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Abstract

Fabrication technology and structural engineering states-of-art have led to a growing use of slender structures, making them

more susceptible to static and dynamic actions that may lead to some sort of damage. In this context, regular inspections

and evaluations are necessary to detect and predict structural damage and establish maintenance actions able to guarantee

structural safety and durability with minimal cost. However, these procedures are traditionally quite time-consuming and costly,

and techniques allowing a more effective damage detection are necessary. This paper assesses the potential of Artificial Neural

Network (ANN) models in the prediction of damage localization in structural members, as function of their dynamic properties

– the three first natural frequencies are used. Based on 64 numerical examples from damaged (mostly) and undamaged steel

channel beams, an ANN-based analytical model is proposed as a highly accurate and efficient damage localization estimator. The

proposed model yielded maximum errors of 0.2 and 0.7 % concerning 64 numerical and 3 experimental data points, respectively.

Due to the high-quality of results, authors’ next step is the application of similar approaches to entire structures, based on

much larger datasets.
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Abstract 

Fabrication technology and structural engineering states-of-art have led to a growing use of slender structures, making 

them more susceptible to static and dynamic actions that may lead to some sort of damage. In this context, regular inspections 

and evaluations are necessary to detect and predict structural damage and establish maintenance actions able to guarantee 

structural safety and durability with minimal cost. However, these procedures are traditionally quite time-consuming and 

costly, and techniques allowing a more effective damage detection are necessary. This paper assesses the potential of 

Artificial Neural Network (ANN) models in the prediction of damage localization in structural members, as function of their 

dynamic properties – the three first natural frequencies are used. Based on 64 numerical examples from damaged (mostly) 

and undamaged steel channel beams, an ANN-based analytical model is proposed as a highly accurate and efficient damage 

localization estimator. The proposed model yielded maximum errors of 0.2 and 0.7 % concerning 64 numerical and 3 

experimental data points, respectively. Due to the high-quality of results, authors’ next step is the application of similar 

approaches to entire structures, based on much larger datasets. 

 

Keywords: Structural Health Monitoring; Damage Localization; Steel Beams; Dynamic Properties; Natural 

Frequencies; Artificial Neural Networks. 

1. Introduction 

Fabrication technology and structural engineering states-of-art have led to a growing use of 

slender structures in construction industry. Those structures (or structural members) are more 
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susceptible to static and dynamic actions that may lead to damage and/or excessive vibration. In 

this context, regular inspections and evaluations are necessary to detect and predict structural 

damage and establish maintenance actions able to guarantee structural safety and durability with 

minimal cost. However, these procedures are traditionally quite time-consuming and costly. Thus, 

techniques allowing a more efficient and less resource-dependent damage detection are in high 

demand and will contribute to a more sustainable built environment.  

In recent years, several authors (e.g., Jin et. al 2016, Onur and Abdeljaber 2015, Nguyen et. al 

2015) have concluded that structural damage detection is a problem of pattern recognition, in 

which a classification is made as function of physical properties of a system. Within machine 

learning, several types of Artificial Neural Networks (ANN) (e.g. feedforward nets, self-

organizing maps, learning vector quantization) can become a quite effective damage detection tool 

when used in conjunction with the dynamic properties of a system (e.g., Chengyin et al. 2014, 

Meruane and Mahu 2014) – note that nowadays is quite straight forward the accurate estimation 

of important dynamic properties (e.g., natural frequencies) of (possibly damaged) built structural 

systems (by means of accelerometers and/or other simple decices, and existing software – e.g., 

ARTeMIS Modal 4.0 (SVS 2018)). According to Bandara et al. (2013) and Ahmed (2016), a clear 

challenge concerning ANNs is the fact that they typically need structural data of both damaged 

and intact structures to be able to classify satisfactorily. If the structure is not considered damaged 

in its current state, the information regarding the damaged state will be unavailable unless detailed 

https://hal.archives-ouvertes.fr/hal-02074844
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structural models are used to generate this information, such as numerical ones based on the Finite 

Element Method (FEM). 

Several authors have published the application of machine learning for damage characterization 

in structural members (e.g., Vakil-Baghmisheh et al. 2008, Aydin and Kisi 2015, Kourehli 2015, 

Nazarko and Ziemianski 2017). Nonetheless, none of those studies employed exactly the same 

structure and input/output variables considered in this work. Moreover, the accuracy provided by 

those solutions are typically insufficient (maximum error for all data points > 5%) for what the 

authors of this paper consider to be acceptable (safe) in structural engineering practice. Thus, this 

paper primarily aims to assess the potential of ANN-based models in the prediction of damage 

localization in structural members, as function of their dynamic properties – the three first natural 

frequencies are used in this work. Based on numerical data from damaged (mostly) and undamaged 

steel channel beams, an ANN-based analytical model is proposed and tested for both numerical and 

experimental data. Once proved that the approach taken works well for structural members, authors’ 

next step (in the very near future) is to apply similar procedures to entire bridge or building structures.  

2. Data Gathering 

Inspired by the experimental research of Brasiliano (2005), who assessed the effect of structural 

damage on natural (free vibration) frequency values, the data used for the present investigation 

concerns damaged (mostly) and undamaged ASTM A36 steel channel beams (U101.6x4.67, 

https://hal.archives-ouvertes.fr/hal-02074844
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Gerdau 2018) with a length of 2.155 m and free-free boundary conditions. Sixty-four distinct 

beams (also called examples or data points in this manuscript) were simulated in ANSYS (ANSYS, 

Inc 2018) FEA software to obtain a 3-input and 1-output dataset for ANN design. The three first 

natural frequencies (Hz) of the beam are the input (independent) variables – see Tab. 1, whereas 

the damage location is the output (dependent) variable. The latter is given by the longitudinal 

distance (m) from beam’s edge to the mid-point of local cross-section reduction that defines the 

damage (see Fig. 1(a)). For the 13 undamaged beams, the damage location adopted is non-null, 

randomly taken below 0.005 m, an approach typically providing better ANN-based 

approximations, according to authors’ experience. 

 

(a) 

 

(b) 

Fig. 1. Damaged beam tested by Brasiliano (2005): (a) experimental layout and damage location details, and (b) 

undamaged and damaged cross-sections. 

https://hal.archives-ouvertes.fr/hal-02074844
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Tab. 1. Three first natural frequencies (ANN input variables): numerical vs. test (Brasiliano 2005) results. 

Vibration Mode 

Undamaged Beam Damaged Beam 

Test 
(Hz) 

FEA 
(Hz) 

Error 
FEA vs Test 

(%) 

Test 
(Hz) 

FEA 
(Hz) 

Error 
FEA vs Test 

(%) 

 

43.66 42.54 2.6 39.59 41.14 3.9 

 

120.11 117.04 2.6 117.31 117.19 0.1 

 

235.01 229.00 2.6 222.88 222.22 0.3 

 

Timoshenko beam FEs of type BEAM188 (ANSYS, Inc 2018), characterized by six degrees of 

freedom per node, were employed in all numerical models. For validation purposes, the first two 

models were used to predict the three first natural frequencies of two beams tested by Brasiliano (2005) 

(also reported in Marcy et al. 2014). These beams are characterized by the material and geometrical 

properties mentioned before, being one undamaged/intact and the other not. The latter was divided into 

33 equal longitudinal elements and a 10 mm reduction of its cross-section (shortening of both flanges) 

was performed in elements 18 and 19, as illustrated in Fig. 1. Tab. 1 presents the validation results in 

terms of natural frequencies, as well as the corresponding numerical modal shapes. The maximum 

error of 3.9 % indicates the suitability of the FE model for the present study. Once validated the 

numerical model, 50 other damage scenarios were simulated, varying damage extent and/or location.  

https://hal.archives-ouvertes.fr/hal-02074844
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The last 12 models were made without damage but under different temperatures from -5 to 40 degrees 

Celsius. Considering a room temperature of 22 °C, distinct Young moduli were adopted as proposed 

by Callister and Rethwish (2009). The dataset used in ANN design can be found online in Authors 

(2018a). Next section provides all details concerning the ANN formulation, analyses and results. 

3. Artificial Neural Networks 

3.1 Introduction 

Machine learning, one of the six disciplines of Artificial Intelligence (AI) without which the 

task of having machines acting humanly could not be accomplished, allows us to “teach” 

computers how to perform tasks by providing examples of how they should be done (Hertzmann 

and Fleet 2012). When there is abundant data (also called examples or patterns) explaining a 

certain phenomenon, but its theory richness is poor, machine learning can be a perfect tool. The 

world is quietly being reshaped by machine learning, being the Artificial Neural Network (also 

referred in this manuscript as ANN or neural net) its (i) oldest (McCulloch and Pitts 1943) and (ii) 

most powerful (Hern 2016) technique. ANNs also lead the number of practical applications, 

virtually covering any field of knowledge (Wilamowski and Irwin 2011, Prieto et. al 2016). In its 

most general form, an ANN is a mathematical model designed to perform a particular task, based 

in the way the human brain processes information, i.e. with the help of its processing units (the 

https://hal.archives-ouvertes.fr/hal-02074844
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neurons). ANNs have been employed to perform several types of real-world basic tasks. 

Concerning functional approximation, ANN-based solutions are frequently more accurate than 

those provided by traditional approaches, such as multi-variate nonlinear regression, besides not 

requiring a good knowledge of the function shape being modelled (Flood 2008). 

The general ANN structure consists of several nodes disposed in L vertical layers (input layer, 

hidden layers, and output layer) and connected between them, as depicted in Fig. 2. Associated to 

each node in layers 2 to L, also called neuron, is a linear or nonlinear transfer (also called 

activation) function, which receives the so-called net input and transmits an output (see Fig. 5). 

All ANNs implemented in this work are called feedforward, since data presented in the input layer 

flows in the forward direction only, i.e. every node only connects to nodes belonging to layers 

located at the right-hand-side of its layer, as shown in Fig. 2. ANN’s computing power makes them 

suitable to efficiently solve small to large-scale complex problems, which can be attributed to their 

(i) massively parallel distributed structure and (ii) ability to learn and generalize, i.e, produce 

reasonably accurate outputs for inputs not used during the learning (also called training) phase.  

 

https://hal.archives-ouvertes.fr/hal-02074844
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Fig. 2. Example of a feedforward neural network. 

3.2 Learning 

Each connection between 2 nodes is associated to a synaptic weight (real value), which, together 

with each neuron’s bias (also a real value), are the most common types of neural net unknown 

parameters that will be determined through learning. Learning is nothing else than determining 

network unknown parameters through some algorithm in order to minimize network’s performance 

measure, typically a function of the difference between predicted and target (desired) outputs. When 

ANN learning has an iterative nature, it consists of three phases: (i) training, (ii) validation, and (iii) 

testing. From previous knowledge, examples or data points are selected to train the neural net, 

grouped in the so-called training dataset. Those examples are said to be “labelled” or “unlabeled”, 

whether they consist of inputs paired with their targets, or just of the inputs themselves – learning is 

called supervised (e.g., functional approximation, classification) or unsupervised (e.g., clustering), 

whether data used is labelled or unlabeled, respectively. During an iterative learning, while the 

https://hal.archives-ouvertes.fr/hal-02074844
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training dataset is used to tune network unknowns, a process of cross-validation takes place by using 

a set of data completely distinct from the training counterpart (the validation dataset), so that the 

generalization performance of the network can be attested. Once “optimum” network parameters are 

determined, typically associated to a minimum of the validation performance curve (called early stop 

– see Fig. 3), many authors still perform a final assessment of model’s accuracy, by presenting to it 

a third fully distinct dataset called “testing”. Heuristics suggests that early stopping avoids 

overfitting, i.e. the loss of ANN’s generalization ability. One of the causes of overfitting might be 

learning too many input-target examples suffering from data noise, since the network might learn 

some of its features, which do not belong to the underlying function being modelled (Haykin 2009). 

 

 
Fig. 3. Cross-validation – assessing network’s generalization ability. 

 

https://hal.archives-ouvertes.fr/hal-02074844
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3.3 Implemented ANN features 

The “behavior” of any ANN depends on many “features”, having been implemented 15 ANN 

features in this work (including data pre/post processing ones). For those features, it is important to 

bear in mind that no ANN guarantees good approximations via extrapolation (either in functional 

approximation or classification problems), i.e. the implemented ANNs should not be applied outside 

the input variable ranges used for network training. Since there are no objective rules dictating which 

method per feature guarantees the best network performance for a specific problem, an extensive 

parametric analysis (composed of nine parametric sub-analyses) was carried out to find ‘the optimum’ 

net design. A description of all implemented methods, selected from state of art literature on ANNs 

(including both traditional and promising modern techniques), is presented next – Tabs. 2-4 show all 

features and methods per feature. The whole work was coded in MATLAB (The Mathworks, Inc. 

2017), making use of its neural network toolbox when dealing with popular learning algorithms (1-3 

in Tab. 4). Each parametric sub-analysis (SA) consists of running all feasible combinations (also called 

“combos” ) of pre-selected methods for each ANN feature, in order to get performance results for each 

designed net, thus allowing the selection of the best ANN according to a certain criterion. The best 

network in each parametric SA is the one exhibiting the smallest average relative error (called 

performance) for all learning data. 

It is worth highlighting that, in this manuscript, whenever a vector is added to a matrix, it means 

the former is to be added to all columns of the latter (valid in MATLAB). 

https://hal.archives-ouvertes.fr/hal-02074844
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3.3.1 Qualitative Variable Representation (feature 1) 

A qualitative variable taking n distinct “values” (usually called classes) can be represented in any 

of the following formats: one variable taking n equally spaced values in ]0,1], or 1-of-n encoding 

(boolean vectors – e.g., n=3: [1 0 0] represents class 1, [0 1 0] represents class 2, and [0 0 1] represents 

class 3). After transformation, qualitative variables are placed at the end of the corresponding (input or 

output) dataset, in the same original order. 

 

Tab. 2. Implemented ANN features (F) 1-5. 

FEATURE 
METHOD 

F1 F2 F3 F4 F5 

Qualitative 
Var Represent 

Dimensional 
Analysis 

Input Dimensionality 
Reduction 

% 
Train-Valid-Test 

Input 
Normalization 

1 Boolean Vectors Yes Linear Correlation 80-10-10 Linear Max Abs 

2 Eq Spaced in ]0,1] No Auto-Encoder 70-15-15 Linear [0, 1] 

3 - - - 60-20-20 Linear [-1, 1] 

4 - - Ortho Rand Proj 50-25-25 Nonlinear 

5 - - Sparse Rand Proj - Lin Mean Std 

6 - - No - No 

 

 

3.3.2 Dimensional Analysis (feature 2) 

The most widely used form of dimensional analysis is the Buckingham's π-theorem, which  

was implemented in this work as described in Bhaskar and Nigam (1990). 

 

https://hal.archives-ouvertes.fr/hal-02074844
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3.3.3 Input Dimensionality Reduction (feature 3) 

When designing any ANN, it is crucial for its accuracy that the input variables are independent and 

relevant to the problem (Gholizadeh et al. 2011, Kasun et al. 2016). There are two types of 

dimensionality reduction, namely (i) feature selection (a subset of the original set of input variables is 

used), and (ii) feature extraction (transformation of initial variables into a smaller set). In this work, 

dimensionality reduction is never performed when the number of  input variables  is less than six. The 

implemented methods are described next. 

Linear Correlation  

In this feature selection method, all possible pairs of input variables are assessed with respect 

to their linear dependence, by means of the Pearson correlation coefficient RXY, where X and Y 

denote any two distinct input variables. For a set of n data points (xi, yi), RXY is defined by 

 

( )( )

( ) ( )

1

2 2

1 1

( , )

( ) ( )

n

i i

i
XY

n n

i i

i i

x x y y
Cov X Y

R
Var X Var Y

x x y y

=

= =

− −

= =

− −



                ,   (1) 

where (i) Var(X) and Cov(X, Y) are the variance of X and covariance of X and Y, respectively, and 

(ii) �̅� and �̅� are the mean values of each variable. In this work, cases where |𝑅𝑋𝑌| ≥ 0.99 indicate 

that one of the variables in the pair must be removed from the ANN modelling. The one to be 

removed is the one appearing less in the remaining pairs (𝑋, 𝑌) where |𝑅𝑋𝑌| ≥ 0.99. Once a 

https://hal.archives-ouvertes.fr/hal-02074844
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variable is selected for removal, all pairs (𝑋, 𝑌) involving it must be disregarded in the subsequent 

steps for variable removal. 

 

Auto-Encoder 

This feature extraction technique uses itself a 3-layer feedforward ANN called auto-encoder (AE). 

After training, the hidden layer output (y2p) for the presentation of each problem’s input pattern (y1p) 

is a compressed vector (Q2 x 1) that can be used to replace the original input layer by a (much)  

Tab. 3. Implemented ANN features (F) 6-10. 

FEATURE 
METHOD 

F6 F7 F8 F9 F10 

Output  
Transfer 

Output  
Normalization 

Net  
Architecture 

Hidden  
Layers 

Connectivity 

1 Logistic Lin [a, b] = 0.7[φmin, φmax] MLPN 1 HL Adjacent Layers 

2 - Lin [a, b] = 0.6[φmin, φmax] RBFN 2 HL Adj Layers + In-Out 

3 Hyperbolic Tang Lin [a, b] = 0.5[φmin, φmax] - 3 HL Fully-Connected 

4 - Linear Mean Std - - - 

5 Bilinear No - - - 

6 Compet - - - - 

7 Identity - - - - 

 

smaller one, thus reducing the size of the ANN model. In this work, Q2=round(Q1/2) was adopted, 

being round a function that rounds the argument to the nearest integer. The implemented AE was 

trained using the ‘trainAutoencoder(…)’ function from MATLAB’s neural net toolbox. In order to 

select the best AE, 40 AEs were simulated, and their performance compared by means of the 

performance variable defined in sub-section 3.4. Each AE considered distinct (random) initialization 

https://hal.archives-ouvertes.fr/hal-02074844
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parameters, half of the models used the ‘logsig’ hidden transfer functions, and the other half used 

the ‘satlin’ counterpart, being the identity function the common option for the output activation. In 

each AE, the maximum number of epochs – number of times the whole training dataset is presented 

to the network during learning, was defined (regardless the amount of data) by  

 

1

1

3000, 8
max

1500, 8

Q
epochs

Q


= 


 .  (2) 

Concerning the learning algorithm used for all AEs, no L2 weight regularization was employed, 

which was the only default specification not adopted in ‘trainAutoencoder(…)’. 

 

Tab. 4. Implemented ANN features (F) 11-15. 

FEATURE 
METHOD 

F11 F12 F13 F14 F15 

Hidden  
Transfer 

Parameter  
Initialization 

Learning 
Algorithm 

Performance 
Improvement 

Training  
Mode 

1 Logistic Midpoint (W) + Rands (b) BP NNC Batch 

2 Identity-Logistic Rands BPA - Mini-Batch 

3 Hyperbolic Tang Randnc (W) + Rands (b) LM - Online 

4 Bipolar Randnr (W) + Rands (b) ELM - - 

5 Bilinear Randsmall mb ELM - - 

6 Positive Sat Linear Rand [-Δ, Δ] I-ELM - - 

7 Sinusoid SVD CI-ELM - - 

8 Thin-Plate Spline MB SVD - - - 

9 Gaussian - - - - 

10 Multiquadratic - - - - 

11 Radbas - - - - 

 

https://hal.archives-ouvertes.fr/hal-02074844
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Orthogonal and Sparse Random Projections 

This is another feature extraction technique aiming to reduce the dimension of input data Y1 (Q1 

x P) while retaining the Euclidean distance between data points in the new feature space. This is 

attained by projecting all data along the (i) orthogonal or (ii) sparse random matrix A (Q1 x Q2, Q2 

< Q1), as described by Kasun et al. (2016).

 

 

 

3.3.4 Training, Validation and Testing Datasets (feature 4) 

Four distributions of data (methods) were implemented, namely pt-pv-ptt = {80-10-10, 70-15-

15, 60-20-20, 50-25-25}, where pt-pv-ptt represent the amount of training, validation and testing 

examples as % of all learning data (P), respectively. Aiming to divide learning data into training, 

validation and testing subsets according to a predefined distribution pt-pv-ptt, the following 

algorithm was implemented (all variables are involved in these steps, including qualitative ones 

after converted to numeric – see 3.3.1): 

1) For each variable q (row) in the complete input dataset, compute its minimum and 

maximum values. 

2) Select all patterns (if some) from the learning dataset where each variable takes either its 

minimum or maximum value. Those patterns must be included in the training dataset, 

regardless what pt is. However, if the number of patterns “does not reach” pt, one should 

https://hal.archives-ouvertes.fr/hal-02074844
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add the missing amount, providing those patterns are the ones having more variables taking 

extreme (minimum or maximum) values.  

3) In order to select the validation patterns, randomly select pv / (pv + ptt) of those patterns not 

belonging to the previously defined training dataset. The remainder defines the testing dataset. 

It might happen that the actual distribution pt-pv-ptt is not equal to the one imposed a priori 

(before step 1), which is due to the minimum required training patterns specified in step 2. 

 

3.3.5 Input Normalization (feature 5) 

The progress of training can be impaired if training data defines a region that is relatively narrow in 

some dimensions and elongated in others, which can be alleviated by normalizing each input variable 

across all data patterns. The implemented techniques are the following: 

Linear Max Abs 

Lachtermacher and Fuller (1995) proposed a simple normalization technique given by  

 
1

1

1

( ,:)
{ } ( ,:)   

max ( ,:)
n

Y i
Y i

Y i
=

                ,   (3) 

where {Y1}n (i, :) and Y1 (i, :) are the normalized and non-normalized values of the ith input variable for 

all learning patterns, respectively. Notation “:” in the column index, indicate the selection of all columns 

(learning patterns). 
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Abambres M, Marcy M, Doz G (2018). Potential of Neural Networks for Structural Damage Localization, hal-02074844 

© 2018 by Abambres M et al. (CC BY 4.0) 

 

 

 

17 

 

 

 

 

Linear [0, 1] and [-1, 1] 

A linear transformation for each input variable (i), mapping values in Y1(i,:) from [a*, 

b*]=[min(Y1(i,:)), max(Y1(i,:))] to a generic range [a, b], is obtained from 

 

( )
( )( )
( )
1

1

,: *
{ ,:  

*
} )

*
(n

Y i a
Y aa

b
bi

a

−

−
−= +

               .   (4) 

Ranges [a, b]=[0, 1] and [a, b]=[-1, 1] were considered. 

Nonlinear 

Proposed by Pu and Mesbahi (2006), although in the context of output normalization, the only 

nonlinear normalization method implemented for input data reads  

 

  ( ) ( )( )
( )1

1 1

,
  ,  , ( )

10n t

Y i j
Y i j sign Y i j C i= +

               ,   (5) 

where (i) Y1(i, j) is the non-normalized value of input variable i for pattern j, (ii) t is the number of 

digits in the integer part of Y1(i, j), (iii) sign(…) yields the sign of the argument, and (iv) C(i) is 

the average of two values concerning variable i, C1(i) and C2(i), where the former leads to a 

minimum normalized value of 0.2 for all patterns, and the latter leads to a maximum normalized 

value of 0.8 for all patterns. 
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Linear Mean Std 

Tohidi and Sharifi (2014) proposed the following technique  

  ( )
( ) ( )

( )

1

1

1 ,:

1

,:

,:
  ,:  

Y i

n

Y i

Y i
Y i





−
=

               ,   (6) 

where 𝜇𝑌1(𝑖,:)
 and 𝜎𝑌1(𝑖,:) are the mean and standard deviation of all non-normalized values (all 

patterns) stored by variable i.  

 

3.3.6 Output Transfer Functions (feature 6) 

Logistic 

The most usual form of transfer functions is called Sigmoid. An example is the logistic function 

given by 

1
( )

1 s
s

e


−
=

+
                .   (7)

 

Hyperbolic Tang 

The Hyperbolic Tangent function is also of sigmoid type, being defined as 

( )
s s

s s

e e
s

e e


−

−

−
=

+
       .    (8) 
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Bilinear 

The implemented Bilinear function is defined as  

, 0
( )

0, 0

s s
s

s



= 


 

.   (9) 

Identity 

The Identity activation is often employed in output neurons, reading 

( )s s =  

 .   (10) 

3.3.7 Output Normalization (feature 7) 

Normalization can also be applied to the output variables so that, for instance, the amplitude of the 

solution surface at each variable is the same. Otherwise, training may tend to focus (at least in the 

earlier stages) on the solution surface with the greatest amplitude (Flood and Kartam 1994a). 

Normalization ranges not including the zero value might be a useful alternative since convergence 

issues may arise due to the presence of many small (close to zero) target values (Mukherjee et al. 1996). 

Four normalization methods were implemented. The first three follow eq. (4), where (i) [a, b] = 70% 

[φmin, φmax], (ii) [a, b] = 60% [φmin, φmax], and (iii) [a, b] = 50% [φmin, φmax], being [φmin, φmax] the output 

transfer function range, and [a, b] determined to be centered within [φmin, φmax] and to span the specified 

% (e.g., (b-a) = 0.7 (φmax - φmin)). Whenever the output transfer functions are unbounded (Bilinear and 
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Identity), it was considered [a, b] = [0, 1] and [a, b] = [-1, 1], respectively. The fourth normalization 

method implemented is the one described by eq. (6). 

 

3.3.8 Network Architecture (feature 8) 

Multi-Layer Perceptron Network (MLPN) 

This is a feedforward ANN exhibiting at least one hidden layer. Fig. 2 depicts a 3-2-1 MLPN 

(3 input nodes, 2 hidden neurons and 1 output neuron), where units in each layer link only to some 

nodes located ahead. At this moment, it is appropriate to define the concept of partially- (PC) and 

fully-connected (FC) ANNs. In this work a FC feedforward network is characterized by having 

each node connected to every node in a different layer placed forward – any other type of network 

is said to be PC (e.g., the one in Fig. 2). According to Wilamowski (2009), PC MLPNs are less 

powerful than MLPN where connections across layers are allowed, which usually lead to smaller 

networks (less neurons).  

Fig. 4 represents a generic MLFN composed of L layers, where l (l = 1,…, L) is a generic layer and 

“ql” a generic node, being q = 1,…, Ql its position in layer l (1 is reserved to the top node). Fig. 5 

represents the model of a generic neuron (l = 2,…, L), where (i) p represents the data pattern presented 

to the network, (ii) subscripts m = 1,…, Qn and n = 1,…, l-1 are summation indexes representing all 

possible nodes connecting to neuron “ql” (recall Fig. 4), (iii) bql is neuron’s bias, and (iv) wmnql represents 
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the synaptic weight connecting units “mn” and “ql”. Neuron’s net input for the presentation of pattern p 

(Sqlp) is defined as  

Q 1

1 1

,
n l

lp

m n

q mnp mnp mnpmnql ql mnql mnqlw b w wS y y y
−

= =

= +   ,   (11) 

where ym1p is the value of the mth network input concerning example p. The output of a generic 

neuron can then be written as (l = 2,…, L) 

( )lqlp qlpy S=  ,   (12) 

where φl is the transfer function used for all neurons in layer l. 

 
Fig. 4. Generic multi-layer feedforward network. 
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Fig. 5. Generic neuron placed anywhere in the MLPN of Fig. 4 (l = 2,…, L). 

 

Radial-Basis Function Network (RBFN)  

Although having similar topologies, RBFN and MLPN behave very differently due to distinct 

hidden neuron models – unlike the MLPN, RBFN have hidden neurons behaving differently than 

output neurons. According to Xie et al. (2011), RBFN (i) are specially recommended in functional 

approximation problems when the function surface exhibits regular peaks and valleys, and (ii) 

perform more robustly than MLPN when dealing with noisy input data. Although traditional RBFN 

have 3 layers, a generic multi-hidden layer (see Fig. 4) RBFN is allowed in this work, being the 

generic hidden neuron’s model concerning node “l1l2” (l1 = 1,…,Ql2, l2 = 2,…, L-1) presented in Fig. 

6. In this model, (i) 𝑣𝑙1𝑙2𝑝 and 𝜉𝑙1𝑙2
 (called RBF center) are vectors of the same size (𝜉𝑧𝑙1𝑙2

 denotes 

de z component of vector 𝜉𝑙1𝑙2
, and it is a network unknown), being the former associated to the 

presentation of data pattern p,  (ii) 𝜎𝑙1𝑙2
 is called RBF width (a positive scalar) and also belongs, 

along with synaptic weights and RBF centers, to the set of network unknowns to be determined 
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through learning, (iii) 𝜑𝑙2
 is the user-defined radial basis (transfer) function (RBF), described in eqs. 

(20)-(23), and (iv) 𝑦𝑙1𝑙2𝑝 is neuron’s output when pattern p is presented to the network. In ANNs not 

involving learning algorithms 1-3 in Tab. 4, vectors 𝑣𝑙1𝑙2𝑝 and 𝜉𝑙1𝑙2
 are defined as (two versions of 

𝑣𝑙1𝑙2𝑝 where implemented and the one yielding the best results was selected) 

1 2 2 2 1 2 2 2 1 2 2 2 1 2

1 2 2 2 2

1 2 1 2 1 2 1 2

1 12 2

12

12

1( 1) 1( 1) ( 1) ( 1) ( 1) ( 1)
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1
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 =
 

 =
 

 =
 

 , (13) 

 

whereas the RBFNs implemented through MATLAB neural net toolbox (involving learning 

algorithms 1-3 in Tab. 4) are based on the following definitions 

1 2 2 2 2

1 2 2 1 2 2 1 2 2 1 2

12

12

1( 1) ( 1) ( 1)

1( 1) ( 1) ( 1)

... ...

... ...

l

l

pl l l p z l p Q l p

l l l l l z l l l Q l l l

v

w w w

y y y



−

−

− − −

− − −

 =
 

 =
 

 .   (14) 

Lastly, according to the implementation carried out for initialization purposes (described in 3.3.12), 

(i) RBF center vectors per hidden layer (one per hidden neuron) are initialized as integrated in a matrix 

(termed RBF center matrix) having the same size of a weight matrix linking the previous layer to that 
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specific hidden layer, and (ii) RBF widths (one per hidden neuron) are initialized as integrated in a 

vector (called RBF width vector) with the same size of a hypothetic bias vector. 

 

3.3.9 Hidden Nodes (feature 9) 

Inspired by several heuristics found in the literature for the determination of a suitable number of 

hidden neurons in a single hidden layer net (Aymerich and Serra 1998, Rafiq et al. 2001, Xu and 

Chen 2008), each value in hntest, defined in eq. (15), was tested in this work as the total number of 

hidden nodes in the model, i.e. the sum of nodes in all hidden layers (initially defined with the same 

number of neurons). The number yielding the smallest performance measure for all patterns (as 

defined in 3.4, with outputs and targets not postprocessed), is adopted as the best solution. The 

aforementioned hntest is defined by 
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,   (15) 

 

where (i) Q1 and QL are the number of input and output nodes, respectively, (ii) P and Pt are the 

number of learning and training patterns, respectively, and (iii) F13 is the number of feature 13’s 

method (see Tab. 4). 

 

3.3.10 Connectivity (feature 10) 

For this ANN feature, three methods were implemented, namely (i) adjacent layers – only 

connections between adjacent layers are made possible, (ii) adjacent layers + input-output – only 

connections between (ii1) adjacent and (ii2) input and output layers are allowed, and (iii) fully-

connected (all possible feedforward connections). 
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Fig. 6. Generic hidden neuron l1l2 placed anywhere in the RBFN of Fig. 4 (l2 = 2,…, L-1). 

 

3.3.11 Hidden Transfer Functions (feature 11) 

Besides functions (i) Logistic – eq. (7), (ii) Hyperbolic Tangent – eq. (8), and (iii) Bilinear – 

eq. (9), defined in 3.3.6, the ones defined next were also implemented as hidden transfer functions. 

During software validation it was observed that some hidden node outputs could be infinite or NaN 

(not-a-number in MATLAB – e.g., 0/0=Inf/Inf=NaN), due to numerical issues concerning some 

hidden transfer functions and/or their calculated input. In those cases, it was decided to convert 

infinite to unitary values and NaNs to zero (the only exception was the bipolar sigmoid function, 

where NaNs were converted to -1).  Other implemented trick was to convert possible Gaussian 

function’s NaN inputs to zero.  
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Identity-Logistic 

In Gunaratnam and Gero (1994), issues associated with flat spots at the extremes of a sigmoid 

function were eliminated by adding a linear function to the latter, reading  

1
( )

1 s
s s

e


−
= +

+
  

.   (16) 

Bipolar   

The so-called bipolar sigmoid activation function mentioned in Lefik and Schrefler (2003), 

ranging in [-1, 1], reads  

1
( )

1

s

s

e
s

e


−

−

−
=

+
     .   (17) 

Positive Saturating Linear 

In MATLAB neural net toolbox, the so-called Positive Saturating Linear transfer function, 

ranging in [0, 1], is defined as   

1, 1

( ) , 0 1

0, 0

s

s s s

s






=  
 

  

.   (18) 

Sinusoid 

Concerning less popular transfer functions, reference is made in Bai et al. (2014) to the sinusoid, 

which in this work was implemented as  
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( ) sin
2

s s



 

=  
          .   (19)

 

Radial Basis Functions (RBF) 

Although Gaussian activation often exhibits desirable properties as a RBF, several authors (e.g., 

Schwenker et al. 2001) have suggested several alternatives. Following nomenclature used in 3.3.8, 

(i) the Thin-Plate Spline function is defined by 

 

( ) ( )
2 1 2 1 2

2

ln ,l l l p l ls s s s v = = −  ,   (20) 

(ii) the next function is employed as Gaussian-type function when learning algorithms 4-7 are used 

(see Tab. 4) 

( )
2 1 2 1 2 1 2

2
0.5 2

,
s

l l l p l l l ls s ve  −
= = −  ,   (21) 

 

(iii) the Multiquadratic function is given by 

( )
2 1 2 1 2 1 2

2
2,l l l p l l l ls s s v  = = − +  ,   (22) 

and (iv) the Gaussian-type function (called “radbas” in MATLAB toolbox) used by RBFNs trained 

with learning algorithms 1-3 (see Tab. 4), is defined by 

( )
2 1 2 1 2 1 2

2

,l l l p l l l l

ss s ve  −= = −
 ,   (23) 
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where || … || denotes the Euclidean distance in all functions.  

 

3.3.12 Parameter Initialization (feature 12) 

The initialization of (i) weight matrices (Qa x Qb, being Qa and Qb node numbers in layers a and b 

being connected, respectively), (ii) bias vectors (Qb x 1), (iii) RBF center matrices (Qc-1 x Qc, being c the 

hidden layer that matrix refers to), and (iv) RBF width vectors (Qc x 1), are independent and in most 

cases randomly generated. For each ANN design carried out in the context of each parametric analysis 

combo, and whenever the parameter initialization method is not the “Mini-Batch SVD”, ten distinct 

simulations varying (due to their random nature) initialization values are carried out, in order to find the 

best solution. The implemented initialization methods are described next.  

 

Midpoint, Rands, Randnc, Randnr, Randsmall 

These are all MATLAB built-in functions. Midpoint is used to initialize weight and RBF center 

matrices only (not vectors). All columns of the initialized matrix are equal, being each entry equal to 

the midpoint of the (training) output range leaving the corresponding initial layer node – recall that in 

weight matrices, columns represent each node in the final layer being connected, whereas rows 

represent each node in the initial layer counterpart. Rands generates random numbers with uniform 

distribution in [-1, 1]. Randnc (only used to initialize matrices) generates random numbers with uniform 

distribution in [-1, 1], and normalizes each array column to 1 (unitary Euclidean norm). Randnr (only 
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used to initialize matrices) generates random numbers with uniform distribution in [-1, 1], and normalizes 

each array row to 1 (unitary Euclidean norm). Randsmall generates random numbers with uniform 

distribution in [-0.1, 0.1]. 

 

Rand [-lim, lim] 

This function is based on the proposal in Waszczyszyn (1999), and generates random numbers 

with uniform distribution in [-lim, lim], being lim layer-dependent and defined by 

 

1/
, < 

 =    
0.5 , = 

aQ

bQ b L
 lim

b L





 ,   (24) 

where a and b refer to the initial and final layers integrating the matrix being initialized, and L is 

the total number of layers in the network. In the case of a bias or RBF width vector, lim is always 

taken as 0.5.    

 

SVD  

Although Deng et al. (2016) proposed this method for a 3-layer network, it was implemented 

in this work regardless the number of hidden layers.  
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Mini-Batch SVD  

Based on Deng et al. (2016), this scheme is an alternative version of the former SVD. Now, 

training data is split into min{Qb, Pt} chunks (or subsets) of equal size Pti = max{floor(Pt / Qb), 1} 

– floor rounds the argument to the previous integer (whenever it is decimal) or yields the argument 

itself, being each chunk aimed to derive Qbi = 1 hidden node.  

 

3.3.13 Learning Algorithm (feature 13) 

The most popular learning algorithm is called error back-propagation (BP), a first-order gradient 

method. Second-order gradient methods are known to have higher training speed and accuracy 

(Wilamowski 2011). The most employed is called Levenberg-Marquardt (LM). All these traditional 

schemes were implemented using MATLAB toolbox (The Mathworks, Inc 2017).  

 

Back-Propagation (BP, BPA), Levenberg-Marquardt (LM)  

Two types of BP schemes were implemented, one with constant learning rate (BP) –‘traingd’ in 

MATLAB, and another with iteration-dependent rate, named BP with adaptive learning rate (BPA) – 

‘traingda’ in MATLAB. The learning parameters set different than their default values are: 

(i) Learning Rate = 0.01 / cs0.5, being cs the chunk size, as defined in 3.3.15. 

(ii) Minimum performance gradient = 0.  
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Concerning the LM scheme – ‘trainlm’ in MATLAB, the only learning parameter set different 

than its default value was the abovementioned (ii). 

  

Extreme Learning Machine (ELM, mb ELM, I-ELM, CI-ELM) 

Besides these traditional learning schemes, iterative and time-consuming by nature, four versions 

of a recent, powerful and non-iterative learning algorithm, called Extreme Learning Machine (ELM), 

were implemented (unlike initially proposed by the authors of ELM, connections across layers were 

allowed in this work), namely: (batch) ELM (Huang et al. 2006a), Mini-Batch ELM (mb ELM) (Liang 

et al. 2006), Incremental ELM (I-ELM) (Huang et al. 2006b), Convex Incremental ELM (CI-ELM) 

(Huang and Chen 2007).   

 

3.3.14 Performance Improvement (feature 14) 

A simple and recursive approach aiming to improve ANN accuracy is called Neural Network 

Composite (NNC), as described in Beyer et al. (2006). In this work, a maximum of 10 extra ANNs 

were added to the original one, until maximum error is not improved between successive NNC 

solutions. Later in this manuscript, a solution given by a single neural net might be denoted as 

ANN, whereas the other possible solution is called NNC. 
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3.3.15 Training Mode (feature 15) 

Depending on the relative amount of training patterns, with respect to the whole training dataset, 

that is presented to the network in each iteration of the learning process, several types of training 

modes can be used, namely (i) batch or (ii) mini-batch. Whereas in the batch mode all training 

patterns are presented (called an epoch) to the network in each iteration, in the mini-batch 

counterpart the training dataset is split into several data chunks (or subsets) and in each iteration a 

single and new chunk is presented to the network, until (eventually) all chunks have been 

presented. Learning involving iterative schemes (e.g., BP- or LM-based) might require many 

epochs until an “optimum” design is found. The particular case of having a mini-batch mode where 

all chunks are composed by a single (distinct) training pattern (number of data chunks = Pt , chunk 

size = 1), is called online or sequential mode. Wilson and Martinez (2003) suggested that if one 

wants to use mini-batch training with the same stability as online training, a rough estimate of the 

suitable learning rate to be used in learning algorithms such as the BP, is ηonline /√𝑐𝑠, where cs is the 

chunk size and ηonline is the online learning rate – their proposal was adopted in this work. Based on the 

proposal of Liang et al. (2006), the constant chunk size (cs) adopted for all chunks in mini-batch mode 

reads cs = min{mean(hn) + 50, Pt}, being hn a vector storing the number of hidden nodes in each 

hidden layer in the beginning of training, and mean(hn) the average of all values in hn.  
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3.4 Network Performance Assessment 

Several types of results were computed to assess network outputs, namely (i) maximum error, 

(ii) % errors greater than 3%, and (iii) performance, which are defined next. All abovementioned 

errors are relative errors (expressed in %) based on the following definition, concerning a single 

output variable and data pattern, 

100
qp qLp

qp

qp

d y

d
e

−
=

                               ,   (25) 

where (i) dqp is the qth desired (or target) output when pattern p within iteration i (p=1,…, Pi) is 

presented to the network, and (ii) yqLp is net’s qth output for the same data pattern. Moreover, 

denominator in eq. (25) is replaced by 1 whenever |dqp| < 0.05 – dqp in the nominator keeps its real 

value.  This exception to eq. (25) aims to reduce the apparent negative effect of large relative errors 

associated to target values close to zero. Even so, this trick may still lead to (relatively) large solution 

errors while groundbreaking results are depicted as regression plots (target vs. predicted outputs).     

 

3.4.1 Maximum Error 

This variable measures the maximum relative error, as defined by eq. (25), among all output 

variables and learning patterns. 
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3.4.2 Percentage of Errors > 3% 

This variable measures the percentage of relative errors, as defined by eq. (25), among all output 

variables and learning patterns, that are greater than 3%. 

 

3.4.3 Performance 

In functional approximation problems, network performance is defined as the average relative 

error, as defined in eq. (25), among all output variables and data patterns being evaluated (e.g., 

training, all data).  

 

3.5 Software Validation  

Several benchmark datasets/functions were used to validate the developed software, involving low- 

to high-dimensional problems and small to large volumes of data. Due to paper length limit, validation 

results are not presented herein but they were made public online (Researcher 2018).  

3.6 Parametric Analysis Results  

Aiming to reduce the computing time by cutting in the number of combos to be run – note that all 

features combined lead to hundreds of millions of combos, the whole parametric simulation was 

divided into nine parametric SAs, where in each one feature 7 only takes a single value. This measure 

aims to make the performance ranking of all combos within each “small” analysis more “reliable”, 
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since results used for comparison are based on target and output datasets as used in ANN training and 

yielded by the designed network, respectively (they are free of any postprocessing that eliminates 

output normalization effects on relative error values). Whereas (i) the 1st and 2nd SAs aimed to select 

the best methods from features 1, 2, 5, 8 and 13 (all combined), while adopting a single popular method 

for each of the remaining features (F3: 6, F4: 2, F6: {1 or 7}, F7: 1, F9: 1, F10: 1, F11: {3, 9 or 11}, F12: 

2, F14: 1, F15: 1 – see Tabs. 2-4) – SA 1 involved learning algorithms 1-3 and SA 2 involved the ELM-

based counterpart, (ii) the 3rd – 7th SAs combined all possible methods from features 3, 4, 6 and 7, and 

concerning all other features, adopted the methods integrating the best combination from the 

aforementioned first SA, (iii) the 8th SA combined all possible methods from features 11, 12 and 14, 

and concerning all other features, adopted the methods integrating the best combination (results 

compared after postprocessing) among the previous five sub-analyses, and lastly (iv) the 9th SA 

combined all possible methods from features 9, 10 and 15, and concerning all other features, adopted 

the methods integrating the best combination from the previous analysis. 

ANN feature methods used in the best combo from each of the abovementioned nine parametric 

sub-analyses, are specified in Tab. 5 (the numbers represent the method number as in Tabs 2-4). Tab. 

6 shows the corresponding relevant results for those combos, namely (i) maximum error, (ii) % errors 

> 3%, (iii) performance (all described in section 3, and evaluated for all learning data), (iv) total number 

of hidden nodes in the model, and (v) average computing time per example (including data pre- and 

post-processing). All results shown in Tab. 6 are based on target and output datasets computed in their 
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original format, i.e. free of any transformations due to output normalization and/or dimensional 

analysis.  The microprocessor used in this work has the following features: OS: Win10 Home-

64bits, RAM: 8GB, Local Disk Memory: 128GB, CPU: Intel® Core™ i5 6200U (dual-core) @ 

2.30 GHz.  

 

Tab. 5. ANN features (F) methods used in the best combo from each parametric sub-analysis (SA). 

SA F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 

1 1 2 6 2 1 1 1 1 1 1 3 2 3 1 3 

2 1 2 6 2 3 7 1 2 1 1 9 2 7 1 3 

3 1 2 6 3 1 1 1 1 1 1 3 2 3 1 3 

4 1 2 6 2 1 1 2 1 1 1 3 2 3 1 3 

5 1 2 6 1 1 1 3 1 1 1 3 2 3 1 3 

6 1 2 6 2 1 7 4 1 1 1 3 2 3 1 3 

7 1 2 6 4 1 7 5 1 1 1 3 2 3 1 3 

8 1 2 6 4 1 7 5 1 1 1 3 2 3 1 3 

9 1 2 6 4 1 7 5 1 3 3 3 2 3 1 3 

 

Overall, to obtain satisfactory results, 219 ANN feature combinations were run in the parametric 

analysis of this problem. In 3.7, the best ANN-based model obtained is proposed to efficiently and 

effectively solve the real-world problem addressed. In sub-section 3.7.4, the performance results of the 

proposed ANN are also based on target and output datasets computed in their original format. 

 

 

 

https://hal.archives-ouvertes.fr/hal-02074844


 

 

 

Abambres M, Marcy M, Doz G (2018). Potential of Neural Networks for Structural Damage Localization, hal-02074844 

© 2018 by Abambres M et al. (CC BY 4.0) 

 

 

 

38 

 

 

 

 

Tab. 6. Performance results for the best design from each parametric sub-analysis: (a) ANN, (b) NNC. 

SA 

ANN 

Max Error 
(%) 

Performance 
All Data                                   

(%) 

Errors > 3% 
(%) 

Total Hidden 
Nodes 

Running Time / 
Data Point 

(s) 

1 46.2 2.7 23.4 12 4.40 E -03 

2 1598.9 99.2 90.6 43 2.58 E -04 

3 45.5 2.5 21.9 12 1.77 E -03 

4 141.2 8.7 34.4 12 3.23 E -04 

5 10.1 1.6 17.2 12 1.74 E -03 

6 253.4 8.9 31.3 12 3.04 E -03 

7 12.4 1.2 9.4 12 7.53 E -04 

8 108.8 8.4 31.3 12 1.44 E -03 

9 0.2 0.0 0.0 12 1.34 E -03 

(a) 

SA 

NNC 

Max Error 
(%) 

Performance 
All Data                                   

(%) 

Errors > 3% 
(%) 

Total Hidden 
Nodes 

Running Time / 
Data Point 

(s) 

1 14.1 1.7 20.3 12 4.56 E -03 

2 - - - - - 

3 - - - - - 

4 - - - - - 

5 - - - - - 

6 253.3 8.4 28.1 12 5.22 E -03 

7 9.4 0.6 4.7 12 1.65 E -03 

8 108.7 8.1 28.1 12 3.79 E -03 

9 - - - - - 

(b) 

3.7 Proposed ANN-Based Model 

The proposed ANN is the one, among the ones simulated during the parametric analysis, exhibiting 

the lowest maximum error. In this case, that model was yielded by SA 9 and is characterized by the 

ANN feature methods {1, 2, 6, 4, 1, 7, 5, 1, 3, 3, 3, 2, 3, 1, 3} in Tabs. 2-4. Aiming to allow 

implementation of this model by any user, all variables/equations required for (i) data preprocessing, 
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(ii) ANN simulation, and (iii) data postprocessing, are presented in 3.7.1-3.7.3, respectively. The 

proposed ANN is a MLPN with 5 layers and a distribution of nodes/layer given by 3-4-4-4-1. 

Concerning connectivity, the network is fully-connected (across layer connections allowed), and the 

hidden and output transfer functions are all Hyperbolic Tangent and Identity, respectively. The network 

was trained using the LM algorithm (1500 epochs). After design, the network computing time 

concerning the presentation of a single example (including data pre/postprocessing) is 1.34x10-3 s – 

Fig. 7 depicts a simplified scheme of some of network key features. Lastly, all relevant performance 

results concerning the proposed ANN are illustrated in 3.7.4. 

 

 

Fig. 7. Proposed 3-4-4-4-1 fully-connected MLPN – simplified scheme. 

 

It is worth recalling that, in this manuscript, whenever a vector is added to a matrix, it means the 

former is to be added to all columns of the latter (this is valid in MATLAB). 
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3.7.1 Input Data Preprocessing 

For future use of the proposed ANN to simulate new data Y1,sim (3 x Psim vector) concerning Psim 

patterns, the same data preprocessing (if any) performed before training must be applied to the input 

dataset. That preprocessing is defined by the methods used for ANN features 2, 3 and 5 (respectively 

2, 6 and 1 – see Tab. 2), which should be applied after all (eventual) qualitative variables in the input 

dataset are converted to numerical (using feature 1’s method). Next, the necessary preprocessing to be 

applied to Y1,sim, concerning features 2, 3 and 5, is fully described.  

 

Dimensional Analysis and Dimensionality Reduction 

Since neither dimensional analysis (d.a.) nor dimensionality reduction (d.r.) were carried out, 

   1, 1, 1,. . . .
   

after after

sim sim simd r d a
Y Y Y= =  

.   (26) 

 

Input Normalization 

After input normalization, the new input dataset {𝑌1,𝑠𝑖𝑚}𝑛
𝑎𝑓𝑡𝑒𝑟

 is defined as function of the 

previously determined {𝑌1,𝑠𝑖𝑚}𝑑.𝑟.
𝑎𝑓𝑡𝑒𝑟

, and they have the same size, reading 

 1, 1,

0.0222

0.0082

0.0042

  .x
after

sim simn
Y Y

 
 =
 
 

 

,   (27) 

 

where “.x” multiplies component i in the l.h.s vector by all components in row i of Y1,sim.  
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3.7.2 ANN-Based Analytical Model  

Once determined the preprocessed input dataset {Y1,sim}n
after (3 x Psim matrix), the next step is 

to present it to the proposed ANN to obtain the predicted output dataset {Y5,sim}n
after (1 x Psim 

vector), which will be given in the same preprocessed format of the target dataset used in learning. 

In order to convert the predicted outputs to their “original format” (i.e., without any transformation 

due to normalization or dimensional analysis – the only transformation visible will be the 

(eventual) qualitative variables written in their numeric representation), some postprocessing is 

needed, as described in detail in 3.7.3. Next, the mathematical representation of the proposed ANN 

is given, so that any user can implement it to determine {Y5,sim}n
after

 , thus eliminating all rumors 

that ANNs are “black boxes”. 

 ( )
 ( )
 ( )

   ( )

1 2

3 1 3

1,

1,

1,

5,

2 3 2

4 1 4 2 4 2 3 4 3

1 5 2 5 2 3 5 3 4 5 41,

2 2 2

3 3

4 4

5 5

afterT

n

afterT T

n

after

sim

sim

sim

s

T T T

n

after afterT T T T

ni nm sim

Y W b

Y W W Y b

Y W W Y W Y b

W

Y

W Y W Y

Y

W

Y

Y Y Y b









−

− −

− − −

− − − −

= +

= + +

= + + +

= + + + +

 

, (28) 

 

where 

 

2 3 4

5

( )

( )

s s

s s

e e
s

e e

s s





  



−

−

−
= = = =

+

= =

 

,  (29) 
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1 2

5.92014666514410 -8.42287477536242 6.12188206788266 16.2938196162533

-2.56058135230626 1.89089789773532 15.4065109454804 -16.7015058877463

-2.60190678017837 19.1276198184410 2.25430196289090 6.1607564304665

W − =

2

9

   3.12956390068096

-12.1226968878702

-23.0312462334084

-5.37192667684186

b =

 
 
 
 

 
 
 
 
  

 

,  (30) 

 
 

1 3

0.414738619705944 1.32893635513501 4.14403332041229 -1.74907381715892

1.18092219635388 2.26733319392057 -0.780958164772676 4.06317925046579

2.00787682675325 -4.26930673182629 -4.04682458597197 2.31298898175

W − =

2 3

833

-2.63455533785155 1.42443597315850 -0.992635855262673 -1.44068011428239

-3.40557389137861 -0.378443916473808 -2.95088552349602 -1.29760727903780

10.4283984813359 -7.59151007212646 8.6591503953
W −

 
 
 
  

=

3

8676 -2.08761536504187

-3.60024250992970 -22.6288310553954 18.6518904980882 -7.02100976668633

-3.19599142132871

0.578891626317490

0.593077244491166

-1.81765959400271

b

 
 
 
 
 
 

 
 
 =
 
 
 

 

,  (31) 
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1 4

-10.1446983162026 0.587033479365037 1.10810082763965 -0.719586110812137

2.92157866250819 1.06902882835772 2.02229814934862 -1.04151405318611

-6.88857125074414 0.633560737751578 3.32191629973955 -1.376938111

W − =

2 4

99200

7.79122079835436 0.939498926219798 0.994920549794745 -1.44588737852196

7.72109214777274 3.69400872747076 7.99494671486522 -0.330044349509708

11.0635679581952 -1.42326742691051 1.20946817714587
W − =

 
 
 
 

3 4

1.09672903767770

-8.46335994709181 -2.52477307911999 -2.68232307734636 -1.46464483126179

-3.94857119009544 0.773568727455620 33.2244475474305 -1.94259316527410

10.4006204162642 6.76962264847463
W − =

 
 
 
 
  

4

15.3006148123197 -0.493929406811997

11.4879411133621 -2.66775810317843 -25.6404239680795 6.39085101284729

-16.4530465325905 0.239469158882274 1.35702273276274 -0.544559259202252

9.21240069987668

0
b =

 
 
 
 
  

.165758464719451

1.44718146443782

-1.77437690033072

 
 
 
 
  

 

,  (32) 

1 5 2 5 3 5

2.73625025655459 4.09625222832201
2.41916145661974

-0.914148067927541 -4.44884606844407
1.38165874874808 , ,

-2.83722897348479 -1.58753838697
2.23320041672227

0.199079605256181

W W W− − −= = =

 
   
   
   
    

4 5 5

364

8.92516458734120

12.3854353599432

14.1529826905679
, 1.93363683792993

-1.07394444351335

12.9119477184451

W b− = =

 
 
 
 
  

 
 
 
 
  

 

.   (33) 
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Vectors and matrices presented in eqs. (30)-(33) can also be found in Authors (2018b), aiming to 

ease their implementation by any interested reader. 

 

3.7.3 Output Data Postprocessing 

In order to transform the output dataset obtained by the proposed ANN, {Y5,sim}n
after, to its 

original format (Y5,sim), i.e. without the effects of dimensional analysis and/or output normalization 

(possibly) taken in target dataset preprocessing prior training, the postprocessing addressed next 

must be performed. 

 

Non-normalized (just after dimensional analysis) and Original formats 

Once obtained {Y5,sim}n
after, the following relations hold for its transformation to its non-

normalized format {𝑌5,𝑠𝑖𝑚}𝑑.𝑎.
𝑎𝑓𝑡𝑒𝑟

 (just after the dimensional analysis stage), and for latter’s 

transformation to its original format 𝑌5,𝑠𝑖𝑚 (with no influence of preprocessing) 

 

   5, 5, 5,. .
 =  = 

after

sim sim simd

after

na
Y Y Y  

,   (34) 

since no output normalization nor dimensional analysis were carried out. Moreover, since no 

negative output values are physically possible for the problem addressed herein, the ANN 

prediction should be defined as   
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 5, 5, =max ,0sim simY Y

  ,   (35) 

meaning that no structural damage exists whenever the output yielded by eq. (34) is negative. 

 

3.7.4 Performance Results 

 Results yielded by the proposed ANN can be found either (i) online in Authors (2018a), 

where the target and ANN output values are provided together with the corresponding input 

dataset, or (ii) in terms of performance variables defined in sub-section 3.4, as presented next in 

the form of several graphs: (ii1) a regression plot (Fig. 8) where network target and output data are 

plotted, for each data point, as x- and y- coordinates respectively – a measure of linear correlation 

is given by the Pearson Correlation Coefficient (R), as defined in eq. (1); (ii2) a performance plot 

(Fig. 9), where performance values are displayed for several datasets; and (ii3) an error plot (Fig. 

10), where values concern the maximum error and the % of errors greater than 3%, for all data. 

It´s worth highlighting that all graphical results just mentioned are based on target and output 

datasets computed in their original format, i.e. free of any transformations due to output 

normalization and/or dimensional analysis.   
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Fig. 8. Regression plot for the proposed ANN (see output variable in Fig. 1(a)). 

 

3.8 Further Testing: Prediction of Experimental Results  

Aiming to test the proposed analytical model to the prediction of experimental results, three test 

results taken from Marcy et.al (2014) were considered, as shown in Tab. 7. Only tests I and III 

regard damaged members. The errors (smaller than 1%) displayed in Tab. 7 attest once again the 

capability of the proposed ANN-based analytical model.  
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Fig. 9. Performance plot for the proposed ANN. 

 

Fig. 10. Error plot for the proposed ANN. 

Tab. 7. ANN performance in the prediction of 3 test results. 
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TEST 
Freq. 1 

(Hz) 
Freq. 2 

(Hz) 
Freq. 3 

(Hz) 

Real 
Damage Location 

(m) 

ANN-based 
Damage Location 

(m) 

Error (%) 
ANN vs Real 

I 40.142 117.454 221.441 1.2407 1.2367 0.3 

II 42.523 118.771 231.677 No Damage -0.23 ↔ 0  0 

III 39.590 117.305 221.143 1.306 1.315 0.7 

 

4. Conclusions 

This paper primarily aimed to assess the potential of Artificial Neural Network (ANN) models 

in the prediction of damage localization in structural members, as function of their dynamic 

properties – the three first natural frequencies were used. Based on 64 numerical examples from 

damaged (mostly) and undamaged steel channel beams, an ANN-based analytical model was 

proposed as a highly accurate and efficient damage localization estimator. The proposed model 

yielded maximum errors of 0.2 and 0.7 % concerning 64 numerical and 3 experimental data points, 

respectively.  

Regardless the high quality of the predictions yielded by the proposed model, the reader should 

not blindly accept it as accurate for any other instances falling inside the input domain of the 

design dataset. Any analytical approximation model must undergo extensive validation before it 

can be taken as reliable (the more inputs, the larger the validation process). Models proposed 

meanwhile are part of a learning process towards excellence. 
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Since it was proved that the approach taken works well for structural members, authors’ next 

step (in the very near future) is to apply similar procedures to entire bridge or building structures, 

this time based on much larger datasets in order to provide an analytical solution with high 

credibility concerning its generalization capability, i.e. its capacity of giving good results for a 

large amount of examples (i) within the ranges considered for the input variables, and (ii) not 

considered during ANN development. 
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