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Abstract

According to the current codes and guidelines, shear assessment of existing reinforced concrete slab bridges sometimes leads to

the conclusion that the bridge under consideration has insufficient shear capacity. The calculated shear capacity, however, does

not consider the transverse redistribution capacity of slabs, thus leading to overconservative values. This paper proposes an

artificial neural network (ANN)-based formula to come up with estimates of the shear capacity of one-way reinforced concrete

slabs under a concentrated load, based on 287 test results gathered from the literature. The proposed model yields maximum

and mean relative errors of 0.0% for the 287 data points. Moreover, it was illustrated to clearly outperform (mean Vtest /

VANN =1.00) the Eurocode 2 provisions (mean VE,EC / VR,c =1.59) for that dataset. A step-by-step assessment scheme for

reinforced concrete slab bridges by means of the ANN-based model is also proposed, which results in an improvement of the

current assessment procedures.
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According to the current codes and guidelines, shear assessment of existing reinforced concrete slab bridges 

sometimes leads to the conclusion that the bridge under consideration has insufficient shear capacity. The 

calculated shear capacity, however, does not consider the transverse redistribution capacity of slabs, thus 

leading to overconservative values. This paper proposes an artificial neural network (ANN)-based formula 

to come up with estimates of the shear capacity of one-way reinforced concrete slabs under a concentrated 

load, based on 287 test results gathered from the literature. The proposed model yields maximum and mean 

relative errors of 0.0% for the 287 data points. Moreover, it was illustrated to clearly outperform (mean Vtest 

/ VANN =1.00) the Eurocode 2 provisions (mean VE,EC / VR,c =1.59) for that dataset. A step-by-step assessment 

scheme for reinforced concrete slab bridges by means of the ANN-based model is also proposed, which 

results in an improvement of the current assessment procedures. 

 

Keywords: Neural Networks, Design Formula, One-Way Bridge Slabs, Reinforced Concrete, Shear Capacity  

 

Important Note: The first author has been proposing several ANN-based models, in each case designed and tested for a fairly limited amount of 

data (especially when empirical). Regardless the high quality of the predictions yielded by some model for the used data, the reader should not 

blindly accept that model as accurate for any other instances falling inside the input domain of the design dataset. Any analytical approximation 

model must undergo extensive validation before it can be taken as reliable (the more inputs, the larger the validation process). Models proposed 

until that stage are part of a learning process towards excellence. 
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1. Introduction 

As the age of existing infrastructures is increasing, the question if existing structures are safe 

for further operation becomes important. To answer this question, an accurate assessment of the 

existing infrastructures is necessary. The assessment should not be overly conservative, so that 

unnecessary strengthening or replacement actions can be avoided. On the other hand, the 

assessment should be as accurate as possible, so that structural safety can be assured.  

When reinforced concrete slab bridges are assessed, the estimated one-way shear capacity can 

be overly conservative, as transverse redistribution is not considered in the existing codes 

(Lantsoght et al. 2013a, Lantsoght et al. 2015a). In Europe, the live load model from NEN-EN 

1991-2:2003 (CEN 2003) uses a distributed lane load and design tandems. These tandems consist 

of large concentrated loads that are closely spaced, so that the load combination with the currently 

prescribed load model in Europe leads to large shear stresses at the support. As a result, a large 

number of reinforced concrete slab bridges are found to be insufficient for shear when assessed 

according to the currently governing codes (Walraven 2010). 

For more than a century (Talbot 1905, 1906, 1908), researchers have been debating the shear 

capacity of reinforced concrete members without shear reinforcement (Kani 1964, Regan 1993, 

Collins and Kuchma 1999). In slabs, the additional dimension of the width makes the problem 

three-dimensional (Lantsoght et al. 2013b, Lantsoght et al. 2015c). A plasticity-based model 

https://hal.archives-ouvertes.fr/hal-02074675
https://hal.archives-ouvertes.fr/hal-02074675
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(Lantsoght et al. 2017b, Lantsoght et al. 2017c) has been proposed to estimate the maximum load 

on a reinforced concrete slab bridge, but this method has the disadvantage that the calculation 

needs to be tailored to the geometry of the bridge under consideration. Nonlinear finite element 

models (Falbr 2011) combined with the appropriate safety formats (Schlune 2011, Schlune et al. 

2011, Belletti et al. 2013, Blomfors et al. 2016) can be used for the assessment of existing 

reinforced concrete slab bridges, but this approach is quite time-consuming (Shu et al. 2018). 

When a large number of bridges need to be assessed, computationally fast methods are necessary. 

To determine the sectional shear stresses and bending moments due to the applied load 

combination, automated procedures using linear finite element models can be used (Frissen 2018). 

Determining the bending moment capacity can be based on the traditional flexural theory for 

reinforced concrete beams. For a more effective estimate of the shear capacity of one-way 

reinforced concrete slabs under a concentrated load, this paper proposes the use of artificial neural 

networks (ANN), a popular machine learning technique.  

Machine learning, one of the six disciplines of Artificial Intelligence (AI) without which the task of 

having machines acting humanly could not be accomplished, allows us to ‘teach’ computers how to 

perform tasks by providing examples of how they should be done (Hertzmann and Fleet 2012). When 

there is abundant data (also called examples or patterns) explaining a certain phenomenon, but its 

theory richness is poor, machine learning can be a perfect tool; as such its application to the problem 

https://hal.archives-ouvertes.fr/hal-02074675
https://hal.archives-ouvertes.fr/hal-02074675
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of shear in one-way slabs is suitable and timely. The Artificial Neural Network (also referred in this 

manuscript as ANN or neural net) is the (i) oldest (McCulloch and Pitts 1943) and (ii) most powerful 

(Hern 2016) technique of machine learning. ANNs also lead the number of practical applications, 

virtually covering any field of knowledge (Wilamowski and Irwin 2011, Prieto et al. 2016). In its most 

general form, an ANN is a mathematical model designed to perform a particular task, based in the way 

the human brain processes information, i.e. with the help of its processing units (the neurons). ANNs 

have been employed to perform several types of real-world basic tasks, and have been successfully 

applied to civil engineering problems (Flood and Kartam 1994, Mukherjee et al. 1996, Aymerich and 

Serra 1998, Pu and Mesbahi 2006, Gholizadeh et al. 2011, Naser 2018, Venkata Rao and Murthy 2018, 

Weinstein Jordan et al. 2018, Yaseen et al. 2018). Some efforts have also been geared towards using 

ANN-based prediction models for the problem related to shear in structural concrete, yet these models 

still have relatively large errors (Adhikary and Mutsuyoshi 2006, Jung and Kim 2008, Gandomi et al. 

2013, Kara 2013, Naik and Kute 2013, Sarveghadi et al. 2015, Hossain et al. 2016, Al-Musawi 2018).  

 

 

 

 

Tab. 1. Variables adopted in the study, showing minimum and maximum values in the database. 

https://hal.archives-ouvertes.fr/hal-02074675
https://hal.archives-ouvertes.fr/hal-02074675
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Input Variables min max Input 

Slab  
geometry 

b (m) slab width 0.249 11.125 1 

h (m) slab height 0.100 1.005 2 

dl (m) slab effective depth 0.080 0.916 6 

lspan (m) span length 0.600 12.192 9 

Material fcm (MPa) average concrete cylinder compressive strength 12.4 77.7 3 

Reinforcement 
ρx (-) longitudinal reinforcement ratio 0.003 0.028 4 

ρy (-) transverse reinforcement ratio 0 0.015 5 

Loading parameters 

br (m) distance from slab edge to the center of the load 0.125 5.563 7 

lload (m) dimension of the loading plate (wheel print) 0.070 2.519 8 

ME / VE dl (-) 
ratio of sectional moment to 

product of sectional shear and effective depth 
0.14 10.75 10 

 av/ dl (-) ratio of clear shear span to effective depth 0.00 6.88 11 

Output Variables   Output 

VR (kN) shear capacity 35 2444 1 

 

Concerning functional approximation, ANN-based solutions are frequently more accurate than 

those provided by traditional approaches, such as multi-variate nonlinear regression, besides not 

requiring a good knowledge of the function shape being modelled (Flood 2008). The proposed 

ANN was designed based on the 287 experimental results available to date in the literature. The 

goal of this study is not to provide a full description of the mechanics underlying the behaviour of 

one-way reinforced concrete slabs.  

 

2. Data Gathering 

The dataset used for the development of the ANN simulations consists of 287 experimental results 

from (i) tests gathered from the literature reported in (Lantsoght et al. 2015b), namely Graf 1933, Richart 

and Kluge 1939, Richart 1948a, b, Diaz de Cossio et al. 1962, Leonhardt and Walther 1962a, b, 

https://hal.archives-ouvertes.fr/hal-02074675
https://hal.archives-ouvertes.fr/hal-02074675
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Rajagopalan and Ferguson 1968, Aster and Koch 1974, Reineck et al. 1978, Kani et al. 1979, Heger and 

McGrath 1980, Ekeberg et al. 1982, Regan 1982, Regan and Rezai-Jorabi 1988, Fang et al. 1990, Miller 

et al. 1994, Cullington et al. 1996, Furuuchi et al. 1998, Olonisakin and Alexander 1999, Serna-Ros et 

al. 2002, Jäger 2005, Rombach and Velasco 2005, Sherwood et al. 2006, Vaz Rodrigues 2006, Vaz 

Rodrigues et al. 2006, Coin and Thonier 2007, Jäger 2007, Rombach and Latte 2008, Jaeger and Marti 

2009, Rombach et al. 2009, Reißen and Hegger 2011, 2013a, b, (ii) the TU Delft slab shear tests 

(Lantsoght 2013), and (iii) recently reported experiments (Mohammadyan-Yasouj et al. 2015). Eleven 

variables were adopted as input (independent) for the ANN-based shear capacity predictions, as 

described and illustrated in Tab. 1 and Fig. 1, respectively. Note that the proposed ANN features just 10 

nodes in the first layer, which inputs have to be obtained as function of those eleven variables, as 

described in §3.7.1. For all experiments, the sectional shear and moment were calculated considering all 

loads, thus including the self-weight. For the case of a continuous slab shown in Fig. 1, the slight gradient 

in the shear diagram and the slight nonlinearity in the bending moment diagram are caused by the 

self-weight. All values of the concrete compressive strength are the cylinder compressive strength. 

This value was either reported in the original reference, or calculated as 82% of the cube compressive 

strength (van der Veen and Gijsbers 2011). The corresponding 287-point dataset is publicly available 

(Developer 2018a), and was constructed by randomly ordering the collected experimental results. 

3. Artificial Neural Networks 

https://hal.archives-ouvertes.fr/hal-02074675
https://hal.archives-ouvertes.fr/hal-02074675
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3.1 Introduction 

The general ANN structure consists of several nodes in L vertical layers (input layer, hidden 

layers, and output layer) and connected between them, as depicted in Fig. 2. Associated to each 

node in layers 2 to L, also called neuron, is a linear or nonlinear transfer (also called activation) 

function, which receives the so-called net input and transmits an output. All ANNs implemented 

in this work are called feedforward, since data presented in the input layer flows in the forward 

direction only, i.e. every node only connects to nodes belonging to layers located at the right-hand-

side of its layer, as shown in Fig. 2. ANN’s computing power makes them suitable to efficiently 

solve small to large-scale complex problems, which can be attributed to their (i) massively parallel 

distributed structure and (ii) ability to learn and generalize, i.e, produce reasonably accurate 

outputs for inputs not used during the learning (also called training) phase.  

https://hal.archives-ouvertes.fr/hal-02074675
https://hal.archives-ouvertes.fr/hal-02074675
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Fig. 1. Input (independent) and output (dependent) variables considered in ANN design. 

https://hal.archives-ouvertes.fr/hal-02074675
https://hal.archives-ouvertes.fr/hal-02074675
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Fig. 2. Example of a feedforward neural network. 

 

3.2 Learning 

Each connection between 2 nodes is associated to a synaptic weight (real value), which, together 

with each neuron’s bias (also a real value), are the most common types of neural net unknown 

parameters that will be determined through learning. Learning is nothing else than determining 

network unknown parameters through some algorithm in order to minimize the network’s 

performance measure, typically a function of the difference between predicted and target (desired) 

outputs. When ANN learning has an iterative nature, it consists of three phases: (i) training, (ii) 

validation, and (iii) testing. From previous knowledge, examples or data points are selected to train 

the neural net, grouped in the so-called training dataset. Those examples are said to be ‘labeled’ or 

‘unlabeled’, whether they consist of inputs paired with their targets, or just of the inputs themselves 

– learning is called supervised (e.g., functional approximation, classification) or unsupervised 

https://hal.archives-ouvertes.fr/hal-02074675
https://hal.archives-ouvertes.fr/hal-02074675
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(e.g., clustering), whether data used is labelled or unlabeled, respectively. During an iterative 

learning, while the training dataset is used to tune network unknowns, a process of cross-validation 

takes place by using a set of data completely distinct from the training counterpart (the validation 

dataset), so that the generalization performance of the network can be attested. Once ‘optimum’ 

network parameters are determined, typically associated to a minimum of the validation 

performance curve (called early stop – see Fig. 3), many authors still perform a final assessment 

of model’s accuracy, by presenting to it a third fully distinct dataset called ‘testing’. Heuristics 

suggests that early stopping avoids overfitting, i.e. the loss of ANN’s generalization ability. One 

of the causes of overfitting might be learning too many input-target examples suffering from data 

noise, since the network might learn some of its features, which do not belong to the underlying 

function being modelled (Haykin 2009). 

 

Fig. 3. Cross-validation - assessing network’s generalization ability. 

 

https://hal.archives-ouvertes.fr/hal-02074675
https://hal.archives-ouvertes.fr/hal-02074675
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3.3 Implemented ANN features 

The ‘behavior’ of any ANN depends on many ‘features’, with 15 ANN features 

implemented in this work (including data pre/post processing ones). For those features, it is 

important to bear in mind that no ANN guarantees good approximations via extrapolation 

(either in functional approximation or classification problems), i.e. the implemented ANNs 

should not be applied outside the input variable ranges used for network training. Since there 

are no objective rules dictating which method per feature guarantees the best network 

performance for a specific problem, an extensive parametric analysis (composed of nine 

parametric sub-analyses) was carried out to find ‘the optimum’ net design.  A description of 

all methods/formulations implemented for each ANN feature (see Tabs. 2-4; these are a 

selection from the state-of-the-art on ANNs, including both traditional and promising modern 

techniques), can be found in previous published works (e.g., Abambres et al. 2018); the 

interested reader is referred to these works if he/she wants to deeply understand or reproduce 

the work shown in this paper. The code was developed in MATLAB (The Mathworks 2017), 

making use of its neural network toolbox when dealing with popular learning algorithms (1 -3 

from F13 in Tab. 4). Each parametric sub-analysis (SA) consists of running all feasible 

combinations (also called ‘combos’) of pre-selected methods for each ANN feature, in order 

to get performance results for each designed net, thus allowing the selection of the best ANN 

https://hal.archives-ouvertes.fr/hal-02074675
https://hal.archives-ouvertes.fr/hal-02074675


  

ID: hal-02074675   

© 2018 by Abambres M, Lantsoght E (CC BY 4.0) 

 

 

 

12 
Abambres M, Lantsoght E (2018). Neural network-based formula for shear capacity prediction of  

one-way slabs under concentrated loads, hal-02074675 

 

according to a certain criterion. The best network in each parametric SA is the one exhibiting 

the smallest average relative error (called performance) for all learning data.  

 

Tab. 2. Implemented ANN features (F) 1-5. 

FEATURE 
METHOD 

  

F1 F2 F3 F4 F5 

Qualitative 
Var Represent 

Dimensional 
Analysis 

Input Dimensionality 
Reduction 

% 
Train-Valid-

Test 

Input 
Normalization 

1 Boolean Vectors Yes Linear Correlation 80-10-10 Linear Max Abs 

2 
Eq Spaced in 

]0,1] 
No Auto-Encoder 70-15-15 Linear [0, 1] 

3 - - - 60-20-20 Linear [-1, 1] 
4 - - Ortho Rand Proj 50-25-25 Nonlinear 
5 - - Sparse Rand Proj - Lin Mean Std 
6 - - No - No 

 

Tab. 3. Implemented ANN features (F) 6-10. 

FEATURE 
METHOD  

F6 F7 F8 F9 F10 

Output  
Transfer 

Output  
Normalization 

Net  
Architecture 

Hidden  
Layers 

Connectivity 

1 Logistic Lin [a, b] = 0.7[φmin, φmax] MLPN 1 HL Adjacent Layers 
2 - Lin [a, b] = 0.6[φmin, φmax] RBFN 2 HL Adj Layers + In-Out 
3 Hyperbolic Tang Lin [a, b] = 0.5[φmin, φmax] - 3 HL Fully-Connected 
4 - Linear Mean Std - - - 
5 Bilinear No - - - 
6 Compet - - - - 
7 Identity - - - - 

 

 

 

 

 

 

 

 

https://hal.archives-ouvertes.fr/hal-02074675
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Tab. 4. Implemented ANN features (F) 11-15. 

FEATURE 
METHOD 

F11 F12 F13 F14 F15 

Hidden  
Transfer 

Parameter  
Initialization 

Learning 
Algorithm 

Performance 
Improvement 

Training  
Mode 

1 Logistic Midpoint (W) + Rands (b) BP NNC Batch 
2 Identity-Logistic Rands BPA - Mini-Batch 
3 Hyperbolic Tang Randnc (W) + Rands (b) LM - Online 
4 Bipolar Randnr (W) + Rands (b) ELM - - 
5 Bilinear Randsmall mb ELM - - 
6 Positive Sat Linear Rand [-Δ, Δ] I-ELM - - 
7 Sinusoid SVD CI-ELM - - 
8 Thin-Plate Spline MB SVD - - - 
9 Gaussian - - - - 

10 Multiquadratic - - - - 
11 Radbas - - - - 

 

3.4 Network Performance Assessment 

Several types of results were computed to assess network outputs, namely (i) maximum error, 

(ii) % errors greater than 3%, and (iii) performance, which are defined next. All abovementioned 

errors are relative errors (expressed in %) based on the following definition, concerning a single 

output variable (as is the case for the studied problem) and data pattern, 

100
qp qLp

qp

qp

d y

d
e

−
=

                               ,   (1) 

where (i) dqp is the qth desired (or target) output when pattern p within iteration i (p=1,…, Pi) is 

presented to the network, and (ii) yqLp is net’s qth output for the same data pattern. Moreover, the 

denominator in eq. (1) is replaced by 1 whenever |dqp| < 0.05; dqp in the nominator keeps its real 

value.  This exception to eq. (1) aims to reduce the apparent negative effect of large relative errors 

associated to target values close to zero. Even so, this trick may still lead to (relatively) large 

https://hal.archives-ouvertes.fr/hal-02074675
https://hal.archives-ouvertes.fr/hal-02074675
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solution errors when groundbreaking results are depicted as regression plots (target vs. predicted 

outputs).     

 

3.4.1 Maximum Error 

This variable measures the maximum relative error, as defined by eq. (1), among all output 

variables and learning patterns. 

 

3.4.2 Percentage of Errors > 3% 

This variable measures the percentage of relative errors, as defined by eq. (1), among all output 

variables and learning patterns that are greater than 3%. 

 

 

3.4.3 Performance 

In functional approximation problems, network performance is defined as the average relative 

error, as defined in eq. (1), among all output variables and data patterns being evaluated (e.g., 

training, all data).  

 

3.5 Software Validation  

Several benchmark datasets/functions were used to validate the developed software, involving 

low- to high-dimensional problems and small to large volumes of data. The interested reader can 

find the results of the validation online (Researcher 2018). 

https://hal.archives-ouvertes.fr/hal-02074675
https://hal.archives-ouvertes.fr/hal-02074675
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3.6 Parametric Analysis Results  

Aiming to reduce the computational time by reducing the number of combos to be ran (note 

that all features combined lead to hundreds of millions of combos), the whole parametric 

simulation was divided into nine parametric SAs, where in each one feature 7 only takes a single 

value. This measure aims to make the performance ranking of all combos within each ‘small’ 

analysis more ‘reliable’, since results used for comparison are based on target and output datasets 

as used in ANN training and yielded by the designed network, respectively (they are free of any 

post-processing that eliminates output normalization effects on relative error values). Whereas (i) 

the 1st and 2nd SAs aimed to select the best methods from features 1, 2, 5, 8 and 13 (all combined), 

while adopting a single popular method for each of the remaining features (F3: 6, F4: 2, F6: {1 or 

7}, F7: 1, F9: 1, F10: 1, F11: {3, 9 or 11}, F12: 2, F14: 1, F15: 1 – see Tabs. 2-4) – SA 1 involved 

learning algorithms 1-3 and SA 2 involved the ELM-based counterpart, (ii) the 3rd – 7th SAs 

combined all possible methods from features 3, 4, 6 and 7, and concerning all other features, 

adopted the methods integrating the best combination from the aforementioned first SA, (iii) the 

8th SA combined all possible methods from features 11, 12 and 14, and concerning all other 

features, adopted the methods integrating the best combination (results compared after post-

processing) among the previous five sub-analyses, and lastly (iv) the 9th SA combined all possible 

methods from features 9, 10 and 15, and concerning all other features, adopted the methods 

https://hal.archives-ouvertes.fr/hal-02074675
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integrating the best combination from the previous analysis. Summing up the ANN feature 

combinations for all parametric SAs, a total of 475 combos were ran for this work.   

The ANN feature methods used in the best combo from each of the abovementioned nine 

parametric sub-analyses are specified in Tab. 5 (the numbers represent the method number as in 

Tabs 2-4). Tab. 6 shows the corresponding relevant results for those combos, namely (i) maximum 

error, (ii) % errors > 3%, (iii) performance (see §3.4 – evaluated for all learning data), (iv) total 

number of hidden nodes in the model, and (v) average computing time per example (including data 

pre- and post-processing). All results shown in Tab. 6 are based on target and output datasets 

computed in their original format, i.e. free of any transformations due to output normalization 

and/or dimensional analysis. The microprocessors used in this work have the following features: 

OS: Win10Home 64bits, RAMs: 128 GB, Local Disk Memory: 1 TB, CPUs: Intel® Core™ i9 

7960X @ 2.80-4.20 GHz. 

Tab. 5. ANN feature (F) methods used in the best combo from each parametric sub-analysis (SA). 

SA F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 

1 1 2 6 2 5 1 1 1 1 1 3 2 3 1 3 

2 1 2 6 2 1 7 1 1 1 1 3 2 5 1 3 

3 1 2 1 3 5 1 1 1 1 1 3 2 3 1 3 

4 1 2 1 3 5 1 2 1 1 1 3 2 3 1 3 

5 1 2 1 4 5 1 3 1 1 1 3 2 3 1 3 

6 1 2 1 4 5 7 4 1 1 1 3 2 3 1 3 

7 1 2 1 1 5 7 5 1 1 1 3 2 3 1 3 

8 1 2 1 1 5 7 5 1 1 1 5 5 3 1 3 

9 1 2 1 1 5 7 5 1 2 3 5 5 3 1 3 
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Tab. 6. Performance results for the best design from each parametric sub-analysis: (a) ANN, (b) NNC. 

SA 

ANN 

Max Error 
(%) 

Performance 
All Data                                   

(%) 

Errors > 3% 
(%) 

Total Hidden 
Nodes 

Running Time / 
Data Point 

(s) 

1 0.0 0.0 0.0 44 2.13E-04 
2 559.9 34.0 88.2 70 1.46E-04 
3 0.0 0.0 0.0 37 2.43E-04 
4 0.0 0.0 0.0 37 3.38E-04 
5 0.0 0.0 0.0 37 1.77E-04 
6 0.0 0.0 0.0 40 2.22E-04 
7 171.0 5.8 30.3 29 1.48E-04 
8 55.0 4.8 48.8 37 2.27E-04 
9 66.7 6.5 62.0 30 1.59E-04 

(a) 

SA 

NNC 

Max Error 
(%) 

Performance 
All Data                                   

(%) 

Errors > 3% 
(%) 

Total Hidden 
Nodes 

Running Time / 
Data Point 

(s) 

1 - - - - - 
2 - - - - - 
3 - - - - - 
4 - - - - - 
5 - - - - - 
6 - - - - - 
7 9.2 0.3 4.5 29 1.79E-04 
8 54.3 4.8 48.4 37 2.40E-04 
9 49.7 5.2 53.0 30 1.67E-04 

(b) 

 

 

 

3.7 Proposed ANN-Based Model 

The proposed model is the one, among the best ones from all parametric SAs, exhibiting the 

lowest maximum error. Since in this work, several SAs yielded approximately null errors, the 

ANN having the least number of hidden nodes and the lowest running time per data point (SA 5) 

was adopted (the maximum error and performance values are of orders 10-11 and 10-12, 
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respectively). That model is characterized by the ANN feature methods {1, 2, 1, 4, 5, 1, 3, 1, 1, 1, 

3, 2, 3, 1, 3} in Tabs. 2-4. To allow implementation of this model by any user, all 

variables/equations required for (i) data preprocessing, (ii) ANN simulation, and (iii) data post-

processing, are presented in §3.7.1-3.7.3. The proposed model is a single MLPN with 3 layers and 

a distribution of nodes/layer of 10-37-1. Concerning connectivity, the network is partially-

connected, and the hidden and output transfer functions are all Hyperbolic Tangent and Logistic, 

respectively. The network was trained using the Levenberg-Marquardt algorithm (2565 epochs). 

After design, the average network computing time of a single example (including data pre/post-

processing) is 1.77E-04 s. Fig. 4 depicts a simplified scheme of some of the network key features. 

Lastly, all relevant performance results of the proposed ANN are illustrated in §3.7.4. The obtained 

ANN solution for every data point can be found in Developer (2018a). 

 

Fig. 4 Proposed 10-37-1 partially-connected MLPN – simplified scheme. 

 

 

It is worth recalling that, in this manuscript, whenever a vector is added to a matrix, it means 

the former is to be added to all columns of the latter (valid in MATLAB). 
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3.7.1 Input Data Preprocessing 

For future use of the proposed ANN-based model to simulate new data Y1,sim (11 x Psim matrix), 

concerning Psim patterns, the same data preprocessing (if any) performed before training must be 

applied to the input dataset. That preprocessing is defined by the methods used for ANN features 

2, 3 and 5 (respectively 2, 1 and 5 – see Tab. 2). Next, the necessary preprocessing to be applied 

to Y1,sim, concerning features 2, 3 and 5, is fully described.  

 

Dimensional Analysis  

Since dimensional analysis (d.a.) was not carried out, one has 

 1, 1,. .
  

after

sim simd a
Y Y=

 .   (2) 

Dimensionality Reduction 

After dimensionality reduction (d.r.), the new input dataset {𝑌1,𝑠𝑖𝑚}𝑑.𝑟.
𝑎𝑓𝑡𝑒𝑟

 is defined as function 

of the previously determined {𝑌1,𝑠𝑖𝑚}𝑑.𝑎.
𝑎𝑓𝑡𝑒𝑟

= 𝑌1,𝑠𝑖𝑚, reading 

 

 

  ( )

1, 1,. .

1, . .
6,:

  

[]

after

sim simd r

after

sim d r

Y Y

Y

=

=
 ,   (3) 

where the second equation removes the 6th row from {𝑌1,𝑠𝑖𝑚}𝑑.𝑟.
𝑎𝑓𝑡𝑒𝑟

, after the latter has been defined 

in the first equation. Based on eqs. (2)-(3), Tabs. 1-2, and the 287 test results considered in this 
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study, one can say that the effective depth of the slab is a useless variable for the accurate prediction 

of shear capacity. It was concluded during ANN simulations (preprocessing) that the effective 

depth is highly and linearly correlated with some of the remaining input variables.  

 

Input Normalization 

After input normalization, the new input dataset {𝑌1,𝑠𝑖𝑚}𝑛
𝑎𝑓𝑡𝑒𝑟

 is defined as function of the 

previously determined {𝑌1,𝑠𝑖𝑚}𝑑.𝑟
𝑎𝑓𝑡𝑒𝑟

, and they have the same size, reading 

 

   ( )1, 1, .

1.86738675958188 1.75441900815846

0.256292682926829 0.139298384453331

37.6049268292683 15.4296708553494

0.0117466550522648 0.0050249606

INP

9944280

0.0031743

 =  - (:,1)  ./ (:,INP INP 2)
after after

sim simn d r
Y Y

=
6153310105 0.00313405738707657

0.747257839721253 0.672593729449374

0.409189895470383 0.355659673580697

2.49434083623694 1.56947133251911

3.09112818815331 1.68344744643481

2.37830191637631 1.27920413483700

















 
 
 
 
 
 

  ,  (4) 

 

where one recalls that operator ‘./’ divides row i in the numerator by INP(i, 2). 
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3.7.2 ANN-Based Analytical Model 

Once the preprocessed input dataset {Y1,sim}n
after(10 x Psim matrix) is determined, the next step 

is to present it to the proposed ANN to obtain the predicted output dataset {Y3,sim}n
after (1 x Psim 

vector), which will be given in the same preprocessed format of the target dataset used in learning. 

In order to convert the predicted outputs to their ‘original format’ (i.e., without any transformation 

due to normalization or dimensional analysis – the only transformation visible will be the 

(eventual) qualitative variables written in their numeric representation), some post-processing is 

needed, as described in detail in §3.7.3. Next, the mathematical representation of the proposed 

ANN is given, so that any user can implement it to determine {Y3,sim}n
after

 , thus eliminating all 

rumors that ANNs are ‘black boxes’. 

 ( )
  ( )

1 2

2 3

1,

3, 2

2 2 2

3 3

afterT

n

after

sim

sim

T

n

Y

Y

Y W b

W Y b





−

−

= +

= +
 ,  (5) 

where 

2 2

3 3

( )

1
( )

1

s s

s s

s

e e
s

e e

s
e

 

 

−

−

−

−
= =

+

= =
+  .  (6) 
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Because of their length, arrays Wj-s and bs are stored online (Developer 2018b), which also eases 

the model’s implementation by any interested reader. 

 

3.7.3 Output Data Post-processing 

In order to transform the output dataset obtained by the proposed ANN, {Y3,sim}n
after (1 x Psim 

vector),  to its original format (Y3,sim), i.e. without the effects of output normalization taken in target 

dataset preprocessing prior training, the post-processing described next must be performed. 

 

Non-normalized (just after dimensional analysis) and original formats 

Once {Y3,sim}n
after is obtained, eq. (7) transforms the vector to its non-normalized format 

{𝑌3,𝑠𝑖𝑚}𝑑.𝑎.
𝑎𝑓𝑡𝑒𝑟

, which equals the original format 𝑌3,𝑠𝑖𝑚 because no dimensional analysis was performed,  

 

   ( )3, 3, 3,. .
 =  = 0.25 x 4816.5652 35.225

after

sim sim si

after

nmd a
Y Y Y +−

 .   (7) 

 

3.7.4 Performance Results 

Finally, the results of the proposed ANN for the 287 datapoints, in terms of performance 

variables defined in §3.4, are presented in this section in the form of several graphs: (i) a regression 

plot (Fig. 5), where network target and output data are plotted, for each data point, as x- and y- 

coordinates respectively – a measure of linear correlation is given by the Pearson Correlation 
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Coefficient (R); (ii) a performance plot (Fig. 6), where performance (average error) values are 

displayed for several learning datasets; and (iii) an error plot (Fig. 7), where values concern all 

data (iii1) maximum error and (iii2) % of errors greater than 3%. It´s worth highlighting that all 

graphical results just mentioned are based on effective target and output values, i.e. computed in 

their original format (free of any transformations due to output normalization).   

 

Fig. 5. Regression plot for the proposed ANN. 
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Fig. 6. Performance plot (mean errors) for the proposed ANN. 

 

Fig. 7. Error plot for the proposed ANN. 

 

 

https://hal.archives-ouvertes.fr/hal-02074675
https://hal.archives-ouvertes.fr/hal-02074675


  

ID: hal-02074675   

© 2018 by Abambres M, Lantsoght E (CC BY 4.0) 

 

 

 

25 
Abambres M, Lantsoght E (2018). Neural network-based formula for shear capacity prediction of  

one-way slabs under concentrated loads, hal-02074675 

 

4. ANN-based vs. Existing Models 

Since the focus of this study is the assessment of reinforced concrete slab bridges in Europe, 

this section demonstrates the improved prediction capability of the ANN-based analytical model 

proposed in section 3, as compared to the shear capacity of one-way slabs predicted by the 

provisions of Eurocode 2 (CEN 2005). The reduction of the contribution of loads close to the 

support (av ≤ 2dl, see Fig. 1) to the sectional shear force prescribed by the Eurocode is taken into 

account, resulting in VE,EC. This reduction corresponds to an increase in the shear capacity for loads 

close to the support as a result of direct load transfer. Since this mechanism only occurs for loads 

applied on top of the cross-section and close to the support, the Eurocode 2 reduces the contribution 

of externally applied loads close to the support. As such, this provision allows for finding the 

sectional shear force for a combination of loads – a situation that occurs when assessing existing 

reinforced concrete slab bridges. The corresponding average shear capacity according to Eurocode 

2 is determined as: 

( )
1/3 3/2

, 0.15 100 0.035R c x cm eff l cm eff lV k f b d k f b d= 
  , (8) 

200
1 2

l

mm
k

d
= + 

   

with (i) k the size effect factor, (ii) ρx the longitudinal reinforcement ratio, (iii) fcm the average 

concrete cylinder compressive strength, (iv) beff the effective width for one-way shear, determined 
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with a 45o horizontal load spreading from the loading plate back edge to the face of the support, and 

(v) dl the effective depth to the longitudinal reinforcement. CR,c = 0.15 is used to find average values 

(Regan 1987). The average value of the ratio VE,EC / VR,c (with VE,EC the sectional shear force taking 

into account the reduction of the contribution of loads close to the support, and VR,c according to Eq. 

8) for the 287 experimental results is 1.59, with a standard deviation of 0.79 and a coefficient of 

variation of 49%. For comparison, the average value of Vtest / VANN (with Vtest the sectional shear force 

at failure in each experiment, and VANN the ANN-based shear capacity) is 1.00, with a standard 

deviation of 5×10-14 and a coefficient of variation of 0.0%. The major improvement of the ANN as 

compared to the Eurocode is also shown in Fig. 8, where the x-axis shows the predicted shear 

capacity Vmodel (VANN or VR,c) and the y-axis shows the experimental result Vexp, which is VE,EC for 

comparison to the Eurocode shear capacity and Vtest for comparison to the ANN-predicted shear 

capacity. Fig. 8 shows the results for the 287 datapoints used in this study. 
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Fig. 8. Comparison between tested and predicted shear capacities: Eurocode 2 vs. proposed ANN. 

 

5. Discussion 

The results in Fig. 8 show the major improvement, for the 287-point dataset used, of the 

proposed ANN-based model as compared to currently used Eurocode 2 expressions for the shear 

capacity of reinforced concrete slabs in one-way shear. One critical observation should be made 

here: the ANN predictions are only valid within the input variable ranges of the employed 287-

point dataset (Developer 2018a). The number of experiments is rather limited, since slab shear 

tests are expensive to carry out. The user should keep this restriction in mind when predicting the 

shear capacity with the proposed ANN. The dataset covers a large number of variables that 
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influence the shear assessment of reinforced concrete, but all tested slabs are rectangular. For 

skewed slabs, shear stress concentrations will result in the obtuse angle (Cope and Clark 1984, 

Cope and Rao 1984, Cope 1985), making the skew angle an important factor for the shear 

assessment. Besides the Liverpool experiments on skewed slabs (Cope et al. 1983), which did not 

result in shear failures of the slabs, the authors are not aware of experiments on skewed slabs under 

concentrated loads failing in one-way shear. To extend this novel ANN-based design approach to 

new scenarios, experiments on skewed slabs failing in one-way shear should be carried out, and 

the skew angle should then be included as input variable for ANN design. 

To use the developed ANN formulation for the assessment of existing reinforced concrete one-

way slab bridges, the following procedure is proposed: 

1. Make a linear finite element model (LFEM) of the bridge under consideration. 

2. Apply the superimposed dead load and live load model on the LFEM. 

3. Make the factored load combination according to the governing code. 

4. Find the governing sectional shear force vu based on a distribution of the peak shear stress 

over 4dl (Lantsoght et al. 2017a) and find the governing sectional moment mE (including 

the effect of the twisting moments (Wood 1968)) based on a distribution of the peak 

sectional moment over 2dl. 
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5. Determine the shear capacity with the proposed ANN (VANN), taking as input the 

characteristic material properties (where possible updated with measured values) and the 

value of ME / (VE dl) where this ratio is maximum. Divide VANN by 4dl to find vANN. 

6. Determine the bending moment capacity mR based on the flexural theory of concrete elements. 

7. Determine the Unity Check for shear: UCv = vu/vANN. If UCv ≤ 1, the requirements for shear 

are fulfilled.  

8. Determine the Unity Check for bending moment: UCm = mE/mR. If UCm ≤ 1, the 

requirements for bending moment are fulfilled. 

9. If UCv > UCm the bridge can be considered as shear-critical: shear failure is expected to 

occur before flexural failure. 

When either UCv or UCm is found to be larger than 1, more refined methods, such as nonlinear 

finite element analysis or proof load testing, may be necessary for a sharper assessment of the 

bridge under consideration. The proposed method is fast, cheap, and computationally efficient, 

and as such it is especially suitable for cases where a large number of bridges need to be assessed.   

 

6. Final Remarks 

This paper shows how artificial neural networks can be used to predict the shear capacity of 

one-way slabs under concentrated loads. For this purpose, a database with 287 experimental results 
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was compiled. From this dataset, 10 governing parameters were identified as input variables and 

the sectional shear force at failure was considered the output variable. The proposed ANN-based 

analytical model yielded maximum and mean relative errors of 0.0% and 0.0% for those 287 

points, respectively. Moreover, it was illustrated to clearly outperform (mean Vtest / VANN =1.00) the 

Eurocode 2 provisions (mean VE,EC  / VR,c =1.59) for that dataset. Lastly, a step-by-step methodology 

for the assessment of existing reinforced concrete one-way slab bridges, based on the use of the 

developed ANN-based formula, was proposed. 

The study carried out has not yet allowed a full description of the mechanics underlying the 

behaviour of one-way reinforced concrete slabs, but parametric studies by means of accurate and 

robust ANN-based models make it possible to evaluate and improve existing mechanical models. 
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