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Abstract

An efficient multilayer machine learning-assisted optimization (ML-MLAO)-based robust design method is proposed for antenna

and array applications. Machine learning methods are introduced into multiple layers of the robust design process, including

worst-case analysis (WCA), maximum input tolerance hypervolume (MITH) searching, and robust optimization, considerably

accelerating the whole robust design process. First, based on a surrogate model mapping between the design parameters and

performance, WCA is performed using a genetic algorithm to ensure reliability. MITH searching is then carried out using

a double-layer MLAO (DL-MLAO) framework to find the MITH of the given design point. Next, based on the training set

obtained using DL-MLAO, correlations between the design parameters and the MITH are learned. The robust design is carried

out using surrogate models for both the performance and the MITH, and these models are updated online following the ML-

MLAO scheme. Furthermore, two examples, including an array synthesis problem and an antenna design problem, are used to

verify the proposed ML-MLAO method. Finally, the numerical results and computation time are discussed to demonstrate the

effectiveness of the proposed method.
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Multilayer Machine Learning-Assisted Optimization-Based Robust Design
and Its Applications to Antennas and Arrays

Qi Wu, Weiqi Chen, Chen Yu, Haiming Wang, and Wei Hong

Abstract—An efficient multilayer machine learning-assisted optimiza-
tion (ML-MLAO)-based robust design method is proposed for antenna
and array applications. Machine learning methods are introduced into
multiple layers of the robust design process, including worst-case analysis
(WCA), maximum input tolerance hypervolume (MITH) searching,
and robust optimization, considerably accelerating the whole robust
design process. First, based on a surrogate model mapping between the
design parameters and performance, WCA is performed using a genetic
algorithm to ensure reliability. MITH searching is then carried out using
a double-layer MLAO (DL-MLAO) framework to find the MITH of the
given design point. Next, based on the training set obtained using DL-
MLAO, correlations between the design parameters and the MITH are
learned. The robust design is carried out using surrogate models for both
the performance and the MITH, and these models are updated online
following the ML-MLAO scheme. Furthermore, two examples, including
an array synthesis problem and an antenna design problem, are used to
verify the proposed ML-MLAO method. Finally, the numerical results
and computation time are discussed to demonstrate the effectiveness of
the proposed method.

Index Terms—Antennas, antenna tolerance analysis, arrays, optimiza-
tion methods

I. INTRODUCTION

ROBUST design is one of the most crucial aspects in the
design of modern antennas and arrays, which aims to learn the

correlation between the input and output tolerance, thereby finding
a balance between the robustness and performance of the final
design and providing guidelines for the integration and manufacturing
process [1]–[5]. With the rapid development of commercial full-wave
electromagnetic (EM) simulation tools, robust design approaches
independent of the computational EM process have been widely
investigated with optimization schemes [3], [4], [6] and surrogate-
assisted modeling approaches [2], [7].

Robust design methods can be generally divided into separate cat-
egories to resolve two issues: 1) methods employed to find the output
tolerance when the input tolerance is known and 2) methods used to
find the input tolerance when the output tolerance is known. Worst-
case analysis (WCA) was introduced to resolve issue 1, which aims to
find the scenario with the worst-case performance (WCP) within the
given input tolerance on the nominal solution [4], [8]. Issue 2 involves
a more rigorous process based on the reliable results for issue 1. A
popular approach is maximum input tolerance hypervolume (MITH)
searching, which first defines a hypervolume representing the input
tolerance and then finds the MITH that satisfies the predefined output
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tolerance. In [4], a novel hybrid strategy consisting of particle swarm
optimization for WCA and iterative input tolerance hypervolume
(ITH) shrinking was used to find the MITH, but the ratios between
different design parameters must be decided in advance and cannot be
changed during the iterative process. In [2], a novel sampling strategy
(SS) is introduced to implement efficient MITH searching. SS can
automatically find the quasi-optimal shape of the MITH efficiently.
However, the fidelity of the MITH is dependent on the sampling
points in every iteration, and there is no guarantee that the real WCPs
of the obtained MITH are found during the process, which leads to
possible bias in the calculated MITH.

Many surrogate model-based optimization methods have been
introduced to address EM problems [9]–[16]. The key motivation of
the surrogate model-based optimization algorithm is to use efficient
surrogate models to accelerate the optimization procedure; these
surrogate models can be built using physically coarse models or data-
driven modeling strategies. Various ML methods, such as Gaussian
process regression (GPR) [9], [13] and artificial neural networks
(ANNs) [14], have been introduced to build the surrogate models
of EM components and applied to machine learning-assisted opti-
mization (MLAO) schemes. In [7], the surrogate model is combined
with a genetic algorithm (GA) to find the WCP when the input
tolerance is known. In [2], surrogate models have been applied in
MITH searching. However, the surrogate models have been used
to replace only full-wave EM simulations; consequently, the large
number of function calls required in the robust design process will
still result in a high time consumption.

In this Communication, based on multilayer machine learning-
assisted optimization (ML-MLAO), an efficient and reliable robust
design scheme is proposed and applied to antennas and arrays. To
the authors’ best knowledge, this is the first time that the utilization
scope of MLAO algorithm has been expanded to the prediction
and optimization of not only antenna and array responses, but
also MITHs and robust designs, therefore upgrade the reliability
of the evaluated MITH, and the efficiency when compared with
conventional optimization-based robust design algorithms. A novel
double-layer MLAO (DL-MLAO) method for efficient and reliable
MITH searching is introduced in Section II. Section III integrates
the proposed DL-MLAO method into ML-MLAO to achieve robust
antenna design. Two examples, array synthesis and antenna design
problems, are used to verify the proposed method in Section IV.
Finally, Section V concludes this work.

II. WORST-CASE ANALYSIS AND MAXIMUM INPUT TOLERANCE

HYPERVOLUME SEARCHING

A. Mathematical Formulation of the Problems

Consider a set of Q nonlinear differentiable functions, each with
P variables: yq(x) = yq(x1, x2, . . . , xP ), q = 1, 2, . . . , Q. The
uncertainties of the input parameters are defined by the input toler-
ances on the variables: δ , [δ1, δ2, . . . , δP ]T, δp ≥ 0. Therefore,
the input tolerance interval is represented as

ωx,δ , {t|(x− δ ≤ t ≤ x+ δ)}, (1)
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Fig. 1. Flow diagram of the DL-MLAO algorithm for MITH searching.

where t represents possible parameter values. The WCP is defined
as the specific parameter x̂ that causes the maximum deviation; i.e.,

Fq(x̂) , max
x̂∈ωx,δ

fq(x̂). (2)

For Q > 1, there may exist multiple WCP points within the design
space. The collection of WCPs is defined as F (x). The methods
employed to search for the WCP represent the infrastructure of robust
antenna design. Within a given input tolerance region (ITR), a global
optimization method is normally required over the tolerance interval
to search for reliable WCP points [8].

The uncertainties in the design parameters of a nominal point x,
known as the ITR, can be modeled as a hyperrectangle defined by
δ(x). The ITH can be defined to evaluate the size of the ITR, which
can be represented as the product of the uncertainties:

TITR,peak(x) =

P∏
p=1

δ(x). (3)

A more important issue in robust antenna design is to search for
the maximum TITH if the output tolerance region (OTR) is known,
which can be regarded as an optimization problem if WCA can be
performed with high accuracy. Similar to the ITR, the OTR can be
defined as ∆ , [∆1,∆2, . . . ,∆Q]T, ∆q ≥ 0. The output tolerance
interval can be represented as

Ωs,∆ , {y|(y −∆ ≤ s ≤ y + ∆)}, (4)

where s = [s1, s2, . . . , sQ]T represents possible function values. The
MITH searching can be numerically represented as

max TITH(x), s.t. F (x) ∈ Ωs,∆. (5)

B. Maximum Input Tolerance Hypervolume Searching

By introducing MLAO methods, the WCP of a given nominal
solution and its ITR can be efficiently located with the help of a low-
complexity surrogate model [7]. First, design vectors in the given ITR
are sampled, and the calculation is performed using HF simulations.
Second, surrogate models are built using ML methods for each
design objective. Third, the WCPs are searched using population-
based optimization methods and surrogate models. Note that for cases
such as array synthesis, if HF responses can be generated with a
negligible time cost, then HF models can also be utilized directly for

population-based optimization procedures. The typical computation
time for WCA is approximately 5 s if surrogate models (for antenna
design) or HF models (for array synthesis) are used to produce the
required responses.

Once an accurate WCP can be acquired for any given nominal
point and its corresponding ITR, the MITH searching problem can be
simplified to a constraint optimization problem. For a given design
point, the optimization objective is to find the ITR corresponding
to the MITH among all the possible ITRs that fulfill the OTR. In
most practical problems, the ratio between the different dimensions
of the optimal ITR is unknown. For such problems, population-
based optimization methods (rather than traditional gradient-based
local-search optimization methods) are some of the best options
for yielding robust, globally optimized solutions. However, the time
cost issue arises when considering the computation time for WCA
and the large number of function calls required by population-based
optimization methods. For a three-parameter robust antenna design
problem, a population number of 50 and an iteration number of 100
are often required, resulting in a computation time of approximately
7 h for one MITH search process, which is unacceptable for future
robust optimization.

Here, a DL-MLAO algorithm is proposed to accelerate the MITH
search process. The workflow of the proposed DL-MLAO algorithm
is illustrated in Fig. 1. The detailed steps of the DL-MLAO MITH
search procedure are summarized as follows:

Step 1. Define the design point, design space, OTR and utilized
model: The design space must be set larger than the design space in
the previous optimization procedure to handle all possible situations
where the design points are located along the boundaries. The OTR
for antenna design can be set for the worst reflection coefficient within
the bandwidth, sidelobe level (SLL), gain and others. The utilized
model can be a surrogate model for HF EM simulations or other
computationally inexpensive models.

Step 2. Sample ITR vectors in the design space: Using sampling
strategies such as Latin hypercube sampling (LHS), a number Nr of
ITR vectors are sampled within the design space. Considering the
differences in the sensitivities of different design parameters, random
sampling strategies are essential for exploring the whole design space.
Uniform sampling strategies, including the sampling of Nu+1 initial
design points, or sampling with constraints can also be incorporated
to accelerate the algorithm if some prior knowledge about the MITH
is known.

Step 3. Simulate the WCP responses for given ITR vectors: Fol-
lowing the WCA method proposed above, the WCP responses for
the sampled ITH vectors are simulated. The ITR vectors ωi and
their corresponding WCP responses wi are combined to establish
the dataset. For a number Q of design objectives, WCA is performed
Q times. Therefore, while the WCP responses are identical for one
given nominal point, there may exist a number NWCP ≤ Q of several
corresponding xWCP that perform the worst for different design
objectives.

Step 4. Train the surrogate models: Here, due to the small size
of the dataset, the single-output Gaussian process regression (SOG-
PR) method is introduced to train the surrogate models [17]. The
sampled ITR vectors ωi are regarded as input variables X , and the
corresponding WCP responses wi are regarded as output variables y.
In this step, Q surrogate models for the WCP points are built based
on the established dataset.

Step 5. Optimize for the MITH: Here, the fitness function fMITH

is defined as follows:

fMITH =

{
D(F (x),Ωs,∆), F (x) /∈ Ωs,∆,

−TITH,peak(x), F (x) ∈ Ωs,∆,
(6)
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Fig. 2. Performance comparison between SS and the proposed DL-MLAO.

where D(F (x),Ωs,∆) represents the distance between the WCP and
the OTR,

D(F (x),Ωs,∆) =

Q∑
q=1

max{min{|max{fq(t)} − (yq + ∆q)|,

|max{fq(t)} − (yq −∆q)|}, 0}.
(7)

For cases in which F (x) /∈ Ωs,∆, fMITH will always be positive
but will decrease when the predicted WCP approaches the OTR. For
cases in which F (x) ∈ Ωs,∆, fMITH will be negative and will
decrease when TITH,peak increases. The proposed fitness function
offers a continuous optimization objective space and can find the
MITH efficiently.

Step 6. Validate the predicted MITH and update the database:
The MITH predicted by the above optimization procedure is then
validated by the accurate WCA method. The termination criterion,
such as the maximum number of iterations Niter or the maximum
number of available results Nnum, is then checked. If no criterion is
met, the surrogate model for the WCP prediction is updated online,
and then, Step 4 is repeated.

The DL-MLAO MITH search method is a nested loop structure
that uses WCA as the HF simulation for the MITH search process.
In [2], a novel MITH search method called SS is introduced. SS can
automatically find the quasi-optimal shape of the MITH efficiently
by iteratively sampling random points within the design space. For
practical problems, Ns = 7500 sampling points and Niter = 6
iterations are suggested. Although SS is very efficient and effective,
two issues are worth further consideration: 1) for practical problems
with a large design space and no prior knowledge about the MITH
dimensions, the MITH may not be found if the number of sampling
points is relatively small, and 2) the evaluated MITH is not accurate
because the WCP may not be located within the sampling set.

A K-dimensional, nonconvex, nonseparable benchmark function
Ackley is evaluated to verify the proposed DL-MLAO MITH search-
ing, which is defined by

g(x) =

K−1∑
k=1

(
e−0.2

√
x2k + x2k+1 + 3 (cos(2xk) + sin(2xk+1))

)
.

(8)
The design point is set as xk = 1, k = 1, ...,K, with the OTR of
[−1, 1] around g(x). A performance comparison between SS and the
proposed DL-MLAO is given in Fig. 2 for different input dimensions
and sampling point numbers Ns of SS. After calculating the MITHs
using SS and DL-MLAO, the GA is introduced to find the WCPs,
which are then compared with the given OTR to validate the MITHs.
The deviations are calculated by comparing the WCPs with the upper
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Fig. 3. Flow diagram of the ML-MLAO algorithm for robust optimization.

and lower bounds and are shown using different colors and point
sizes.

Fig. 2 reveals several issues. First, due to the limitation of the
sampling point number, SS may fail in finding the MITH. Second,
in many cases, the WCP of the MITH found by SS is outside the
OTR, which means that the true WCPs have not been found when
using SS. Third, with increasing input parameter number, the ability
of the conventional SS to find the reliable MITH is limited. Compared
with SS, the proposed DL-MLAO can obtain MITH results with their
WCPs within the OTR but close to the OTR bounds. Considering
both efficiency and reliability, the proposed DL-MLAO method can
be very helpful for designing practical antennas and arrays.

III. ROBUST OPTIMIZATION

Based on the WCA and MITH search algorithms proposed above,
robust antenna design can be accomplished using robust optimization
for different applications, including array synthesis and antenna
design. The ML-MLAO method is proposed based on the MLAO
scheme by applying DL-MLAO MITH searching as the HF simula-
tion procedure. The workflow of the ML-MLAO algorithm for robust
antenna design is given in Fig. 3. The detailed steps are summarized
as follows:

Step 1. Define the initial design points, design constraints, OTR,
etc.: The robust design procedure can be implemented after finishing
the optimization procedure, from which the number Nini of initial
design points can be obtained. In addition, the design space and
constraints should also be defined, as should the OTR.

Step 2. Sample the design points around the initial design points:
One practical antenna problem is to find the most robust antenna
design based on several optimal design vectors [4]. In this case,
the robust design process is implemented based on assumptions that
the most robust designs are located around the initial design points
obtained by the optimization procedure. Therefore, kd design points
around each design point are randomly sampled using strategies such
as LHS.

Step 3. Calculate the MITH at every sampling point and establish
the database: The MITHs corresponding to every sampled design
point, in addition to the initial design points, are calculated using the
abovementioned DL-MLAO method.

Step 4. Build surrogate models using the database: Surrogate
models are established to build relationships between the locations
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of the sampling points and the corresponding MITHs. For antenna
designs with N parameters, N surrogate models are established
to make predictions about the MITHs at new points. Here, the
sampled design points xi are regarded as input variables X , and the
corresponding MITH responses ωi are regarded as output variables
y.

Step 5. Optimize: Here, different optimization methods and d-
ifferent fitness functions can be implemented for different design
applications. Different design objectives, such as antenna size, ro-
bustness and performance, can be optimized simultaneously using
multiobjective optimization methods. Single-objective optimization
can also be utilized if robust designs are needed only around the
initial design points.

Step 6. Verify the results and update the database: The predicted
optimization results of the MITHs are verified using the proposed
DL-MLAO method, and the predicted antenna performance is verified
using EM simulations. The termination criterion, such as the maxi-
mum number of iterations iML or the maximum number of unchanged
iterations, is then checked. If one of the termination conditions is met,
the process is stopped; otherwise, the database is updated, and Step
4 is repeated.

The ML-MLAO method uses the MITH search strategy as the
HF simulation procedure in the MLAO scheme. The accuracy and
robustness of the results are ensured by the accuracy of DL-MLAO
MITH searching. Fig. 4 depicts the operating principle of the pro-
posed ML-MLAO method. Based on the established surrogate model
Rs1 between the design parameters and antenna responses, the WCP
values of different design points are calculated and utilized to build
a surrogate model Rs2 between the design parameters and the WCP.
By using the two surrogate models established above, a training
set consisting of antenna parameters and MITHs is constructed to
build a surrogate model Rs3. The ML-MLAO algorithm offers an
efficient solution to build surrogate models, make predictions of new
design points and update surrogate models online, thereby efficiently
searching for robust design points or Pareto fronts consisting of robust
information.

IV. VERIFICATION EXAMPLES

In this section, an array synthesis problem and an antenna design
problem are used to verify the proposed ML-MLAO-based robust
design method.

A. Array Synthesis

Consider a symmetric linear uniformly spaced antenna array con-
sisting of 2Nele isotropic elements. The element spacing is d = 0.5λ,

TABLE I
TWO DESIGN POINTS FOR ITERATION NUMBER na = 10 BEFORE AND

AFTER THE ROBUST DESIGN PROCESS.

Before Ele. 1 Ele. 2 Ele. 3 Ele. 4 Ele. 5 MITH SLL

1 50.5 0.1 0.1 18.6 14.0 2891.2 -14.20
2 2.2 319.4 6.6 3.6 341.0 4162.5 -14.26

After Ele. 1 Ele. 2 Ele. 3 Ele. 4 Ele. 5 MITH SLL

1 49.5 13.1 0.1 26.0 19.3 5705.8 -13.92
2 1.9 319.5 7.1 3.2 339.0 5038.7 -14.11

The unit for the phase is degrees, the unit for the MITH is degrees6, and
the unit for the SLL is dB.

Feeding Point

Shorting Point Shorting Point

l1l2l3l4l5

w1

g0

m0

Fig. 5. Structure of the series-fed microstrip antenna array.

and the magnitudes of the elements are uniformly excited. The
phases of the elements are optimized to achieve the lowest SLL. Two
design results are preliminarily optimized using MLAO optimization
methods [18] and then examined and modulated using the ML-MLAO
method to obtain robust design points around them. The search range
for each design point is ±20◦ within the initial designs. The OTR
is set as the SLL of -12 dB. The element phases, MITHs and SLLs
before and after the robust design process are given in Table I.

Two designs give similar SLL initially, while design 1 suffers a
much lower MITH than design 2, which means that the latter is
more robust than the former before the robust design. Upon applying
ML-MLAO, the two designs are both modulated to achieve better
MITH performance. Although design 1 has a worse SLL performance
than design 2 after the robust design, it has a higher MITH value of
approximately 5705.8, which means that design 1 is more robust than
design 2 after the robust design process.

B. Antenna Design

In contrast to the array synthesis problem discussed above, the
solution of the antenna design problem relies on the prediction
accuracy of the surrogate models trained with the datasets established
by full-wave EM simulations. For antennas with a large design
parameter range, acquiring accurate surrogate models for the entire
design space is difficult if time is limited. Therefore, local surrogate
models surrounding the possible optimal design points should be
established and updated online during the robust design process rather
than surrogate models suitable for the entire design space. The robust
antenna design algorithm is divided into two phases: the optimization
phase and the robust optimization phase.

In the optimization phase, the MLAO in [18] is applied to calculate
the optimal designs under the constraint of forbidden areas by
previously optimized design points [4]. By implementing forbidden
areas, multiple local optima are obtained with predefined numbers.

In the robust optimization phase, the ML-MLAO algorithm is
implemented. Particularly, for multiobjective robust design consid-
ering both antenna performance and robustness, the Pareto front
Ppre,i,j and corresponding worst case wi,j are predicted based on
the learned correlations, in which i and j represent the indexes
of the outer loop and inner loop, respectively. In the inner loop,
ML-MLAO is implemented to achieve an accurate Pareto front
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Fig. 6. Pareto fronts for the designed SMAA after three iterations: (a) Ppre,4, (b) Pval2,4 and (c) Pupd,4.

TABLE II
OPTIMIZED SMAA PARAMETERS OF THE SELECTED DESIGNS.

Item MITH |S11| SLL l1 (mm) l2 (mm) l3 (mm) l4 (mm) l5 (mm)

1 0.271 -17.68 -20.19 20.041± 0.616 20.344± 0.863 16.632± 0.853 12.233± 0.907 10.855± 0.658

2 0.011 -19.61 -20.97 19.671± 0.296 21.000± 0.279 16.156± 0.482 12.815± 0.495 8.816± 0.563

3 0.027 -19.70 -19.29 19.186± 0.315 20.068± 0.654 18.336± 0.551 11.384± 0.282 10.401± 0.848

∗ The unit for MITH is mm5, and the unit for |S11| and SLL is dB.
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Fig. 7. Predicted and validated Pareto front for the SMAA with i = 4.

TABLE III
COMPUTATION TIME FOR THE SMAA DESIGN.

Operation Time Remark

EM simulation 59.40 hours 1529 evals

Optimization 70.96 hours
0.22 billion

surrogate evals

Surrogate model training 2.51 hours 24225 times

Overall 133.07 hours

based on the available dataset for antenna responses. In the outer
loop, new design points are sampled around the calculated Pareto
front, and the surrogate models for antenna responses are updated
online. For each performance objective, single-objective optimization
is carried out to optimize each individual objective using the surrogate
models; the optimized results are then used to seed the multiobjective
optimization procedure, thereby enhancing the performance [19].

In the inner loop, the predicted antenna performance responses
Ppre,i,j are verified using EM simulations. The surrogate models for

the antenna performance are then updated. The corresponding MITH
of Ppre,i,j is also updated, with the obtained Pareto front named
Pval1,i,j . The termination criterion can be set as the maximum number
of iterations of the inner loop J or a limit on the RMSE. If the
termination criterion is fulfilled, then the algorithm shifts to the outer
loop, in which a number of design points Nsam are randomly sampled
around every design point in the Pareto front with verified antenna
responses Pval1,i,j within circular regions of radii ksam ×Dsam and
at the midpoint between each design point and the corresponding
WCP point, where Dsam is the distance between these two points
and ksam is the coefficient. Local surrogate models are updated, so
improved accuracy is achieved when predicting the antenna responses
around Pval1,i. Surrogate models for the parameter tolerances are then
updated based on the updated local surrogate models for the antenna
responses using MITH searching and WCA. The parameter tolerances
for the obtained Pareto front with verified antenna responses are then
recalculated based on the updated surrogate models. The Pareto front
obtained here is Pval2,i, in which the parameter tolerance can be
regarded as a verified MITH based on the accurate local surrogate
models.

Based on the verified results for both the antenna responses and
the parameter tolerances, Pareto front Pupd,i is then obtained based
on the entire dataset, which is regarded as the final HF results in one
outer loop. Whereas Pval2,i gives a relatively accurate Pareto front
prediction, the final Pareto front should be further updated due to
the presence of inevitable prediction bias. The Pareto front obtained
here is Pupd,i, which can be utilized for tradeoff purposes in the final
design. The termination criterion for the outer loop can be set as the
maximum number of iterations of the outer loop I . By introducing a
two-level nested loop, the surrogate models for the design points on
and around the predicted Pareto front are built and updated within the
robust design framework. The Pareto front is verified and updated to
achieve better accuracy. One antenna design is shown here to verify
the proposed ML-MLAO algorithm.

The series-fed microstrip antenna array (SMAA) shown in Fig. 5 is
analyzed and optimized based on the proposed optimization and ro-
bust design method. The SMAA is designed on the ground plane with
a Rogers 5880 substrate having dimensions of 400× 30× 1.5 mm3
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and a relative permittivity of εr = 2.3. The antenna is designed for
5.8 GHz with 10 series-fed microstrip antenna elements of symmetric
structure and shortened at the end. The distance between different
elements, the width of the antenna elements and the width of the
microstrip line are constant at g0 = 17 mm, m0 = 2 mm and
w1 = 16.4 mm. The output tolerance is set with a maximum |S11|
better than -14 dB and an SLL better than -18 dB. The design vector
is x = [l1, l2, l3, l4, l5]T, and the design space is defined by the
center vector x0 = [20.5, 20, 18, 11.5, 9]T mm with a variable range
of x0 ± δ, where δ = [1.5, 2, 3, 2.5, 3]T mm. The WCA design
space should be larger than the design space for design cases in
which the WCP points appear near the boundaries; hence, the WCA
design space is set as x0 ± δw, where δw = [2, 2.5, 3.5, 3, 3.5]T

mm. The optimization and SA phases are performed in turn with
J = 1, I = 4, ksam = 1.2, Nsam = 30, Nu = 5, Nr = 5 and
Niter = 5. The design objectives are the reflection coefficient |S11|
and SLL at the designated frequency point and the MITH. The Pareto
front for the designed SMAA after four iterations is shown in Fig. 6,
with Ppre,4, Pval2,4 and Pupd,4 presented. The predicted and verified
antenna responses and tolerances are shown in Fig. 6. The algorithm
gives a close prediction for both antenna responses and the MITH.

Three design points on the obtained final Pareto front are highlight-
ed, and their corresponding dimensions and performance values are
given in Table II. A clear tradeoff between the antenna performance
and robustness can be ascertained. The data in Table II demonstrate
that while Design 3 has the best |S11| performance, Design 2 has
comparable |S11| performance and much better SLL performance.
Compared with Design 2, Design 1 suffers from worse |S11| and SLL
performance but has much better parameter tolerances, which is more
suitable when robustness is considered in the final fabrication process.
A summary of the computation time for the SA process of the SMAA
design is listed in Table III. The computation time has been largely
reduced by using surrogate models for not only the antenna responses
|S11| and SLL but also the WCP points and MITHs. A total of
420 MITH searches are conducted, where each implementation takes
approximately 10 min of computation time, and the corresponding
MITHs are predicted 50,600 times, which means that the overall
computation time increases to approximately 8587 h if no surrogate
models for the MITHs are used. A total of 14,678 WCAs are
conducted, where each implementation takes approximately 10.0 s of
computation time, and approximately 65 million predictions are made
for the WCP, with 15,4857 predictions for the WCP in one MITH
search process. The entire computation time can reach approximately
21.8 million h (approximately 2482 years) if no surrogate models
for the WCP and MITH are used. A computation time of 139.9 s
is needed to conduct the HFSS simulation of the SMAA. In one
WCA process, approximately 5445 function calls for the |S11| and
SLL performance are needed. If no surrogate models are used for
the WCP, MITH, |S11| and SLL, then the computation time will
increase to approximately 189 million years. It is worth noting that
all computation times listed above, except the time using all surrogate
models, are roughly estimated based on the evaluation times of the
surrogate models; these estimates are calculated only to show how
the application of surrogate models for different design objectives
can help largely reduce the entire computation time.

V. CONCLUSION

An ML-MLAO method has been proposed to achieve reliable
and efficient robust design for antenna and array applications. By
introducing MLAO algorithms to different layers of the robust design
process, rapid and trustworthy WCA, MITH searching and robust
optimization have been achieved. The heavy computational loads
for global searching, EM simulation and tolerance analysis have

been greatly reduced by exploiting prior knowledge regarding the
correlations between the antenna parameters and responses, WCP
and MITH. This increased efficiency has been utilized to make
predictions in different design layers, largely accelerating the whole
robust design process. Moreover, the surrogate models for the afore-
mentioned design objectives are updated online following the ML-
MLAO algorithm. Examples including array synthesis and antenna
design have been described to verify the efficiency and reliability of
the proposed method.
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