
P
os
te
d
on

20
J
u
l
20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
26
72
18
5.
v
1
—

T
h
is

is
a
p
re
p
ri
n
t.

V
er
si
on

of
R
ec
or
d
av
ai
la
b
le

at
h
tt
p
s:
//
d
oi
.o
rg
/1
0.
33
90
/m

a1
22
23
78
7

ANN-based Fatigue Strength of Concrete Under Compression

Miguel Abambres 1 and Lantsoght E 2

1Num3ros
2Affiliation not available

October 30, 2023

Abstract

When concrete is subjected to cycles of compression, its strength is lower than the statically determined concrete compressive

strength. This reduction is typically expressed as a function of the number of cycles. In this work, we predict the reduced

capacity as function of a given number of cycles by means of artificial neural networks (ANN). A 203-point experimental dataset

gathered from the literature was used. The proposed ANN model results in a maximum relative error of 5.1% and a mean

counterpart of 1.2% for the whole dataset. It’s shown that the proposed analytical model outperforms the existing design code

expressions.
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Important Notes:  

1. The first author has been proposing ANN-based models in former publications, in each case designed and tested 

for a fairly limited amount of data (especially when empirical). Regardless the high quality of the predictions yielded 

by some model for the used data, the reader should not blindly accept that model as accurate for any other 

instances falling inside the input domain of the design dataset. Any analytical approximation model must undergo 

extensive validation before it can be taken as reliable (the more inputs, the larger the validation process). Models 

proposed until that stage are part of a learning process towards excellence. 

2. If you can’t find any of my papers referred as references of this work, feel free to email me and I´ll send you the 

PDF right away. 

 

Abstract 

When concrete is subjected to cycles of compression, its strength is lower than the statically determined 

concrete compressive strength. This reduction is typically expressed as a function of the number of 

cycles. In this work, we predict the reduced capacity as function of a given number of cycles by means 

of artificial neural networks (ANN). A 203-point experimental dataset gathered from the literature was 

used. The proposed ANN model results in a maximum relative error of 5.1% and a mean counterpart 

of 1.2% for the whole dataset. It’s shown that the proposed analytical model outperforms the existing 

design code expressions. 
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1. Introduction 

When concrete is subjected to cycles of compression, its strength is lower than the 

statically determined concrete compressive strength (CEB Committee GTG 15 1988, 

Suzuki et al. 2007). The practical implication of that behavior is the need to consider a 
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lower concrete compressive strength in the design of structures subjected to loading 

cycles, such as bridges (e.g., Lantsoght et al. 2019a, b, c). The most fundamental 

approach to study fatigue isolates the different material contributions in the cross-

section (Blasón et al 2019, Tilly 1979). As such, the effect of fatigue on a concrete cross-

section under compression is studied by testing concrete cylinders, from different 

section parts, under cyclic loading (Bazant and Hubler 2014, Bennett and Muir 1967). 

In a classic fatigue test of a concrete specimen (most often a cylinder) under 

compression, the load is applied as a sine wave between a fixed lower and upper 

value. These loads induce stresses in the concrete specimen that fluctuate between 

Smin fc and Smax fc (0 ≤ Smin, Smax ≤ 1). The focus of this work is only on constant 

amplitude loading. When the stress ratios Smin and Smax are chosen as the input values 

for an experiment, the outcome of the experiment then is the number of cycles to 

failure (N). For the design of a new structure, we usually have the number of cycles 

the structure needs to withstand (for example, N = 1 000 000). Thus, the design or 

assessment is based on the reduced strength associated with that number of cycles. 

That said, the number of cycles N is one of the input (independent) variables in this 

work, being the strength ratio (Smax) the sole output variable.  

2. Data Gathering 

The dataset used in this work was constructed from the database published by 

Lantsoght et al (2016). To have unique input data points, the geometric average of the 

number of cycles (N) was employed in cases of repeated tests. Furthermore, (i) 

experimental results on ultra-high-performance concrete were excluded, since it could 

not be ensured a good continuum of input values of the concrete compressive 

strength, and (ii) experiments on heat-treated specimens were left out because 

Lohaus and Anders (2006) reported that their fatigue performance was different from 

the regular specimen counterpart.   

Tab. 1 describes the independent and dependent variables considered in the 

dataset, being illustrated in Fig. 1. These are the most important parameters to 

consider when testing concrete specimens under fatigue compression (CEB 
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Committee GTG 15 1988). The influence of testing frequency on the fatigue life is still 

a topic of discussion (e.g., CEB Committee GTG 15 1988, Hsu 1981, Lohaus and 

Anders 2006). Moreover, the authors wanted to propose a model that depends on the 

same parameters as the design code counterpart. 

The 203-point dataset used for ANN simulations is available in Developer (2019a). 

The reader should keep in mind that the proposed ANN model (to be described in 

section 3) is only valid within the range of values of each input variable in the dataset, 

which are shown in Tab. 1. 

 

Tab. 1. Independent (input) and dependent (output or target) variables in the dataset, 
including ranges of values. 

VARIABLES 
ANN NODE 
NUMBER 

MIN MAX 

Material fc,cyl (MPa) 
average concrete compressive strength 

(statically determined) 
1 24.03 170 

Loading 
Smin (-) minimum stress ratio 2 0 0.836 

N (-) number of cycles to failure 3 3 63 841 046.87 

Output Smax
 (-) strength ratio or maximum stress ratio 1 0.465 0.960 

 

 

 

 

Fig. 1. Input and output variables, shown on an example of an experimental loading scheme. 
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3. Artificial Neural Networks 

3.1 Brief Introduction 

Machine learning (ML), one of the six disciplines of Artificial Intelligence (AI), allows 

us to ‘teach’ computers how to perform tasks by providing examples of how they 

should be done (Hertzmann and Fleet 2012). The Artificial Neural Network (also 

referred in this manuscript as ANN or neural net) is ML’s (i) oldest (McCulloch and 

Pitts 1943) and (ii) most powerful (Hern 2016) technique. ANNs also lead the number 

of practical applications, virtually covering any field of knowledge (Wilamowski and 

Irwin 2011, Prieto et. al 2016). An ANN is a mathematical model inspired by the way 

a brain processes information, i.e. with the help of its processing units (the neurons). 

ANNs have been employed to perform several types of tasks. Concerning nonlinear 

regression, the task adopted in this work, ANN-based solutions are frequently more 

accurate than those provided by traditional approaches, such as multi-variate 

nonlinear regression, besides not requiring a good knowledge of the function shape 

being modelled (Flood 2008). 

 

 
Fig. 2. Example of a feedforward neural network. 
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The general ANN structure consists of several nodes disposed in L vertical layers 

(input layer, hidden layers, and output layer) and connected between them, as 

depicted in Fig. 2. Associated to each node in layers 2 to L, also called neuron, is a 

linear or nonlinear transfer (also called activation) function, which receives the so-

called net input and transmits an output. All ANNs implemented in this work are called 

feedforward, since data presented in the input layer flows in the forward direction only, 

as exemplified in Fig. 2. 

Further information on Artificial Neural Networks might be found in previous 

publications or Haykin (2009). 

 

3.2 Learning 

Each connection between 2 nodes is associated to a synaptic weight (real value), 

which, together with each neuron’s bias (also a real value), are the most common types 

of neural net unknown parameters that will be determined through learning. Learning is 

nothing else than determining network unknown parameters through some algorithm in 

order to minimize network’s performance measure, typically a function of the difference 

between predicted and target (desired) outputs. When ANN learning has an iterative 

nature, it consists of three phases: (i) training, (ii) validation, and (iii) testing. From previous 

knowledge, examples or data points are selected to train the neural net, grouped in the 

so-called training dataset. During an iterative learning, while the training dataset is used 

to tune network unknowns, a process of cross-validation takes place by using a set of 

data completely distinct from the training counterpart (the validation dataset), so that the 

generalization performance of the network can be attested. Once ‘optimum’ network 

parameters are determined, typically associated to a minimum of the validation 

performance curve (called early stop – see Fig. 3), many authors still perform a final 

assessment of model’s accuracy, by presenting to it a third fully distinct dataset called 

‘testing’. Heuristics suggests that early stopping avoids overfitting, i.e. the loss of ANN’s 

generalization ability.  

https://open.lbry.com/@research:9?r=5FAkWPRRTwTxgTVWMn37pbf1qSiCsQ39
https://archive.ph/wip/8BOex
https://archive.ph/wip/8BOex


Abambres M, Lantsoght E (2020). ANN-based Fatigue Strength of Concrete Under Compression, URL 
 

  
 

 

 

Fig. 3. Cross-validation - assessing network’s generalization ability. 

 

3.3 Implemented ANN features 

The ‘behavior’ of any ANN depends on many ‘features’, having been implemented 15 

ANN features in this work (including data pre/post processing ones). For those features, 

it is important to bear in mind that no ANN guarantees good approximations via 

extrapolation (either in functional approximation or classification problems), i.e. the 

implemented ANNs should not be applied outside the input variable ranges used for 

network training. Since there are no objective rules dictating which method per feature 

guarantees the best network performance for a specific problem, an extensive parametric 

analysis (composed of nine parametric sub-analyses) was carried out to find ‘the 

optimum’ net design.  A description of all methods/formulations implemented for each 

ANN feature (see Tabs. 2-4) – they are a selection from state of art literature on ANNs, 

including both traditional and promising modern techniques, can be found in previous 

published works (e.g., Abambres and Lantsoght 2018) – the reader might need to go 

through it to fully understand the meaning of all variables and acronyms reported in 

this manuscript. The whole work was coded in MATLAB (The Mathworks, Inc. 2018), 

making use of its neural network toolbox when dealing with popular learning algorithms 

(1-3 in Tab. 4). Each parametric sub-analysis (SA) consists of running all feasible 

combinations (also called ‘combos’) of pre-selected methods for each ANN feature, in 

order to get performance results for each designed net, thus allowing the selection of the 

best ANN according to a certain criterion. The best network in each parametric SA is the 
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one exhibiting the smallest average relative error (called performance) for all learning 

data.  

 

Tab. 2. Implemented ANN features (F) 1-5. 

FEATURE 
METHOD 

F1 F2 F3 F4 F5 

Qualitative 
Var Represent 

Dimensional 
Analysis 

Input Dimensionality 
Reduction 

% 
Train-Valid-Test 

Input 
Normalization 

1 Boolean Vectors Yes Linear Correlation 80-10-10 Linear Max Abs 

2 Eq Spaced in ]0,1] No Auto-Encoder 70-15-15 Linear [0, 1] 

3 - - - 60-20-20 Linear [-1, 1] 

4 - - Ortho Rand Proj 50-25-25 Nonlinear 

5 - - Sparse Rand Proj - Lin Mean Std 

6 - - No - No 

 

Tab. 3. Implemented ANN features (F) 6-10. 

FEATURE 
METHOD 

F6 F7 F8 F9 F10 

Output  
Transfer 

Output  
Normalization 

Net  
Architecture 

Hidden  
Layers 

Connectivity 

1 Logistic Lin [a, b] = 0.7[φmin, φmax] MLPN 1 HL Adjacent Layers 

2 - Lin [a, b] = 0.6[φmin, φmax] RBFN 2 HL Adj Layers + In-Out 

3 Hyperbolic Tang Lin [a, b] = 0.5[φmin, φmax] - 3 HL Fully-Connected 

4 - Linear Mean Std - - - 

5 Bilinear No - - - 

6 Compet - - - - 

7 Identity - - - - 

 

With respect to the ANN formulation used in Abambres and Lantsoght (2018), a 

few changes were carried out for this work. They were (i) the elimination of 

performance improvements (feature 14), although that feature is still integrated in the 

code for eventual future use, and (ii) the algorithm used in feature 4. The latter is 

described next. 
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Tab. 4. Implemented ANN features (F) 11-15. 

FEATURE 
METHOD 

F11 F12 F13 F14 F15 

Hidden  
Transfer 

Parameter  
Initialization 

Learning 
Algorithm 

Performance 
Improvement 

Training  
Mode 

1 Logistic Midpoint (W) + Rands (b) BP - Batch 

2 Identity-Logistic Rands BPA - Mini-Batch 

3 Hyperbolic Tang Randnc (W) + Rands (b) LM - Online 

4 Bipolar Randnr (W) + Rands (b) ELM - - 

5 Bilinear Randsmall mb ELM - - 

6 Positive Sat Linear Rand [-Δ, Δ] I-ELM - - 

7 Sinusoid SVD CI-ELM - - 

8 Thin-Plate Spline MB SVD - - - 

9 Gaussian - - - - 

10 Multiquadratic - - - - 

11 Radbas - - - - 

 

 

3.3.1 Training, Validation and Testing Datasets (feature 4) 

Four distributions of data (methods) were implemented, namely pt-pv-ptt = {80-10-

10, 70-15-15, 60-20-20, 50-25-25}, where pt-pv-ptt represent the amount of training, 

validation and testing examples as % of all learning data (P), respectively. Aiming to 

divide learning data into training, validation and testing subsets according to a 

predefined distribution pt-pv-ptt, the following algorithm was implemented (all variables 

are involved in these steps, including qualitative ones after converted to numeric): 

1) Reduce pt-pv-ptt values by 10 units each. 

2) For each variable q (row) in the complete input dataset, compute its minimum 

and maximum values. 

3) Select all patterns (if some) from the learning dataset where each variable takes 

either its minimum or maximum value. Those patterns must be included in the 

training dataset, regardless what pt is. However, if the number of patterns is 

lower than the rounding of pt * P/100, more patterns should be added to the 

training set in the following way: 
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a. Compute the number of patterns (Lpt) that need to be added to the initially 

selected training patterns to equal round(pt * P/100). 

b. Randomly select 10.000 combinations of Lpt patterns from all those not 

included in the training set defined prior a).  

c. For each combination/scenario in b), add those Lpt patterns to the set of 

training patterns defined prior a), and label all remaining learning patterns 

as “validation + testing”. 

d. For each scenario in c), and for each pattern labeled as “validation + 

testing”, check if that pattern has at least one input variable that takes a 

value not taken by any pattern in the training set. If it hasn´t, then that 

pattern should be moved to the training set. 

e. Among all 10.000 scenarios of training and “validation + testing” subsets 

addressed in b) till d), the “winner” should be the one guaranteeing the 

amount of training data (Pt*) closest to round(pt * P/100). 

f. If the winning training set selected in e) guarantees | Pt* / P - pt | ≤ 0.2, 

then that becomes the training data to be taken for simulation. Otherwise, 

the training data should be selected according to step 2 in subsection 

3.3.4 of Abambres et al. (2018). 

4) Increase pt-pv-ptt values by 10 units each (to re-obtain the original input values 

– recall step 1). 

5) In order to select the validation patterns, randomly select pv / (pv + ptt) of those 

patterns not belonging to the previously defined training dataset. The remainder 

defines the testing dataset. 

It might happen that the actual distribution pt-pv-ptt to be used in the simulation is 

not equal to the one imposed a priori (before step 1). 

 

3.4 Network Performance Assessment 

Several types of results were computed to assess network outputs, namely (i) 

maximum error, (ii) % errors greater than 3%, and (iii) performance, which are defined 
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next. All abovementioned errors are relative errors (expressed in %) based on the 

following definition, concerning a single output variable and data pattern, 

 

100
qp qLp

qp

qp

d y

d
e

−
=

                               ,   (1) 

where (i) dqp is the qth desired (or target) output when pattern p within iteration i 

(p=1,…, Pi) is presented to the network, and (ii) yqLp is net’s qth output for the same 

data pattern. Moreover, denominator in eq. (1) is replaced by 1 whenever |dqp| < 0.05 

– dqp in the nominator keeps its real value.  This exception to eq. (1) aims to reduce 

the apparent negative effect of large relative errors associated to target values close 

to zero. Even so, this trick may still lead to (relatively) large solution errors while 

groundbreaking results are depicted as regression plots (target vs. predicted outputs).     

 

3.4.1 Maximum Error 

This variable measures the maximum relative error, as defined by eq. (1), among 

all output variables and learning patterns. 

 

3.4.2 Percentage of Errors > 3% 

This variable measures the percentage of relative errors, as defined by eq. (1), 

among all output variables and learning patterns, that are greater than 3%. 

 

3.4.3 Performance 

In functional approximation problems, network performance is defined as the 

average relative error, as defined in eq. (1), among all output variables and data 

patterns being evaluated (e.g., training, all data).  
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3.5 Software Validation  

Several benchmark datasets/functions were used to validate the developed software, 

involving low- to high-dimensional problems and small to large volumes of data. Validation 

results are not presented herein but they were made public in Researcher (2018). 

Moreover, several papers involving the successful application of this software have 

already been published and can be downloaded here (a centralized platform) or here (a 

decentralized platform – you should try it, according to this). 

 

3.6 Parametric Analysis Results  

Aiming to reduce the computing time by cutting in the number of combos to be run – 

note that all features combined lead to hundreds of millions of combos, the whole 

parametric simulation was divided into nine parametric SAs, where in each one feature 7 

only takes a single value. This measure aims to make the performance ranking of all 

combos within each ‘small’ analysis more ‘reliable’, since results used for comparison are 

based on target and output datasets as used in ANN training and yielded by the designed 

network, respectively (they are free of any postprocessing that eliminates output 

normalization effects on relative error values). Whereas (i) the 1st and 2nd SAs aimed to 

select the best methods from features 1, 2, 5, 8 and 13 (all combined), while adopting a 

single popular method for each of the remaining features (F3: 6, F4: 2, F6: {1 or 7}, F7: 1, 

F9: 1, F10: 1, F11: {3, 9 or 11}, F12: 2, F14: 1, F15: 1 – see Tabs. 2-4) – SA 1 involved learning 

algorithms 1-3 and SA 2 involved the ELM-based counterpart, (ii) the 3rd – 7th SAs 

combined all possible methods from features 3, 4, 6 and 7, and concerning all other 

features, adopted the methods integrating the best combination from the aforementioned 

SAs 1-2, (iii) the 8th SA combined all possible methods from features 11, 12 and 14, and 

concerning all other features, adopted the methods integrating the best combination 

(results compared after postprocessing) among the previous five sub-analyses, and lastly 

(iv) the 9th SA combined all possible methods from features 9, 10 and 15, and concerning 

all other features, adopted the methods integrating the best combination from the previous 
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analysis. Summing up the ANN feature combinations for all parametric SAs, a total of 219 

combos were run for this work.   

 

Tab. 5. ANN feature (F) methods used in the best combo from each parametric sub-analysis (SA). 

SA F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F15 

1 1 2 6 2 5 1 1 1 1 1 3 2 3 3 

2 1 2 6 2 6 7 1 1 1 1 3 2 7 3 

3 1 2 6 1 5 1 1 1 1 1 3 2 3 3 

4 1 2 6 3 5 1 2 1 1 1 3 2 3 3 

5 1 2 6 2 5 1 3 1 1 1 3 2 3 3 

6 1 2 6 1 5 7 4 1 1 1 3 2 3 3 

7 1 2 6 3 5 7 5 1 1 1 3 2 3 3 

8 1 2 6 3 5 7 5 1 1 1 3 2 3 3 

9 1 2 6 3 5 7 5 1 3 3 3 2 3 3 

 

Tab. 6. Performance results for the best design from each parametric sub-analysis. 

SA 

ANN 

Max Error 
(%) 

Performance 
All Data                                   

(%) 

Errors > 3% 
(%) 

Total Hidden 
Nodes 

Running Time / 
Data Point 

(s) 

1 18.2 3.0 39.9 12 2.67E-04 

2 51.2 10.7 79.8 53 4.70E-05 

3 21.2 2.9 35.5 12 8.39E-05 

4 18.1 3.0 37.9 12 5.06E-05 

5 21.5 3.0 39.4 12 6.13E-05 

6 21.3 2.9 36.5 12 4.10E-05 

7 23.1 2.9 39.4 12 4.40E-05 

8 23.0 3.0 36.0 12 6.95E-05 

9 5.1 1.2 10.3 12 7.09E-05 

 

ANN feature methods used in the best combo from each of the abovementioned nine 

parametric sub-analyses, are specified in Tab. 5 (the numbers represent the method 

number as in Tabs 2-4). Tab. 6 shows the corresponding relevant results for those 

combos, namely (i) maximum error, (ii) % errors > 3%, (iii) performance (all described in 

section 3, and evaluated for all learning data), (iv) total number of hidden nodes in the 

model, and (v) average computing time per example (including data pre- and post-

processing). All results shown in Tab. 6 are based on target and output datasets 

computed in their original format, i.e. free of any transformations due to output 
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normalization and/or dimensional analysis.  The microprocessor used in this work has 

the following features: OS: Win10Home 64bits, RAM: 48 GB, Local Disk Memory: 1 

TB, CPU: Intel® Core™ i7 8700K @ 3.70-4.70 GHz. 

 

3.7 Proposed ANN-Based Model 

The proposed model is the one, among the best ones from all parametric SAs, 

exhibiting the lowest maximum error (SA 9). That model is characterized by the ANN 

feature methods { 1, 2, 6, 3, 5, 7, 5, 1, 3, 3, 3, 2, 3, 1, 3} in Tabs. 2-4. Aiming to allow 

implementation of this model by any user, all variables/equations required for (i) data 

preprocessing, (ii) ANN simulation, and (iii) data postprocessing, are presented in 3.7.1-

3.7.3, respectively. The proposed model is a MLPN with 5 layers and a distribution of 

nodes/layer of 3-4-4-4-1. Concerning connectivity, the network is fully-connected, and the 

hidden and output transfer functions are all Hyperbolic Tangent and Identity, respectively. 

The network was trained using the Levenberg-Marquardt (LM) algorithm (1500 epochs). 

After design, the average network computing time concerning the presentation of a single 

example (including data pre/postprocessing) is 7.09x10-5 s – Fig. 4 depicts a simplified 

scheme of some of network key features. Lastly, all relevant performance results 

concerning the proposed ANN are illustrated in 3.7.4. The obtained ANN solution for 

every data point can be found in Developer (2019a), making it possible to compute the 

exact (with all decimal figures) approximation errors. 

 

 

Fig. 4. Proposed 3-4-4-4-1 fully-connected MLPN – simplified scheme. 

 

3 4 4 4 1 
inputs output 

MLPN 

(computing time = 7.09x10-5 s/example) 
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It is worth recalling that, in this manuscript, whenever a vector is added to a matrix, 

it means the former is to be added to all columns of the latter (valid in MATLAB). 

 

3.7.1 Input Data Preprocessing 

For future use of the proposed ANN to simulate new data Y1,sim (3 x Psim matrix), 

concerning Psim patterns, the same data preprocessing (if any) performed before 

training must be applied to the input dataset. That preprocessing is defined by the 

methods used for ANN features 2, 3 and 5 (respectively 2, 6 and 5 – see Tab. 2), 

which should be applied after all (eventual) qualitative variables in the input dataset 

are converted to numerical (using feature 1’s method). Next, the necessary 

preprocessing to be applied to Y1,sim, concerning features 2, 3 and 5, is fully described.  

 
Dimensional Analysis and Dimensionality Reduction 

Since no dimensional analysis (d.a.) nor dimensionality reduction (d.r.) were 

carried out, one has 

   1, 1, 1,. . . .
   

after after

sim sim simd r d a
Y Y Y= =  

.   (2)

 

Input Normalization 

After input normalization, the new input dataset {𝑌1,𝑠𝑖𝑚}𝑛
𝑎𝑓𝑡𝑒𝑟

 is defined as function 

of the previously determined {𝑌1,𝑠𝑖𝑚}𝑑.𝑟
𝑎𝑓𝑡𝑒𝑟

, and they have the same size, reading 

   ( )1, 1, .
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
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 

 

,  (3) 

where one recalls that operator ‘./’ divides row i in the numerator by INP(i, 2).  

https://open.lbry.com/@research:9?r=5FAkWPRRTwTxgTVWMn37pbf1qSiCsQ39


Abambres M, Lantsoght E (2020). ANN-based Fatigue Strength of Concrete Under Compression, URL 
 

  
 

 

3.7.2 ANN-Based Analytical Model 

Once determined the preprocessed input dataset {Y1,sim}n
after (3 x Psim matrix), the 

next step is to present it to the proposed ANN to obtain the predicted output dataset 

{Y5,sim}n
after (1 x Psim vector), which will be given in the same preprocessed format of the 

target dataset used in learning. In order to convert the predicted outputs to their ‘original 

format’ (i.e., without any transformation due to normalization or dimensional analysis – 

the only transformation visible will be the (eventual) qualitative variables written in their 

numeric representation), some postprocessing is needed, as described in detail in 3.7.3. 

Next, the mathematical representation of the proposed ANN is given, so that any user 

can implement it to determine {Y5,sim}n
after, thus eliminating all rumors that ANNs are 

‘black boxes’. 

 ( )
 ( )
 ( )

   ( )

1 2

3 1 3

1,

1,

1,

5,

2 3 2

4 1 4 2 4 2 3 4 3

1 5 2 5 2 3 5 3 4 5 41,

2 2 2

3 3

4 4

5 5

afterT

n

afterT T

n

after

sim

sim

sim

s

T T T

n

after afterT T T T

ni nm sim

Y W b

Y W W Y b

Y W W Y W Y b

W

Y

W Y W Y

Y

W

Y

Y Y Y b









−

− −

− − −

− − − −

= +

= + +

= + + +

= + + + +

 

, (4) 
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.  (5) 

Arrays Wj-s and bs are stored online in Developer (2019b), aiming to avoid an overlong 

article and ease model’s implementation by any interested reader. 

 

3.7.3 Output Data Postprocessing 

In order to transform the output dataset obtained by the proposed ANN, {Y5,sim}n
after 

(1 x Psim vector),  to its original format (Y5,sim), i.e. without the effects of dimensional 
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analysis and/or output normalization (possibly) taken in target dataset preprocessing 

prior training, the postprocessing addressed next must be performed. 

 
Non-normalized and Original formats  

Once obtained {Y5,sim}n
after, the its transformation to its non-normalized and original 

formats, respectively {𝑌5,𝑠𝑖𝑚}𝑑.𝑎.
𝑎𝑓𝑡𝑒𝑟

 and 𝑌5,𝑠𝑖𝑚, reads 

   5, 5, 5,. .
 =  = 

after

sim sim simd

after

na
Y Y Y  

,   (6) 

since no output normalization nor dimensional analysis were carried out.  

 

 
Fig. 5. Regression plot for the proposed ANN (see output variable in Fig. 1) – one should bear in mind 

that the lower value of both axis is not null. 
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3.7.4 Performance Results 

Finally, results yielded by the proposed ANN, in terms of performance variables defined 

in sub-section 3.4, are presented in this section in the form of several graphs: (i) a 

regression plot (Fig. 5), where network target and output data are plotted for each data 

point, as x- and y- coordinates respectively – a measure of linear correlation is given by 

the Pearson Correlation Coefficient (R); (ii) a performance plot (Fig. 6), where 

performance (average error) values are displayed for several learning datasets; and (iii) 

an error plot (Fig. 7), where values concern all data (iii1) maximum error and (iii2) % of 

errors greater than 3%. It´s worth highlighting that all graphical results just mentioned are 

based on effective target and output values, i.e. computed in their original format.   

 

 

 

Fig. 6. Performance plot (mean errors) for the proposed ANN. 
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Fig. 7. Error plot for the proposed ANN. 

 

4. ANN-based vs. Design Code Models 

Tab. 1 in URL (peer-reviewed version of this work – worst in Abambres’ opinion, and 

not fully reviewed by that author) gives an overview of some currently and formerly 

used design code equations to assess the fatigue life of concrete under compression. 

Some of these models are used next for performance comparison against the 

proposed ANN in predicting Smax. The 203 experimental data points were used for that 

purpose – they are available in Developer (2019a), along with the ANN predictions.  

Fig. 1 shows the comparison between the experimental and predicted values – the 

following three codes were considered: (i) NEN 6723 (Code Committee 351-001 

"Technical Foundations for Structures” 2009), (ii) NEN-EN 1992-2+C1 (CEN 2011), 

and (iii) the Model Code 2010 (fib 2012). Details on how the variables in those code 

equations were computed are available on URL. We can see that a few code 

predictions yield negative Smax, which is physically impossible. 
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Tab. 7 gives the statistical properties of the experimental-to-predicted Smax ratios for 

all the 203 data points, concerning all predictive models assessed. Besides Fig. 8, 

Tab. 7 makes it clear that the proposed ANN is the most effective analytical model for 

the 203 examples used in this research (in second place comes the Model Code 

2010).  

 

 

Fig. 1. Comparison between experimental and predicted values for the 203 examples. 
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Tab. 7. Statistics of Smax, exp  / Smax, p for all the 203 data points (AVG = average, STD = standard 

deviation, COV = coefficient of variation). 

Model AVG STD COV Min Max 

ANN 1.0 0.02 1.69% 0.96 1.05 

NEN 6723 1.6 0.63 40.53% -5.83 2.87 

Eurocode 2-2 1.1 4.59 430.61% -56.25 3.91 

Model Code 2010 1.4 0.28 20.46% 0.91 2.26 

 

5. Conslusions 

▪ A 203-point experimental dataset gathered from the literature was used to develop 

an analytical model that predicts the (reduced) compressive strength of concrete 

under fatigue compression. 

▪ The proposed “optimum” model was found through extensive parametric artificial 

neural network simulations, resulting in a maximum relative error of 5.1% and a 

mean counterpart of 1.2% for all the 203 data points.  

▪ It’s shown that the proposed ANN outperforms the three design code equations 

used for comparison purposes: (i) NEN 6723, (ii) NEN-EN 1992-2+C1 (Eurocode 2-

2), and (iii) the Model Code 2010 – Fig. 8 and Tab. 7 (shown just above) make it 

clear. 

▪ The computational time of the proposed model is tinny – 0.07 milliseconds per data 

point. 

▪ Further experimental results, on high-cycle fatigue, are necessary to broad the 

scope of the proposed model. Given the required time for such experiments, 

perhaps highly robust numerical analyses can be used to generate data for N > 64 

M cycles (e.g., up to 250 or 500 million). 
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