

int and subsequently establishing incremental equilibrium equations, 

based on the tangent stiffness matrix Ktan. After introducing the strain components considered in the 

first member of Eq. (2), all amplitude functions in Eq. (1) are replaced by their FE approximations, 

yielding 

int =f f
 ,   (4) 

where f  is the external force vector corresponding to a unit load parameter  

The numerical results presented and discussed further ahead were obtained by adopting Hermite cubic 

polynomials to approximate the longitudinal variation of the GBT deformation mode amplitudes, i.e., 

( ) ( ), 0=v w k

k,x H kζ x =Ψ x d
                      

( ) ( ), 0v w k

k H kζ x =Ψ x d
 

,   (5) 

where (i) k

HΨ  is a 1x4 vector storing the Hermite polynomials adopted to approximate the mode k 

amplitude function, (ii) dk is the corresponding displacement vector (4×1), (iii) the first expression 

concerns only the axial and warping shear modes (no in-plane displacements: v=w=0), and 

(iv) the second expression applies to all other deformation modes (v≠0 and/or w≠0). 

According to the above procedure, the ith component (4x1 sub-vector) of the internal force vector 

f 

int can be obtained by means of 
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( ) ( ) ( )
int int int int= + +i i xx i ss i xs

f f f f  ,   (6) 

( )

( ) ( )

( ) ( ) ( )

( )

int

, ,

int






 − + − + +   =
  + + − +   

  
e

T
k i

i i i k i k i k k

xxi xx T
k i

L b t
i k i k i k s i s k k

i xxF

u zw u u z u w w u ddS d ddS
f dzdsdx

v v w w z v w w v dS d dS

 

,   (7)

  

( )

( ) ( ) ( )

( ) ( )

( )

, , , , , , , , , ,
int

, , , , , ,

int






  − + + − + +  =
 

 + − +   


e

T
k i

i s i ss i s k s i s k s i s k ss i ss k s k

ss ei ss T
k i

V
i s k s i s k s i s k s k

i ssF

v zw v v w w z v w w v S d S
f dV

u u z u w w u dS d dS

 ,   (8) 

( )

( )

( ) ( )
( )

( ) ( )

( ) ( ) ( )

, , , , ,

, , , , ,

int

, , ,

, , , , ,

2 



 



  + − + − + +   
+ 

 + + − +   

 = + − + + 

 + + − + 



k

i s i i s i s k i s k i s k k T
i

k

i k s i k s i k ss i s k s k

T
k i

xs i k s i k s i k s ki xs

T
k i

i s k i s k i ss k i s k s k

u v zw u u z w u u w ddS d
dS

v v w w z v w w v S d

f u u z u w w u dS d ddS

v v w w z w v v w dS d S

( )
int


 
 
 
 
 
 
 
 
 




e

e

V

i xsF

dV  , (9) 

where 

,

, ,

, 0, 0, 0
, ,

, 0, 0 , 0

 = = =     
= = =     

           

H x i iH i iH i ii i i

H x i iH i i H xx i i

Ψ if v wΨ if v wPΨ if v w
S dS ddS

Ψ if v wΨ if v w Ψ if v w
 ,   (10) 

(i) subscripts i and k identify GBT deformation modes (i is a free subscript and k satisfies Einstein 

convention), and (ii) the displacement vectors dk and stress components σxx, σss, σxs are associated 

with a generic “equilibrium configuration” (during the iteration procedure and wherever the 

structural response is non-linear, this configuration does not satisfy equilibrium for the applied loads 

under consideration). After determining the internal force vector f 
int, the incremental equilibrium 

equation for an arbitrary member deformed configuration j can be established as 

tan  = 
j

K d f
 

,   (11) 

where (i) d is the displacements vector and (ii) the tangent stiffness matrix (i, p)th component, 

Kip,tan, is a 4x4 sub-matrix concerning deformation modes i and p, which is given by [10] 

( ) ( ) ( )
int int intint int

,tan ,
   

= + +
    

=
i xx i ss i xsi i

p pl pl pl pl

ip

f f ff f

d d d d d
K  ,   (12) 

and corresponds to the internal force vector (see (6)) ith component Jacobian, with respect to the 

displacement vector concerning deformation mode p − its components are dpl (l=1,…,4). The 

Jacobian columns are defined by the second expression in Eq. (12), where each term is given by 

( )
( )

( )
int int

int


   
= + 

    
  

e

i mn i mnmn
mni mn

pl pl plL b t

f F
F dzdsdx

d d d
 ,   (13) 
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where (i) mn denotes xx, ss or xs, (ii) vector 
int

)mn(i
F  is due to the definition of 

int

)mn(i
f  in Eqs. (7)-(9), and 

(iii) the stresses, stress gradients and displacement vectors are computed at “equilibrium configuration” 

j. Finally, for an arbitrary elastic-plastic material, the stress gradients in Eq. (13) are defined at every 

point by 

      

  

      
= + +

      

mn mn xx mn ss mn xs

pl xx pl ss pl xs pld d d d
 ,   (14) 

where the deformation gradients ∂ε/∂dpl are defined after rewriting all deformation components in Eq. 

(3) according to the FE approximation in Eq. (5). The stress components and their gradients 

∂σ/∂ε are obtained from (i) the elastic stress-strain law routinely used in GBT [1] and (ii) the J2-flow 

model (associated flow rule) − the consistent elastic-plastic constitutive matrix is used to obtain 

∂σ/∂ε and the mean normal return-mapping algorithm is adopted to evaluate σ if plastic flow 

occurs [12]. For the plasticity model implemented, after each iteration one must sequentially 

compute, at each point, (i) the strain variation Δε w.r.t. the last equilibrium configuration (path-

independent strategy), (ii) the elastic stress variation Δσ (due to Δε), added to the previous stress σi (last 

equilibrium configuration) to provide the predicted stress σpred = σi + Δσ, and, if these stresses fall 

outside the previous yield surface (dependent on the deformation history if there is strain-

hardening), (iii) the stress correction Δσcor (to σpred), by using the return-mapping algorithm, thus 

leading to the final stress σf  = σpred + Δσcor, “located” on the current yield surface. Due to space 

limitations, the implemented (J2-flow) plasticity model and arc-length procedure are not presented 

here − they can be found in [6, 11]. 

 

4. Illustrative Example 

The developed physically and geometrically non-linear GBT formulation was implemented using 

MATLAB R2010a [14] and, for validation purposes, the results obtained are compared with 

values yielded by an ABAQUS [8] SFEA based on the J2-flow theory − since ABAQUS provides true 

stress outputs, the GBT normal stresses results are converted to true stresses through σt=σn(1+εn), 

where t and n denote true and nominal (the GBT von Mises stresses are based on nominal stresses). 

The numerical results presented and discussed concern the fixed-ended I-section steel column shown 

in Fig. 2(b), (i) with length L=1500 mm and the mid-line cross-section dimensions (flange width bf, 

web height bw and thickness t) given in Fig. 2(a), and (ii) under uniform compression F=10000 λ N (λ is 

the load parameter) − the load is deemed uniformly distributed along the end section mid-lines in both 

the GBT and ABAQUS models (q=30.30 N/mm). The steel constitutive behaviour is assumed linear-

elastic/perfectly plastic, and characterised by (i) Young’s modulus E=200000 N/mm2, (ii) Poisson’s 

ratio ν=0.3 and (iii) nominal uni-axial yield stress σ 

y=460 N/mm2 (shear modulus G=E/2(1+ν)).The 

GBT cross-section discretisation, shown in Fig. 3, involves 22 wall segments (10 in the web and 6 per 

flange), leading to 23 nodes and 117 deformation modes − only 59 are included in the analysis and the 

most relevant are depicted in Fig. 3. Moreover, 22 GBT-based unequal beam FE are considered along 

the column length: 8 for x<0.4L and x > 0.6L, and 6 for 0.4L≤ x ≤ 0.6L. Finally, the number of Gauss 

 (a)    

 
 

(b) 

Figure 2. (a) I-section dimensions and (b) column model and loading. 
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Axial Min bend (in-plane) Min bend (warping) Local Local Local Local 

      
Local Transv ext (web) Transv ext (bottom flange) Transv ext (top fl) Warping shear Warping shear 

Figure 3. Most relevant GBT deformation mode configurations. 

 

points involved in the numerical integration are (i) 4 Gauss per FE (x direction) and (ii) 4 (s direction) 

and 3 (z direction) per wall segment (see Fig. 1(a)). 

In ABAQUS, four-node isoparametric shell FE with full integration (S4) are adopted and 3 Gauss 

points are involved in the through-thickness integrations. The FE mesh comprises 100 FE along the 

column length and 22 along the cross-section mid-line contour − 15x15 mm dimensions. In order to 

ensure fixed end supports, “layers” of 22 additional “rigid” (E=2x108
 N/mm2) FE, with t=100 mm, 

were attached to each column end cross-section − only all their axial d.o.f. are not fully restrained. 

Regarding the initial imperfections, no residual stresses are considered but the column contains critical-

mode (local) geometrical imperfections with amplitude 0.25 t=0.5 mm − in both the GBT and 

ABAQUS analyses, this shape was obtained by performing a buckling analysis. Note that the results 

presented include (i) stresses and displacements at z=0 (membrane) and (ii) stress diagrams concerning 

the mid-span cross-section (x=750 mm), plotted along the walls indicated in Fig. 2(a) (dashed arrow). 

Fig. 4(a) shows the GBT and ABAQUS elastic-plastic equilibrium paths λ(δ), as well as the ABAQUS 

elastic path (for comparison purposes), where δ is the horizontal displacement of the web mid-point at 

mid-span (see Fig. 2). It is observed that the two elastic-plastic curves are in very good agreement, as 

(i) they fully coincide in the elastic range and (ii) do not differ by more than 1.8% after the onset of 

yielding (λ≈15). Moreover, note that the elastic-plastic equilibrium paths strongly diverge from their 

ABAQUS elastic counterpart – δ keeps increasing monotonically at a decaying rate, unlike in the elastic 

case, where a steep/stiffer increase is followed by a clear decrease, which is due to emergence of 

minor-axis bending, involving δ values in the opposite direction. For the three equilibrium states 

identified by white circles in Fig. 4(a), corresponding to the elastic range (E), collapse (C) and post-

collapse range (PC), the load parameter values are: (i) λGBT=9.03, λABQ=8.98 (E), (ii) λGBT=17.68 and 

λABQ=17.50 (C) and (iii) λGBT=16.55 and λABQ=16.40 (PC) − this quantifies the excellent agreement 

clearly visible in Fig. 4(a). Minor-axis bending also emerged in the elastic-plastic behaviour, but its 

contributions only became meaningful after the failure load (limit point C) was reached − this is 

because, due to the spread of plasticity, the cross-section stiffness centre (effective centroid) shifts, 

creating an applied load eccentricity. Fig. 4(b) shows the GBT and ABAQUS deformed configurations 

at the PC equilibrium state (amplified 5 times) and it is possible to notice their remarkable similarity. 

Note also that the higher deformations occur at the mid-span region (not visible in Fig. 4(b)), due to 

minor-axis bending − this feature can be easily quantified by means of the corresponding GBT modal 

participation [11]: 0.019%, 0.057% and 8.56%, respectively for equilibrium states E, C and PC. 

Finally, the substantial difference between the failure (λu=17.5) and critical (λcr=9.9) load parameter 

values, corresponding to λu /λcr=1.77, evidences the significant column post-buckling strength, as it 
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would be logical to expect in view of the collapse mode local nature. The dominance of the second-

order effects can be assessed by the fact that the failure is only 57.64% of the squash load Py=A σ y. 

 

   ABAQUS   GBT  
(a) (b) 

Figure 4. (a) Equilibrium paths and (b) deformed configurations (amplified 5 times) − PC state. 

 

Figs. 5(a)-(b) concern configuration E, C and PC and compare the δ longitudinal profiles obtained 

with the GBT and ABAQUS analyses, evidencing either (i) an excellent agreement (E) or (ii) a fairly 

good correlation (C and PC). Moreover, note the difference between the positive and negative 

amplitudes in the PC equilibrium state, reflecting the presence of minor-axis bending (causing positive 

δ values). Figs. 6(a)-(b) concern configurations E and C and depict the mid-span axial (σxx) and Mises 

(σMises) stress diagrams. Even if the GBT and ABAQUS values agree fairly well, there are large 

discontinuities in the GBT C diagram, which are due to an approximation in the transverse stresses (σss) 

shown in Fig. 7(a). Indeed, since the v displacements are approximated by piecewise linear functions 

in each wall segment, there is no transverse extension (v,s) continuity between adjacent wall segments, 

which affects the σxx and σMises values (all stress components “interact” in the plastic range) − 

nevertheless, note that the ABAQUS and GBT σss values are quite close at wall segment mid-points. 

Moreover, the ABAQUS and GBT web σss profiles at state C are qualitatively similar (see Fig. 7(b)). 

 

Figure 5. Longitudinal displacement (δ) profiles for equilibrium states (a) E and C, and (b) PC. 
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Figure 6. Mid-span (a) axial (σxx) and (b) Mises (σMises) stress diagrams for equilibrium states E and C. 

(a)  

 

GBT 

 

(b) ABAQUS 

Figure 7. Transverse stress σss (a) mid-span diagrams and (b) web profiles (x ≤ L/2) – equilibrium state C. 

 

5. Conclusion 

A second-order elastic-plastic GBT formulation was proposed and its application was illustrated by 

means of numerical results concerning an initially imperfect linear-elastic-perfectly plastic fixed-

ended I-section steel column. The GBT results agree very well with ABAQUS SFEA values, in spite of 

the huge disparity between the d.o.f. numbers involved (2537 vs. 13984), which confirms that the 

GBT approach constitutes a viable and efficient alternative to perform geometrically and physically 

non-linear analyses of thin-walled members and structural systems. 

 

Acknowledgements 

The financial support of Fundação para a Ciência e Tecnologia (FCT − Portugal), through project 

PTDC/ECM/108146/2008 and grant SFRH/BD/43271/2008 (first author) is gratefully acknowledged. 

References 

[1] Camotim D, Basaglia C, Bebiano R, Gonçalves R, Silvestre N. (2010). Latest developments in the GBT analysis of thin-

walled steel structures, Proceedings of International Colloquium on Stability and Ductility of Steel Structures (SDSS − 

Rio de Janeiro, 8-10/9), E. Batista, P. Vellasco, L. Lima (eds.), 33-58 (vol. 1). 

[2] Gonçalves R, Camotim D (2004). GBT local and global buckling analysis of aluminium and stainess steel columns, 

Computers and Structures, Vol. 82(17-19), 1473-1484. 

[3] Gonçalves R, Camotim D (2011). Generalised beam theory-based finite elements for elastoplastic thin-walled metal 

members, Thin-Walled Structures, Vol. 49(10), 1237-1245. 

[4] Gonçalves R, Camotim D (2012). Geometrically non-linear generalised beam theory for elastoplastic thin-walled metal 

members, Thin-Walled Structures, Vol. 51(February), 121-129. 

[5] Abambres M, Camotim D, Silvestre N. (2011). Elastoplastic analysis of thin-walled bars in the context of generalised 

beam theory, Numerical Methods in Engineering 2011 (CMNE 2011 − Coimbra, 14-17/6), A. Tadeu et al. (eds.), 151. 

(full paper in CD-ROM Proceedings) (Portuguese). 

https://hal.archives-ouvertes.fr/hal-02411624


Abambres M, Camotim D, Silvestre N (2012). Geometrically and Physically Non-Linear GBT-Based Analysis of Thin-Walled Steel 
Members, URL 

 

[6] Abambres M, Camotim D, Silvestre N. (2011). Physically non-linear analysis of steel beams in the context of GBT, 

Proceedings of VIII Congress on Steel and Composite Construction (CMM VIII − Guimarães, 24-25/11), L. Silva et al. 

(eds.), II-295-II-304. (Portuguese). 

[7] Silva NF, Camotim D, Silvestre N (2008). GBT cross-section analysis of thin-walled members with arbitrary cross-

sections: a novel approach, Proceedings of 5th International Conference on Thin-Walled Structures – Recent Innovations 

and Developments (ICTWS 2008 − Brisbane, 18-20/6), M. Mahendran (ed.), 1189-1196 (vol. 2). 

[8] DS Simulia Inc. (2004). ABAQUS Standard (version 6.5). 

[9] Silvestre N, Camotim D (2002). First order generalised beam theory for arbitrary orthotropic materials, Thin-Walled 

Structures, Vol. 40(9), 755-789. 

[10] Silvestre N, Camotim D (2003). Non-linear generalised beam theory for cold-formed steel members, International 

Journal of Structural Stability and Dynamics, Vol. 3(4), 461-490. 

[11] Abambres M., Camotim D, Silvestre N (2012). Physically non-linear GBT analysis of thin-walled members, submitted 

for publication. 

[12] De Borst R, Sluys LJ (2007). Computational Methods in Non-linear Solid Mechanics, Koiter Institute, Delft University 

of Technology. 

[13] Clarke MJ, Hancock GJ (1990). A study of incremental-iterative strategies for non-linear analysis, International 

Journal for Numerical Methods in Engineering, Vol.29 (7), 1365-1391. 

[14] MathWorks (2010). MATLAB – The Language of Technical Computing.  

https://hal.archives-ouvertes.fr/hal-02411624

