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Abstract

The paper adopts an inverse problem approach to examine the role of some 2D geometries in the source reconstruction from far

zone data. It aims at evaluating the number of independent pieces of information, i.e. the number of degrees of freedom (NDF),

of the source and pointing out the set of far zone fields corresponding to stable solutions of the inverse problem. Some of the

results are relevant to the synthesis problem of conformal antennas, since a general comparison of different source geometries

in providing radiation pattern specifications is proposed.

1



  

Abstract — The inverse source problem has a number of 

applications in antenna analysis and synthesis. The properties of 

the radiation operator, connecting the source current to the far 

zone field, depends on the source geometry and can be analyzed by 

its singular value decomposition. Here, first, we present useful 

upper bounds about the number of degrees of freedom for some 

2D source geometries (i.e. for elliptical and parabolic arc sources) 

and examine the role of two different representation variables. 

These results were obtained from asymptotic arguments and allow 

to define the maximum number of independent sources and 

patterns that can be radiated by each geometry. They are verified 

to fit the numerically computed ones, too. Next, we examine the 

point source reconstructions by considering the point spread 

function. An approximate closed form evaluation reveals that the 

arc length representation variable leads to a space invariant 

behavior. The role of the source electrical length in determining 

the number of degrees of freedom is pointed out, too.  Finally, the 

radiation properties of different source geometries are compared 

by means of a synthetic index and examples of radiation pattern 

synthesis and array diagnostics confirm the need to investigate the 

role of the source geometry.  

 
Index Terms— Antenna synthesis, Conformal antennas, Inverse 

source problem, Number of Degrees of Freedom, Radiation 

operator, Point Spread Function, Singular Values Decomposition.  

 

I. INTRODUCTION 

HE development of conformal antennas array [1] and the 

increasing interest in their applications is due to several 

reasons. First, aero dynamic advantages arise for aircraft (such 

as UAV [2, 3] and SAR [4] platforms) and vessels, but they 

could also be exploited for the realization of train antennas, car 

radio antennas, and cellular base station antennas, also for the 

demanding 5G networks [5, 6]. Wide-angle and full solid angle 

scanning capability are often pursued for a variety of 

applications, such as both ground based [7] and on board [8] 

surveillance radar. In some advanced application where flexible 

materials are employed, the shape of an antenna array becomes 

a new parameter in the synthesis of a shaped beam [9].  

Unfortunately, there is a lack of general synthesis methods 

for conformal antennas [10], that include the synthesis of the 

source geometry. In fact, all approaches start from a prefixed 

surface definition. Amongst the most common we might 

mention: approaches based on constrained least square 
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approaches [11-13], methods imposing convexity constraints so 

leading to a convex programming problem [14,15], techniques 

exploiting linear programming [16], the numerical optimization 

of non-quadratic cost functional either by vector space 

projections onto convex set [17] or by stochastic methods 

[18,19] (sometimes applied to simplified array excitation model 

[20]), and ad hoc semi-analytical method [21]. 

While these methods may provide an optimal result for a 

particular geometry, they cannot allow to perform a general 

comparison between different source geometries. To this end it 

may be very useful to devise an approach able to assess in a 

synthetic way the electrical performances of such different 

geometries. 

Source shapes are compared in [1] by resorting only to 

geometrical arguments. In particular, efficiency is evaluated as 

a measure of the antenna surface in the scan direction as the 

ratio between the projected area along this direction and the 

actual surface area. In this way no electrical performance is 

accounted for. 

As the supporting surfaces of the array elements are not flat, 

it is interesting to investigate how the possibility of locating 

them along a 2D geometry (if a one dimensional array is 

considered) may provide a wider scope to the antenna designer 

so to achieve a wider angular coverage, for instance. On the 

other hand, limitations may arise for well focused patterns 

because the unalignment of the elements positions provide 

significant phase shifts of each individual pattern as soon as we 

move away from the main beam direction. In order to capture 

the essential features of the problem and illustrate the main 

results of the solution approach, hereafter we choose to 

investigate a slightly more general case, i.e. a 2D continuous 

scalar source current whose support is a conic curve, and 

observe the only component of the radiated far field along the 

whole round observation angle.  

The radiation pattern synthesis problem of a conformal 

source, together with the source diagnostic one, belong to the 

realm of the inverse source problem and concern the 

reconstruction of the radiating currents from the knowledge of 

the far field. Accordingly, it amounts to inverting the integral 

relationship connecting them.   

In particular, the ill-conditioning [22,23] of the relevant 

integral operator implies that only a finite number of source 

current functions can be correctly reconstructed in presence of 
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uncertainties on data, otherwise small noise on data can provide 

a large error on the reconstructed current. This problem may 

become particularly serious for the diagnostic of the faulty 

elements of an array, since if their number is too high it may 

occur that some excitations may not be diagnosed [24]. For this 

reason it is important to evaluate the Number of Degrees of 

Freedom (NDF) [25-27] of the source current in connection to 

its geometry, as the (finite) number (i.e. the dimension of the 

subspace) of source current functions that can be stably 

reconstructed [27]. 

In addition, this number is also related to the achievable 

resolution [28], i.e. to the capability of the solution algorithm to 

reconstruct two close point-like sources. Therefore, the Point 

Spread Function (PSF) properties are fixed by the NDF. It is 

clear that a detailed knowledge about the NDF and, hence, the 

achievable resolution is of primary importance in these kinds of 

problems. 

On the other hand, as well known, the physically realizable 

radiation patterns are related to the source geometry, and can be 

related to the NDF, too, which, in turn, also define the number 

of the (i.e. the dimension of the subspace) radiation pattern 

functions that can be radiated by a finite energy source: the 

higher the NDF, the larger the subspace that encompasses more 

far field patterns for a wider range of applications. Accordingly, 

an appropriate choice between different source geometries in 

achieving prescribed pattern specifications can be dictated only 

by the knowledge of the different far fields that each source may 

radiate. 

Therefore, in this paper we aim at discussing the features of 

the inverse source problem for some conic geometries in order 

to establish a way to compare their general radiation properties 

before undertaking the synthesis procedure of a particular 

antenna with definite specifications. 

In [29], for the first time, we proposed to apply the Singular 

Value Decomposition (SVD) to the analysis of the radiation 

operator connecting a source with non rectilinear geometry to 

the far field. The final goal is to provide a general way of 

comparing their radiation properties in connection with their 

geometries by examination of the numerical results of the SVD 

of the relevant operators. However, the main results about the 

Singular Values’ (SVs) behavior and NDF are only numerical 

and only a qualitative comparison of some different source 

geometries is performed. 

In [30] a circumference conformal geometry is fully 

examined by the SVD approach, with the effort of providing 

closed form evaluations and/or estimation of the NDF. First, for 

different full angle circles, closed form SVDs are recalled or 

derived and discussed. Next, an arc of circumference is 

considered and asymptotic arguments are introduced and 

numerically validated to provide an estimate of both the NDF 

and the singular function behavior. To this end, the main result 

is concerned with the role of the source angle, or, rather, its 

electrical length, in determining the NDF and, thus, the 

dimension of the subspace of realizable far field patterns. 

Finally, the role of the NDF is sketched with a simple numerical 

example of the synthesis of a focusing beam pointing at 

different directions.  

However, while the circular geometry has been already 

investigated [31], the general 2D case is still an open problem. 

The investigation of these features of the inverse source 

problem may be performed by resorting to the spectral 

decomposition of the relevant linear operator connecting the 

source current to the far field, which is introduced in Section II. 

This is accomplished by examining its SVD, so as to consider, 

firstly, the SVs behavior, since they provide the NDF of the 

source in dependence of its geometry. Since also for a general 

2D geometry it is difficult to find an analytical and closed form 

expression of the NDF, the first goal of this work is to provide 

a useful upper bound for it to compare with the exact 

numerically computed one. In Section III this goal is 

accomplished by asymptotic evaluations of the radiation 

integral in far zone for some 2D source curve shapes observed 

upon a full circumference angle. Beside an arc of 

circumference, two other curves are considered: an arc of 

ellipse and an arc of parabola Next, the role of the curve 

parametrization, i.e. the variable describing the source 

geometry, is investigated and the same asymptotic arguments 

are employed to provide further upper bounds on the NDF for 

the same curves as above. Again, they are compared with the 

numerically computed ones. The new theoretical results of the 

Section are concerned with not only the upper bounds and/or 

exact values of the NDF, but also with the strict connection of 

the NDF with the source electrical length, irrespective of its 

geometry. 

Section IV is devoted to the PSF analysis for the two 

considered parametrization variables in order to confirm and 

mathematically explain the previous results. In fact, the 

evaluation of the PSF is commonly employed in the inverse 

problem literature to provide a measure of the algorithm 

performances about the resolution capabilities. First a closed 

form original approximated expression is introduced; its 

discussion leads to point out the role of the arc length variable, 

as a spatially invariant behavior is observed; the approximated 

expression is also compared with the exact one with a good 

agreement.  

Section V aims at applying the previous results to the antenna 

realm by means of a comparison between four source 

geometries, with the same length. First the NDF are numerically 

computed and their dependence on the electrical length is 

verified. Next, in order to establish the terms of a comparison 

of their radiated fields, a synthetic index, the Spectral Content 

Function (SCF), is introduced. Its connection with the pertinent 

PSF is highlighted and it results as a sort of an average of the 

PSFs.  

The index should help an antenna designer in comparing 

different geometries according to the required pattern 

specifications. Accordingly, some numerical examples of 

pattern synthesis are provided and the behavior of different 

source geometries are understood in terms of the corresponding 

SCFs. In addition, an application to conformal array antenna 

diagnostics, highlights the role of the knowledge of the NDF for 

reliable results. 

Conclusions end the paper in Section VI.  
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II. THE MATHEMATICAL MODEL 

In our discussion, we suppose that the source is embedded in 

a homogeneous medium with dielectric permittivity 𝜀0 and 

magnetic permeability 𝜇0. In order to simplify the mathematical 

notation, we assume invariance along the 𝑦 axis and 𝑦-directed 

electric field 𝐸, so that the problem is scalar. The considered 

source conic curves are the parabolic and elliptical arcs, over 

which an angularly variant current density 𝐽 is supported. For 

the sake of comparison, results for the rectilinear and 

circumference arc are reported within the paper, too. The source 

domain is described by the polar coordinates 𝑟(𝜙) and 𝜙: the 

radial coordinate 𝑟(𝜙) depends on the considered source 

geometry, while the angular variable 𝜙 spans between −𝛼 and 

𝛼, with 𝛼 ∈ [− 𝜋 2⁄ , 𝜋 2⁄ ]. The reference system is centered in 

the focus 𝐹 for both the curves (Fig. 1).  

 
Fig. 1.  Relevant to the geometry. 

 

The radiated field  𝐸 is collected in far zone. When the 𝐸 

function is observed versus the angular variable 𝜃, the radiation 

operator 𝒜 connecting the source current to the far field can 

written, apart from an inessential factor, as  

 

𝐸(𝜃) = ∫ 𝐽(𝜙)𝑒𝑗𝛽𝑟(𝜙) 𝑐𝑜𝑠(𝜃−𝜙)  ‖𝛾′(𝜙)‖  𝑑𝜙 = 𝒜(𝐽)
𝛼

−𝛼
   (1) 

 

where 𝛽 = 2𝜋 𝜆⁄ , 𝜆 is the wavelength, 𝛾(𝜙) =

(𝑟(𝜙)𝑠𝑖𝑛𝜙, 𝑟(𝜙)𝑐𝑜𝑠𝜙) is a bijective parametric representation 

of the curve 𝛤 over which the integration is performed and 

‖𝛾′(𝜙)‖  𝑑𝜙 is the differential element of 𝛤. Equation (1) 

defines the radiation operator 

 

𝒜: 𝐽 ∈ 𝐿[−𝛼,𝛼]
2 → 𝐸 ∈ 𝐿[−𝜋,𝜋]

2              (2) 

 

where 𝐽 and 𝐸 are assumed to belong to the set of square 

integrable functions 𝐿[∙]
2  supported over the interval specified by 

the subscript. For a rectilinear x oriented source, when the sin 𝜃 

observation variable is used, (1) becomes the usual Fourier 

transform relationship between the far zone field and the source 

current. On the contrary, for a conformal source, the kernel of 

(1) is of more general type, it depends on the particular source 

geometry and deserves a careful investigation.  

Since the operator 𝒜 is compact, we can compute its Singular 

Value Decomposition (SVD) [23] made up by the left singular 

functions {𝑢𝑛}, the singular values (SVs) {σ𝑛} and the right 

singular functions {𝑣𝑛}. The importance of SVD is twofold: on 

the one hand it allows us to identify orthonormal bases for the 

operator range and the operator domain ({𝑣𝑛} and {𝑢𝑛}, 
respectively), and on the other hand, it enables to establish the 

number of significant SVs that may provide the NDF [32], since 

for an integral operator such as the one in (1) it is well known 

that the SVs exhibit a step-like behavior. However, both the 

number of SVs and an analytical SVD are not exactly known 

for a generic 2D source geometry, except for the circular source 

geometry [31]. The lack of knowledge in this area justifies the 

interest in finding an upper bound to the NDF for such 

geometries. 

 

Fig. 2.  The smallest circular source (red line) with radius R including an arc 

source (blue line). 

 

For the sake of comparison, the smallest circular source 

including the source is considered (Fig. 2), as exact results 

about it are the only available ones for this kind of problem. To 

this end, we recall that for a circular source the maximum 

number of basis functions representing the source in a stable 

way can be found exactly and this number provides the NDF. 

Therefore, upper bounds for the NDF of any conic curve can be 

provided by considering the smallest circular source 

circumscribing the source arcs, that is [29], 

 

𝑁𝑐 = 2[𝛽𝑅] + 1                (3) 

 

where 𝑅 represents the circle radius and [∙] stands for integer 

part. In the following estimates, which are better than 𝑁𝑐, are 

introduced. 

III. NDF ANALYSIS 

The goal of this section is to discuss the NDF of an elliptical 

and parabolic arc source. This would require to compute the 

SVs of the relevant operators (1), which, unfortunately, cannot 

be performed in closed form. Therefore, analytical upper 

bounds are derived adopting Fourier series expansions for the 
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source current functions and following asymptotic reasoning. 

In addition, the role of the source current variable is examined 

by assuming, first, that the source geometry is parametrized by 

the angle coordinate (Subsection A) and, next, by the arc length 

variable (Subsection B). Finally, the numerical evaluations of 

the NDF provide support to this analysis (Subsection C). 

A. Angular parametrization 

Let us first rewrite (1) as 

 

𝐸(𝜃) = ∫ 𝐽(𝜙)𝑒𝑗(𝛽𝑝)(𝑟(𝜙) 𝑝⁄ ) 𝑐𝑜𝑠(𝜃−𝜙)  ‖𝛾′(𝜙)‖  𝑑𝜙
𝛼

−𝛼
    (4) 

 

where 𝑝 is a geometrical parameter much larger than 

wavelength. 

Since the source current right singular functions {𝑣𝑛} are not 

known analytically, we resort to representing the current 

function by Fourier harmonics, i.e. as 

 

𝐽(𝜙) = ∑ 𝑐𝑚
𝑒

𝑗
𝑚𝜋

𝛼
𝜙

√2𝛼
∞
𝑚=−∞ .             (5) 

 

and aim at evaluating its maximum spectral content. Since 

each current Fourier harmonic contributes to the radiated field 

as 

 

𝒜 (
𝑒𝑗𝑚𝜋

𝛼 𝜙

√2𝛼
) = ∫

𝑒𝑗𝑚𝜋
𝛼 𝜙

√2𝛼
𝑒𝑗(𝛽𝑝)(𝑟(𝜙) 𝑝⁄ ) 𝑐𝑜𝑠(𝜃−𝜙)  ‖𝛾′(𝜙)‖  𝑑𝜙

𝛼

−𝛼
  (6) 

 

stationary phase approximation arguments are proposed in 

order to appreciate how many harmonics |𝑚| < 𝑀 are required 

to represent 𝐽, provided 𝛽𝑝 ≫ 1.   

From the discussion in Appendix A, the maximum number 

of Fourier harmonics providing a significant contribution to the 

far field is 𝑁𝑒
𝜙

= 2𝑀 + 1 with  

 

𝑀 = [
𝛼𝛽𝑝

𝜋

(1+𝑒)

(1+𝑒 𝑐𝑜𝑠 𝛼)2
]               (7) 

 

Since the Fourier harmonics do not form an “extremal basis”, 

i.e.  are not the singular functions of 𝒜, 𝑁𝑒
ϕ

 provides an upper 

bound to the NDF. 

Finally, we can notice directly from the expression of 𝑁𝑒
𝜙

 that 

when 𝑒 = 0, 𝛼 = 𝜋/2 and, consequently, 𝑟(𝜙) = 𝑝 = 𝑅 (the 

case of a semi-circumference source) the value predicted for 𝑁𝑒
ϕ

 

is 𝛽𝑅, in agreement with the results of [31].  

When the source is a parabolic arc, the above reasoning can 

be repeated and the arguments of Appendix A lead to deduce, 

that the maximum number of Fourier harmonics is 𝑁𝑝
ϕ

= 2𝑀 +

1, with 

 

𝑀 = [
𝛼𝛽𝑝

2𝜋 𝑐𝑜𝑠3(
𝛼

2
)
].                 (8) 

 

Once again, this number represents an upper bound for the 

NDF. 

 

B. Arc length parametrization 

Let us investigate a different curve parametrization, that is 

the arc length 𝑠(𝜙) variable, defined by 

 

𝑠(𝜙) = 𝑠(−𝛼) + ∫ ‖𝛾′(𝑡)‖ 𝑑𝑡
𝜙

−𝛼
          (9) 

 

where, if 𝐿 represents the source total length, 𝑠(−α) is set to 

−𝐿/2.  Operator (4) is now rewritten as  

 

𝐸(𝜃) = ∫ 𝐽(𝑠)𝑒𝑗(𝛽𝑝)(𝑟(𝜙(𝑠)) 𝑝⁄ ) 𝑐𝑜𝑠(𝜃−𝜙(𝑠)) 𝑑𝑠 = 𝒜̂(𝐽)
𝐿/2

−𝐿/2
 (10) 

 

and the previous asymptotic approach can be followed for 

𝛽𝑝 ≫ 1 so to lead to upper bounds for the NDF of (10).   

This time, the source current function is represented as a 

Fourier harmonics superposition in the 𝑠 variable, that is, 

 

𝐽(𝑠) = ∑ 𝑐𝑚
𝑒

𝑗
𝑚2𝜋

𝐿
𝑠

√𝐿
∞
𝑚=−∞               (11)  

 

and, again, we aim at evaluating the contribution of each current 

harmonic to the far field. 

The maximum allowable harmonic order is now given by 

 

𝑀 = [
𝐿

𝜆
𝜈]                   (12) 

 

where 𝜈 = (1 + 𝑒) √1 + 𝑒2 + 2𝑒 𝑐𝑜𝑠 𝛼⁄ . In other words, 𝑀 is 

proportional to the electrical length of the source by a 

coefficient 𝜈 which is always greater than one. Accordingly, the 

maximum number of Fourier harmonics needed to represent the 

source current is 𝑁𝑒
𝑠 = 2𝑀 + 1, so providing another upper 

bound for the NDF. 

Turning the attention to the parabolic arc and repeating the 

same steps (see Appendix A) as above we find out that, the 

maximum Fourier harmonic order m allowing for a real solution 

of the stationary phase condition is provided by 

 

𝑀 = [
𝐿

𝜆
]                    (13) 

 

and, consequently, the maximum number of Fourier harmonics 

is 𝑁𝑝
𝑠 = 2𝑀 + 1.  

In this way, we can point out that, again, a link between the 

NDF asymptotic upper bound and the length source is found, as 

in (12). 

C. Exact NDF 

Here, the effectiveness of the four upper bounds derived in 

the previous subsections is tested by means of the numerical 

computation of the SVs. This is performed from the SVD of (4) 

and (10) with a sufficiently dense discretization of both the 

source and observation spaces. Then the actual NDF, denoted 

by  𝑁𝑎𝑐𝑡
𝜙

 and 𝑁𝑎𝑐𝑡
𝑠  respectively, corresponds approximatively to 

the index where the knee of the SVs curve occurs, i.e. when the 

exponential decay of the SVs starts. 

In Fig. 3, once 𝑝 is fixed, the exact, numerically computed, 

SVs behavior of both operators 𝒜 and 𝒜̂ is shown for the 
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elliptic arc,  for different ε and compared with that 𝑁𝑒
𝜙

 and 𝑁𝑒
𝑠.  

It results that, when α is not large, the above deduced upper 

bounds provide a very good estimation of the actual NDF.  

 

 
Fig. 3.  Behavior of the exact SVs of the operators 𝒜 (left panel) and 𝒜̂ (right 

panel) for an elliptical arc with 𝑝 = 10𝜆 and 𝛼 = 𝜋/4, by varying the 

eccentricity 𝑒. 

 

In Fig. 4 the exact, numerically computed, SVs behavior of 

both operators 𝒜 and 𝒜̂ is shown for the parabolic arc, for 

different 𝑝 and compared with that 𝑁𝑝
𝜙

 and 𝑁𝑝
𝑠. In particular,  

𝑁𝑝
𝑠 is always very close to 𝑁𝑎𝑐𝑡

𝑠  and that that the estimation 𝑁𝑝
ϕ

 

is closer to 𝑁𝑎𝑐𝑡
𝜙

 when α is not large.  Therefore, it can be 

concluded that in all circumstances the asymptotic analysis can 

be useful in defining the dimension of both the current and the 

field representation subspaces. 

These conclusions are further supported by the quantitative 

sample results reported in Tables I-III. Here, we include a 

further comparison with the loose upper bounds 𝑁𝑐 (i.e. (3) of 

Section II), obtained by considering the smallest circle 

including the source arc. This result is the only available general 

upper bound involving a non rectilinear source geometry. 

For the elliptic arc, the smallest including circle has a radius 

 

𝑅 =
𝑝 𝑠𝑖𝑛 𝛼

1+𝑒 𝑐𝑜𝑠 𝛼
                  (14) 

 

to be used in (3). It can be observed that 𝑁𝑐 is always larger 

than 𝑁𝑒
𝜙,𝑠

 (see Tables I and II),  

For the parabolic arc, the smallest including circle has a 

radius 

 

𝑅 =
𝑝 𝑠𝑖𝑛 𝛼

1+𝑐𝑜𝑠 𝛼
                   (15) 

 

It can be observed in Table III that 𝑁𝑝
ϕ,𝑠

 is always smaller than 

𝑁𝑐 for this curve, too.  

Results of Tables I-III provide another two very interesting 

conclusions. 

First of all, 𝑁𝑎𝑐𝑡
𝜙

 and 𝑁𝑎𝑐𝑡
𝑠  are nearly equal in all 

circumstances. This means that the NDF does not depend on the 

curve parametrization but only on its geometry. The curve 

parametrization affects only the behavior of the SVs before the 

knee, but does not change its occurrence.  

On the other hand, 𝑁𝑝
𝑠 is nearly twice the curve electrical 

length (see (13)), while 𝑁𝑒
𝑠 is very close to it (see (12)), and 

both approximate 𝑁𝑎𝑐𝑡
𝑠  very well. 

. 

 

 
Fig. 4.  Behavior of the exact SVs of the operators 𝒜 (left panel) and 𝒜̂ (right 

panel) for a parabolic arc with 𝛼 = 3𝜋/8, by varying the semi-latus rectum.  

 

Therefore, it is apparent that the electrical length of the 

source, rather than its geometry, plays an important role in the 

evaluation of the actual NDF. As a numerical confirmation of 

this result, we consider three conic sources with the same length 

𝐿, i.e. semi-circumference, parabolic and elliptical arcs. An 

extensive numerical analysis has been performed and a typical 

result of the SVs of both operators 𝒜 and 𝒜̂, for 𝐿 = 20𝜆 is 

reported in Fig. 5. In particular the exponential decay of the SVs 

starts at an index approximately equal to 𝑁𝑎𝑐𝑡
𝜙

 = 𝑁𝑎𝑐𝑡
𝑠 =40 for 

every curve, irrespective of the geometry parametrization. 

 

 
Fig. 5.  Behavior of the exact SVs for elliptical, parabolic and circumference 

arcs with the same 20λ length and α = π/2. The left panel refers to the operator 

𝒜 while the right panel refers to the operator 𝒜̂. 

 

Accordingly, both by the asymptotic upper bounds and by the 

numerical results, as a second outcome of the Section, the 

relation linking the NDF with the source length is 

 

𝑁𝑎𝑐𝑡
𝑠 ≈ [

2𝐿

𝜆
]                   (16) 

 

where 𝜆 is the wavelength. In next Section a further explanation 

for this result is provided. 

IV. PSF ANALYSIS 

Within an inverse source problem, it is worth appreciating 

the capabilities of the solution algorithm in reconstructing a 

source current in a stable way. A typical performance index is 

connected to the possibility of distinguishing between two close 

point sources, which can be useful also for an array antenna 

source when its diagnostics is of interest, for the identification 
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of faulty elements, for instance. In this circumstance, the PSF is 

to be considered, which is defined as the reconstruction of a 

point-like source by the inversion scheme, and provides a 

measure of the resolution in the reconstruction by its main lobe 

width [33]. In addition, the behavior of its main lobe can 

provide further interesting information, since similar main 

lobes centered at different source points would imply the same 

reconstruction along the whole source domain, i.e. a space 

invariant result; on the contrary, if the PSF is space variant, 

different resolution can be expected at different source points.   

Therefore, hereafter, first we evaluate the PSFs associated to 

the relevant operators (1) and (10). If we start by considering 

the 𝜙 variable and the 𝒜 operator, by its definition, the PSF can 

be expressed as the impulsive response to the system made up 

by the cascade of the direct operator and its regularized inverse, 

i.e. 

 

𝑃𝑆𝐹(𝜙, 𝜙0) = 𝒜−1𝒜(𝛿(𝜙′ − 𝜙0))         (19) 

 

where 𝛿(∙) represents a Dirac impulsive function centered at the 

source domain point 𝜙0 , supported over the source domain, and 

providing the point-like source location. Accordingly, when a 

truncated SVD (TSVD) inversion scheme is exploited, the PSF 

results as  

 

𝑃𝑆𝐹(𝜙, 𝜙0) = ∑ 𝑣𝑖
𝑁𝐷𝐹
𝑖=1 (𝜙)𝑣𝑖

∗(𝜙0)            (20) 

 

and its evaluation requires the knowledge of the right singular 

functions {𝑣𝑛}, which, in general, can be gained only by the 

numerical computation of the SVD of the operator. 

However, in order to overcome this difficulty, we are going 

to introduce an approximated evaluation of the PSF. In fact, 

since the SVs exhibit a step-like trend, we can resort to the 

adjoint operator to perform the (regularized) inversion [34], 

keeping in mind that we will obtain an approximated result 

because the actual SVs are not constant.  

So we introduce the approximate PSF as: 

 

𝑃𝑆𝐹̃(𝜙, 𝜙0) = 𝒜†𝒜(𝛿(𝜙′ − 𝜙0))  (21) 

 

and it turns out that 

 

𝑃𝑆𝐹̃(𝜙, 𝜙0) = ∑ 𝜎𝑖
2𝑣𝑖

𝑁𝐷𝐹
𝑖=1 (𝜙)𝑣𝑖

∗(𝜙0) (22) 

 

By definition, the adjoint operator of 𝒜, 𝒜†, satisfies the 

relationship 

 

< 𝒜(𝐽), 𝐸 >𝐿[−𝜋,𝜋]
2 =< 𝐽, 𝒜†(𝐸) >𝐿[−𝛼,𝛼]

2  (23) 

 

where <∙,∙> stands for the scalar product within the appropriate 

space. Accordingly, it can be written as  

 

𝒜†(𝐸(𝜃)) = ‖𝛾′(𝜙)‖ ∫  𝐸(𝜃)𝑒−𝑗𝛽𝑟(𝜙) 𝑐𝑜𝑠(𝜃−𝜙)𝜋

−𝜋
𝑑𝜃 (24) 

 

By inserting (1) into (24) and resorting to the sifting property 

of the impulse, (21) becomes  

 

𝑃𝑆𝐹̃(𝜙, 𝜙0) = ‖𝛾′(𝜙)‖ ‖𝛾′(𝜙0)‖ ⋅

∫  𝑒𝑗𝛽[(𝑥(𝜙0)−𝑥(𝜙)) 𝑠𝑖𝑛 𝜃+(𝑧(𝜙0)−𝑧(𝜙)) 𝑐𝑜𝑠 𝜃]𝜋

−𝜋
𝑑𝜃 (25) 

with 𝑥(𝜙) = 𝑟(𝜙) 𝑠𝑖𝑛 𝜙 and 𝑧(𝜙) = 𝑟(𝜙) 𝑐𝑜𝑠 𝜙. Let us, now, 

focus on the integral in (25). First, it is useful to recall the 

integral expression of the Bessel function of zero-th order as 

 

𝐽0(𝛾) =      
1

2𝜋
∫  𝑒𝑗𝛾 cos(𝜃−𝜈)𝑑𝜃

𝜋

−𝜋
            (26) 

 

for arbitrary ν. Next, we denote with 𝜌 = (𝑥, 𝑧) and 𝜌0 =

(𝑥0, 𝑧0) two points of the 𝑥 − 𝑧 plane. Finally, the phase 

function in (25) is cast under a cosine function as in (26) so that 

the integral in (25) is exactly retrieved as 

 

∫  𝑒𝑗𝛽[(𝑥−𝑥0) 𝑠𝑖𝑛 𝜃+(𝑧0−𝑧) 𝑐𝑜𝑠 𝜃]𝑑𝜃
𝜋

−𝜋
=

2𝜋𝐽0 (𝛽√(𝑥(𝜙0) − 𝑥(𝜙))
2

+ (𝑧(𝜙0) − 𝑧(𝜙))
2

)  (27) 

 

Therefore, the approximated PSF can be expressed as 

 

𝑃𝑆𝐹̃(𝜙, 𝜙0) = 2𝜋 ‖𝛾′(𝜙)‖ ‖𝛾′(𝜙0)‖ 𝐽0 (𝛽 |𝜌0 − 𝜌|) (28) 

 

From (28) it is straightforward to appreciate that, strictly 

speaking, the approximated PSF is dependent on the point 

source position and, hence, exhibits spatial variance. However, 

the outer functions depending on the curve parametrization, are 

smooth functions of the independent variable, so their 

contribution to the spatial variance can be neglected and 

discussion can focus only on the Bessel function factor, which 

represents a space invariant function. 

On the other hand, when we consider the 𝒜̂ operator and 

repeat the same discussion for the corresponding approximate 

PSF function, it results 

 

𝑃𝑆𝐹̃(𝑠, 𝑠0) =

∫  𝑒𝑗𝛽[𝑟(𝜙(𝑠0)) 𝑐𝑜𝑠(𝜃−𝜙(𝑠0))−𝑟(𝜙(𝑠)) 𝑐𝑜𝑠(𝜃−𝜙(𝑠))]𝜋

−𝜋
𝑑𝜃 =

2𝜋𝐽0 (𝛽 |𝜌0 − 𝜌|)  (29) 

 

where 𝜌 = (𝑥(𝑠), 𝑧(𝑠)) and 𝜌0 = (𝑥(𝑠0), 𝑧(𝑠0)) denote the 

observation point and the impulsive source location, 

respectively. Then the PSF is a space invariant function. 

Let us now consider the first lobe of the Bessel function in 

(28) and (29), whose argument is the distance between the 

observation point and the impulsive source location. For 

observation points close to the source location and for small 

curvature, this distance can be well approximated by the 

difference in the corresponding arc lengths, just like an arc can 

be approximated by its secant. Then, |𝜌0 − 𝜌| ≃ |𝑠 − 𝑠0|, and 

within its main lobe, the approximated PSF is provided by 

 

𝑃𝑆𝐹̃(𝑠, 𝑠0) ≃ 2𝜋𝐽0(𝛽|𝑠 − 𝑠0|). (30) 
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This result implies that, when the arc length observation 

variable is adopted, an approximately space invariant PSF is 

obtained. 

A comparison between the analytical result in (28) and the 

numerically computed exact PSFs is presented in the upper 

panels of Figs 6 and 7, while in the lower panels the PSF for the 

𝒜̂ operator is approximated by (30). We can notice that the 

PSFs main lobe width is well predicted in every case. 

 

 
Fig. 6.  Normalized PSFs main lobe of operator 𝒜 (upper panel) and 𝒜̂ (lower 

panel) for an elliptic arc with 𝑝 = 10𝜆, 𝛼 = 𝜋/2 and 𝑒 = 0.5. The blue curves 

represent the numerically computed PSF, while the red curves are the 

approximated ones. The source points are located at 𝜙0 = 0, 0.79, 1.41 for 

operator 𝒜  and at the corresponding arc lengths 𝑠0 for the 𝒜̂ operator. 

 

 
Fig. 7.  Normalized PSFs main lobe of operator 𝒜 (upper panel) and 𝒜̂ (lower 

panel) for a parabolic arc with 𝑝 = 10𝜆 and 𝛼 = 𝜋/4. The blue curves represent 

the numerically computed PSF, while the red curves are the approximated ones. 

The source points are located at 𝜙0 = 0, 0.39, 0.63 for operator 𝒜  and at the 

corresponding arc lengths 𝑠0 for the 𝒜̂ operator. 

From the analytical (although approximated) expression of 

the PSF for the arc length variable, a way to estimate the NDF 

can be derived as the number of point sources that can be 

resolved by the regularized inversion scheme. Two points like 

sources are reconstructed when their distance is larger than the 

width of the main lobe of the PSF, which can be assumed as the 

interval where the modulus of the PSF is half than its maximum 

[33]. By (30) the width of the PSFs main lobe at half height is 

Δ𝑠 ≈ 0.484𝜆 and it is constant along the domain, because of 

the found space invariance. Accordingly, we can count the 

number of the PSFs main lobes covering the source domain and 

overlapping at their half heights. Hence, the NDF can be 

computed approximately as [𝐿/Δ𝑠]. For example, for an elliptic 

arc with 𝑝 = 10λ, ε = 0.5 and α = π/2, the source length is 

𝐿 ≈ 25.3𝜆 returning an NDF evaluation approximately equal to 

52, that is very close the actual one (see Table I). Analogously, 

if we consider a parabolic arc with  𝑝 = 10λ and α = π/4, the 

source length will be 𝐿 ≈ 8.52λ leading to an estimation of the 

NDF of about 17, that is exactly the actual value (see Table III). 

Therefore, this analysis confirms that the actual NDF is 

connected to the curve electrical length, instead of its shape, as 

also found in the previous Section. 

V. ANTENNA APPLICATIONS  

In order to point out the role of the geometry in the capability 

of a source to radiate a desired field, hereafter we compare 

different source geometries fixing their electrical length and 

their angular extension to a common value. The first constraint 

is derived from the observation of the previous Sections about 

its important role in defining the NDF. Therefore, the 

dimension of the subspaces spanning the radiation patterns of 

the various sources are the same, while the actual set of 

realizable patterns, as defined by the left singular functions {𝑢𝑛} 
associated to the relevant geometry, may differ. 

The PSF turns out to be also a good figure of merit for the 

radiation properties of a source when it is referred to the 

observation domain. In this case, the PSF in 𝜃, named 

𝑃𝑆𝐹𝐹𝐹(𝜃, 𝜃0), describes the capability of a source to radiate a 

far field focusing in a given direction 𝜃0. The 𝑃𝑆𝐹𝐹𝐹 is defined 

as the impulsive response to the system consisting of the 

cascade of the regularized inverse and the direct operator and is 

given by 

 

𝑃𝑆𝐹𝐹𝐹(𝜃, 𝜃0) = 𝒜𝒜−1(𝛿(𝜃′ − 𝜃0)) (31) 

 

When a truncated SVD (TSVD) inversion scheme is adopted, 

the 𝑃𝑆𝐹𝐹𝐹 writes explicitly as 

 

𝑃𝑆𝐹𝐹𝐹(𝜃, 𝜃0) = ∑ 𝑢𝑖
𝑁𝐷𝐹
𝑖=1 (𝜃)𝑢𝑖

∗(𝜃0) (32) 

 

An interesting source property for omni-directional coverage 

applications might be provided, for example, by a space-

invariant 𝑃𝑆𝐹𝐹𝐹 , meaning that the source is able to radiate the 

same beam in different directions. However, to appreciate this 

feature it would be necessary to compute (32) by varying 𝜃0 

explicitly. A more synthetic way to identify the radiation 

properties of a source can be achieved by resorting to the 
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Spectral Content Function (SCF) defined as  

 

𝑆𝐶𝐹(𝜃) = ∑ |𝑢𝑖(𝜃)|2𝑁𝐷𝐹
𝑖=1  (33) 

 

since it can be shown to be related to 𝑃𝑆𝐹𝐹𝐹(𝜃, 𝜃0).  

The 𝑆𝐶𝐹(𝜃), indeed, may describe the average behavior of 

the PSF squared magnitude along the observation domain, as 

follows. If we integrate the squared magnitude of the 𝑃𝑆𝐹𝐹𝐹 

with respect to 𝜃 along the whole observation interval, we 

obtain 

 

∫ |𝑃𝑆𝐹𝐹𝐹(𝜃, 𝜃0)|2𝑑𝜃
𝜋

−𝜋
=

∫ ∑ 𝑢𝑖
𝑁𝐷𝐹
𝑖=1 (𝜃)𝑢𝑖

∗(𝜃0) ∑ 𝑢𝑗
∗(𝜃)𝑢𝑗

𝑁𝐷𝐹
𝑗=1 (𝜃0)𝑑𝜃

𝜋

−𝜋
 (34) 

 

By interchanging the summation and the integral, (34) 

becomes 

 

∑ ∑ 𝑢𝑗(𝜃0)𝑢𝑖
∗(𝜃0)𝑁𝐷𝐹

𝑗=1
𝑁𝐷𝐹
𝑖=1 ∫ 𝑢𝑗

∗(𝜃)𝑢𝑖(𝜃)𝑑𝜃
𝜋

−𝜋
 (35) 

 

and, thanks to the orthonormality of the left singular functions, 

we finally obtain  

 

∫ |𝑃𝑆𝐹𝐹𝐹(𝜃, 𝜃0)|2𝑑𝜃
𝜋

−𝜋
= ∑ |𝑢𝑖(𝜃0)|2 = 𝑆𝐶𝐹(𝜃0)𝑁𝐷𝐹

𝑖=1  (36) 

 

that is exactly the SCF defined in (33). 

Indeed, if the 𝑃𝑆𝐹𝐹𝐹 is space-invariant, namely, it does not 

depend on the particular observation point θ0 where the 

impulsive source is applied, 𝑃𝑆𝐹𝐹𝐹(𝜃, 𝜃0) = 𝑃𝑆𝐹𝐹𝐹(𝜃 − 𝜃0). 

Then 

 

∫ |𝑃𝑆𝐹𝐹𝐹(𝜃 − 𝜃0)|2𝑑𝜃0
𝜋

−𝜋
= 𝑆𝐶𝐹(𝜃) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (37)  

 

is no longer a function of 𝜃0 but only of the observation variable 

𝜃. Function (33) can be also read as the contribution of all 

significant singular functions to every direction of the 

observation domain; hence, we can expect that the directions 

where it is low can provide the angular domain where the far 

field patterns are generally not well approximated worse. 

In order to perform a comparison for different source 

geometries, first, we plot the SCF and, next, we provide some 

examples of far field pattern synthesis. Since the electrical 

length of the sources provides a very good approximation to the 

NDF, we assume that all sources have the same length. In 

addition to the elliptical and parabolic arcs, we also consider a 

line and a semi-circumference source, since they may provide a 

source geometry with better unidirectional behavior and a 

“more omnidirectional” one, respectively (fig. 8). The sources’ 

length 𝐿 chosen for the examples is 20𝜆, while the conic 

sources angle α is set to π/2. 

 
Fig. 8. The source geometries of the examples of Section V.  

In Fig. 9 the behavior 𝑆𝐶𝐹(𝜃) is depicted for all the four 

geometries and, since 𝑆𝐶𝐹(𝜋 − 𝜃) = 𝑆𝐶𝐹(𝜃) , is plotted only 

on half observation domain. 

 

 
Fig. 9.  Behavior of the 𝑆𝐶𝐹(𝜃) on half domain (𝜃 ∈ [−𝜋/2, 𝜋/2]) for different 

curves, when 𝐿 = 20𝜆 and, for the conic sources, 𝛼 = 𝜋/2. 

From the behavior of these functions we can expect that 

around θ=0, where all the curves are rather flat, all these 

geometries can radiate similar patterns, especially the 

rectilinear and the parabolic ones exhibiting the flattest 

behavior. On the contrary, for observation directions |𝜃| →
𝜋 2⁄ , where markedly different behaviors are observed with 

different decay rates, the semi-circumference source may 

provide focusing patterns similar to ones radiated in other 

directions. A beam radiated by a rectilinear source, pointing at 

larger observation directions, may not be well approximated. 

An elliptic source and a parabolic one may radiate patterns with 

intermediate accuracy.  

In order to verify these expectations, we now consider the 

synthesis of two patterns derived from illustrative antenna 

applications. The field synthesis procedure proceeds as follows. 

For an assigned complex far field function 𝐸(𝜃), the physically 

realizable radiation pattern 𝐸̃(𝜃) is represented by the left 

singular functions 𝑢𝑛 associated to each source, as  

 

𝐸̃(𝜃) = ∑ 〈𝐸(𝜃), 𝑢𝑛(𝜃)〉𝑁𝐷𝐹
𝑛=1 𝑢𝑛(𝜃) (38) 

 

i.e. the projection of the 𝐸(𝜃) function onto the subspace of the 
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first pertinent left singular functions.  

A. Cosecant Squared Pattern  

The first case concerns the approximation of the cosecant far 

field pattern 

 

𝐸(𝜃) = {
𝑐𝑠𝑐(𝜋/2 − 𝜃) ,

𝑐𝑠𝑐(0.15),   
0,     

 𝑓𝑜𝑟 𝜃 ∈ [𝜋/6, 𝜋/2 − 0.15]
𝑓𝑜𝑟 𝜃 ∈ (𝜋/2 − 0.15, 𝜋/2 − 0.1]

𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

  (39) 

 

The 𝜃 interval choice meets the need to radiate a cosecant 

squared pattern with a maximum value reached for θ = π/2 −
0.15 and kept constant until θ = 𝜋/2 − 0.1. This angular 

interval corresponds to the directions close to the endfire 

direction with respect the x axis. The projected fields are shown 

in Fig. 10, together with the corresponding current function 

under Fig. 11.  

 

 
Fig. 10.  Normalized 𝐸̃(𝜃) fields for the rectilinear, elliptical, parabolic and 

semi-circumference sources. 

 

Fig. 11. Excitation currents (amplitude and phase) for the cosecant squared 

pattern.  

In Table IV, the direction of the maximum of the projected 

field is reported, while in Table V the ratio between the 

maximum amplitude of the projected field and its value at the 

horizon (𝜃 = 𝜋/2) is presented. This analysis is of relevance 

since in the air traffic control applications, the antenna is 

required to radiate as little as possible in proximity of the 

horizon, while, at the same time, the actual peak direction 𝜃̃𝑚𝑎𝑥 

of the field should point as close as possible to it.  

Since the maximum occurs outside the interval [−π/4, π/4], 
where all SCFs of fig. 9 exhibit a rather similar behavior, we 

observe, as expected,  that the semi-circumference, followed by 

the elliptical arc, can guarantee a smaller angular error for the 

maximum, while, moving from an elliptical arc to a parabolic 

one and to a rectilinear one, performances degrade. In addition, 

except for the rectilinear source whose performance in the 

coverage sector is unacceptable, the side lobe level is lower for 

the semi-circumference source.  

B. Focusing Pattern  

Let us, now, consider a far field function 𝐸(𝜃) focusing at 

direction 𝜃0, computed as shown in Appendix B with the goal 

of providing rather identical beams pointing at different 

maximum directions for a semi circumference source. It is 

useful for designing air-surveillance radars with a large angular 

coverage [35]. Again the synthesis procedure consists in the 

projection of the 𝐸(𝜃 − 𝜃0) function for different 𝜃0 onto the 

subset of the significant singular functions characterizing each 

geometry. Fig. 12 provides the application results of (38). 

 

 
Fig. 12.  Normalized  𝐸̃(𝜃) (solid lines) and 𝐸(𝜃) (dashed lines) fields for the 

rectilinear, elliptical, parabolic and semi-circumference sources focusing 

forward the directions 𝜃0 = 0 (blue lines), 𝜃0 = 0.7 (red lines) and 𝜃0 = 1.13 

(yellow lines). 

 

As can be appreciated and in accordance with the 

expectations of Fig. 9, the rectilinear source provides the worst 

results in terms of uniformity of the beam, while the semi-

circumference source behaves better.  

A further quantitative assessment of how well the field 

radiated from the source follows the desired pattern can be 

computed resorting to the directivity, defined as  

 

𝐷(𝜃0) =
|𝐸̃(𝜃0)|2

1

2𝜋
∫ |𝐸̃(𝜃)|2𝜋

−𝜋  𝑑𝜃
              (40) 

 

Accordingly, we compare the capability of the different 

sources of radiating an identical beam pointing at different 

directions by appreciating to what extent the directivity remains 

constant.  

Table VI shows the values of this parameter for some 𝜃0. As 

expected, the rectilinear source provides the highest variability 

of the directivity. In accordance with Fig. 9, the semi-

circumference performs better, i.e. it provides a uniform pattern 

and uniform directivity, followed by the elliptical arc.  

Some comments about the role of the aspect ratio of the curve 

geometries, i.e. the ratio between the longitudinal and 

transverse dimensions, concerning the above results are now in 

order.  

On the whole it can be concluded that a rectilinear source, 
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whose aspect ratio is zero, is capable of radiating a well-focused 

beam along the broadside direction and the width of the main 

lobe reduces as its electrical length increases, i.e. its transverse 

dimension. On the contrary, away from that direction the main 

beam deteriorates and enlarges. This corresponds to the tapered 

behavior of the 𝑆𝐶𝐹(𝜃), which is connected to the angularly 

variant behavior of the 𝑃𝑆𝐹𝐹𝐹  in the observation domain. 

At the opposite side, a semi-circumference source, whose 

aspect ratio is 0.5 (as the longitudinal dimension is half than the 

transverse one), is capable of radiating the same beam pointing 

at any direction. This corresponds to a constant behavior of the 

𝑆𝐶𝐹(𝜃) , which is connected to the angularly invariant behavior 

of the 𝑃𝑆𝐹𝐹𝐹 in the observation domain.  

 When we move from a rectilinear source to other conic 

geometries, the extension of the sources along the longitudinal 

direction is increased with respect to the transverse one. This 

affects the 𝑆𝐶𝐹(𝜃) behavior and makes it flatter. Therefore, 

conic sources may radiate more similar beams along directions 

away from broadside, since the longitudinal component of the 

source geometries provide those contributions to the radiated 

field that allow to increase focalization. Thus, fixed the 

transverse extension of the source, the larger the longitudinal 

extension the more uniform the radiated beams.  In fact, we 

expect that a source with a larger transverse extension is able to 

radiate a narrower beam toward 𝜃0 = 0, while a source with a 

larger longitudinal extension can radiate a narrower beam 

around 𝜃0 = 𝜋/2.  

 

C. Array antenna diagnostics. 

The final numerical example concerns a conformal array 

antenna, as a special case of a continuous source function. In 

this case the role of the knowledge of the NDF of the source is 

emphasized by a diagnostic example, where faulty elements are 

sought. The crucial point concerns the reliability of inversion 

algorithm, since the antenna testing engineer must be confident 

that every set of the excitation coefficients of the array must be 

recoverable. Due to the role of the NDF in the inversion of (1), 

a bound on the maximum number Narray of array elements can 

be provided. In fact, it can be expected that when Narray<NDF 

the diagnostics procedure will be always reliable. On the 

contrary, when Narray>NDF, there may occur sets of excitation 

coefficients that cannot be reconstructed. In order to prove this 

point, we consider two conformal equispaced arrays over a 20λ 

long parabolic arc, with Narray=40 and 50, respectively. The 

excitation coefficients are arranged so that both arrays radiate a 

beam focused at θ0=0, but a few (four) faulty elements exist. 

Figs. 13 and 14 show the reconstructed current functions by 

TSVD inversion from far zone data. Since NDF=40, as 

expected, the diagnostics procedure is reliable for the first array, 

as the presence of faulty elements can be unambiguously 

detected, while not every set of the excitation coefficients of the 

second array can be reconstructed, where faulty and active 

elements are reconstructed with similar accuracy.  

 
Fig. 13. TSVD reconstruction (red line) of the amplitude of the current function 

J(s/λ) for a 20𝜆.long parabolic array of 40 elements vs the amplitude of the 

excitation coefficients of the array elements (green points). 

 

 
Fig. 14. TSVD reconstruction (red line) of the amplitude of the current function 

J(s/λ) for a 20𝜆.long parabolic array of 50 elements vs the amplitude of the 

excitation coefficients of the array elements (green points). 

VI. CONCLUSION 

The radiation of conformal, conic 2D sources is investigated 

via their SVD with the goal to establish a strategy to compare 

them in a synthetic way, instead of providing a new radiation 

pattern synthesis scheme. Three points have been raised and 

analyzed. 

First, the investigation of the NDF, which defines the 

dimension of the subspaces of the source current that can be 

reliably reconstructed and of the corresponding radiation 

patterns, is performed by asymptotic reasoning allowing to 

achieve upper bounds for each considered curve (i.e. an arc of 

ellipse and an arc of parabola). The role of the parametrization 

of the source geometry is appreciated, too, so that the arc length 

variable provides an upper bound of the NDF very close to its 

actual number. In particular, it is observed that the latter is 

related only to the electrical length of the curve and not to its 

shape. 

Next, the reconstruction capability of an SVD based 

inversion scheme is examined via the PSF. By resorting to an 

approximate evaluation, an analytical expression of the PSF 

leads to a space invariant behavior which is appreciated for the 

arc length variable parametrization to span the source domain. 

This allows to provide an estimate of the NDF by the analysis 

of the main lobe of the PSF which is related only to the 

electrical length of the curve and not to its shape, again. 

Finally, examples of far field synthesis are reported in order 

to appreciate the role of the source geometry on the subspace of 

radiated fields. To this end we have investigated the radiation 

properties of the conic source geometries in comparison with 
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more common ones, like the line and the semi-circumference 

source. In order to provide a concise function summarizing the 

radiation behavior in far zone of the considered sources, we 

have introduced the “spectral content” function and shown that 

it is related to the PSF referred to the observation domain. 

The index should help an antenna designer to compare 

different geometries according to the required pattern 

specifications. So a design procedure might proceed as follows. 

First the electrical length of the source should be fixed 

according to the expected complexity of the source (for an array 

source, this entails fixing the number of elements according to 

feeding requirements as the NDF multiplied by the half 

wavelength spacing). Next, the source geometry is chosen with 

the help of the SCF according to the pattern specifications. For 

instance, if it is required to radiate mainly at broadside 

directions, all geometries can be expected to behave similarly 

except the rectilinear one, which exhibits better performances. 

On the contrary, for near endfire radiation, the semi 

circumference solution behaves better, although by a bulkier 

geometry with a large aspect ratio. Then other choices can be 

compared as well. 

The role of the NDF knowledge is emphasized by the 

application to an example of array diagnostics, too. 

The whole analysis clarifies many issues concerning the 

inverse source problem for non rectilinear sources, with 

relevant applications in array diagnostics and radiation pattern 

synthesis of conformal antennas. The extension of the approach 

to the case of 3D source geometries will be addressed in the 

future. 

 
TABLE I 

VALUES OF 𝑁𝑒
𝜙,𝑠

,  𝑁𝑎𝑐𝑡
𝜙,𝑠

 AND 𝑁𝑐  OF AN ELLIPTICAL ARC FOR DIFFERENT 

VALUES OF 𝑒 AND 𝛼 WHEN 𝑝 = 10𝜆. 

𝛼 = 𝜋/8 

𝑒 𝑁𝑒
𝜙

 𝑁𝑎𝑐𝑡
𝜙

 𝑁𝑒
𝑠 𝑁𝑎𝑐𝑡

𝑠  𝑁𝑐  

0.1 15 15 15 15 45 

0.3 13 13 13 13 37 

0.5 11 11 11 11 33 

0.7 9 10 9 10 29 

0.9 9 9 9 9 27 

𝛼 = 𝜋/4 
𝑒 𝑁𝑒

𝜙
 𝑁𝑎𝑐𝑡

𝜙
 𝑁𝑒

𝑠 𝑁𝑎𝑐𝑡
𝑠  𝑁𝑐  

0.1 31 29 29 29 83 

0.3 27 26 27 25 73 

0.5 25 23 23 23 65 

0.7 23 20 21 20 59 

0.9 23 19 19 18 55 

𝛼 = 3𝜋/8 
𝑒 𝑁𝑒

𝜙
 𝑁𝑎𝑐𝑡

𝜙
 𝑁𝑒

𝑠 𝑁𝑎𝑐𝑡
𝑠  𝑁𝑐  

0.1 49 43 47 46 111 

0.3 49 40 43 40 105 

0.5 49 36 41 36 97 

0.7 49 33 39 33 91 

0.9 49 31 35 30 87 

𝛼 = 𝜋/2 
𝑒 𝑁𝑒

𝜙
 𝑁𝑎𝑐𝑡

𝜙
 𝑁𝑒

𝑠 𝑁𝑎𝑐𝑡
𝑠  𝑁𝑐  

0.1 69 62 65 62 125 

0.3 81 57 67 57 125 

0.5 95 53 67 53 125 

0.7 107 50 67 50 125 

0.9 119 49 65 46 125 

 

 

 

TABLE II 

VALUES OF 𝑁𝑒
𝜙,𝑠

,  𝑁𝑎𝑐𝑡
𝜙,𝑠

 AND NC  OF AN ELLIPTICAL ARC FOR DIFFERENT 

VALUES OF 𝑒 AND 𝛼 WHEN 𝑝 = 50𝜆. 

𝛼 = 𝜋/8 
𝑒 Ne

ϕ
 Nact

ϕ
 Ne

s  Nact
s  Nc  

0.1 73 72 73 72 221 

0.3 63 62 61 62 189 

0.5 55 54 53 54 165 

0.7 49 48 47 48 147 

0.9 45 43 43 43 131 

𝛼 = 𝜋/4 
𝑒 Ne

ϕ
 Nact

ϕ
 Ne

s  Nact
s  Nc  

0.1 151 144 147 144 415 

0.3 139 126 131 126 367 

0.5 129 111 117 111 329 

0.7 119 100 107 99 297 

0.9 111 91 97 90 271 

𝛼 = 3𝜋/8 
𝑒 Ne

ϕ
 Nact

ϕ
 Ne

s  Nact
s  Nc  

0.1 241 196 231 195 559 

0.3 247 184 219 181 521 

0.5 249 176 205 171 487 

0.7 249 162 191 160 457 

0.9 247 151 179 150 431 

𝛼 = 𝜋/2 
𝑒 Ne

ϕ
 Nact

ϕ
 Ne

s  Nact
s  Nc  

0.1 345 295 325 299 629 

0.3 409 269 337 276 629 

0.5 471 251 339 257 629 

0.7 535 243 337 245 629 

0.9 597 237 329 237 629 

 

 

 

 

 

 

 

TABLE III 

VALUES OF 𝑁𝑝
Φ,𝑠

, 𝑁𝑎𝑐𝑡
Φ,𝑠

 AND NC  OF A PARABOLIC ARC FOR DIFFERENT 

VALUES OF 𝑝 AND 𝛼. 

𝛼 = 𝜋/8 
𝑝 Np

ϕ
 Nact

ϕ
 Np

s  Nact
s  Nc  

10𝜆 9 8 9 8 25 

30𝜆 25 25 25 24 75 

50𝜆 41 41 41 41 125 

80𝜆 67 65 65 65 199 

100𝜆 83 81 81 81 249 

𝛼 = 𝜋/4 
𝑝 Np

ϕ
 Nact

ϕ
 Np

s  Nact
s  Nc  

10𝜆 19 18 17 17 53 

30𝜆 59 52 51 52 157 

50𝜆 99 87 85 86 261 

80𝜆 159 138 137 138 417 

100𝜆 199 172 171 172 521 

𝛼 = 3𝜋/8 
𝑝 Np

ϕ
 Nact

ϕ
 Np

s  Nact
s  Nc  

10𝜆 41 30 29 29 83 

30𝜆 123 88 85 87 251 

50𝜆 205 146 143 145 419 

80𝜆 327 232 229 231 671 

100𝜆 409 289 289 288 839 

𝛼 = 𝜋/2 
𝑝 Np

ϕ
 Nact

ϕ
 Np

s  Nact
s  Nc  

10𝜆 89 48 45 44 125 

30𝜆 267 141 137 132 377 

50𝜆 445 233 229 218 629 

80𝜆 711 372 367 350 1005 

100𝜆 889 464 459 436 1257 
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APPENDIX A 

Hereafter we provide the analytical details of the results of 

Section III about the upper bounds of the NDF.  

A, Angular parametrization: elliptic arc 

For an elliptic arc, with one focus at the origin, the radial 

coordinate writes 

  

𝑟(𝜙) =
𝑝

1+𝑒 𝑐𝑜𝑠 𝜙
                (A1) 

 

where 𝑝 represents the semi-latus rectum and 0 < 𝑒 < 1 the 

eccentricity, and the norm of the derivative of the curve 

parametrization is 

 

‖𝛾′(𝜙)‖ = 𝑟(𝜙)√1 + (
𝑒 𝑠𝑖𝑛 𝜙

1+𝑒 𝑐𝑜𝑠 𝜙
)

2

         (A2) 

 

Then, the phase function of (6) reads as 

 

𝑔(𝜙) =
𝑐𝑜𝑠(𝜃−𝜙)

1+𝑒 𝑐𝑜𝑠 𝜙
+

𝑚𝜋

𝛼𝛽𝑝
𝜙             (A3) 

 

and the stationary point 𝜙𝑠, obtained by imposing  

 

𝑔′(𝜙𝑠) =
𝑠𝑖𝑛(𝜃−𝜙𝑠)+𝑒 𝑠𝑖𝑛 𝜃

(1+𝑒 𝑐𝑜𝑠 𝜙𝑠)2 +
𝑚𝜋

𝛼𝛽𝑝
= 0        (A4) 

 

occurs within the integration interval as long as 

 

|𝑚| <
𝛼𝛽𝑝

𝜋

(1+𝑒)

(1+𝑒 𝑐𝑜𝑠 𝛼)2              (A5) 

 

This constraint is deduced from (A4) if we remember that 

𝜃 ∈ [−𝜋, 𝜋] (meaning that both 𝑠𝑖𝑛(𝜃 − 𝜙𝑠) and 𝑠𝑖𝑛 𝜃 are at 

most equal to 1), and that 𝜙 ∈ [−𝛼, 𝛼] with 𝛼 ∈ [− 𝜋 2⁄ , 𝜋 2⁄ ] 
(implying that the minimum value of the denominator occurs 

for cos(𝜙) = 𝑐𝑜𝑠 𝛼). For 𝑚 outside the interval (A5), the 

solution 𝜙𝑠 of (A4) could be complex, leading to a complex 

𝑔(𝜙) and to an exponentially vanishing contribution of the 

asymptotic expression of (6). Accordingly, the maximum 

number of Fourier harmonics providing a significant 

contribution to the far field is 𝑁𝑒
𝜙

= 2𝑀 + 1 with  

 

𝑀 = [
𝛼𝛽𝑝

𝜋

(1+𝑒)

(1+𝑒 𝑐𝑜𝑠 𝛼)2
]               (A6) 

 

B, Angular parametrization: parabolic arc 

In this case, with the focus at the origin, the radial coordinate 

is 

 

𝑟(𝜙) =
𝑝

1+𝑐𝑜𝑠 𝜙
                 

 (A7) 

 

with 𝑝 representing the semi-latus rectum, i.e. twice the 

parabola focal length, while the norm of the derivative of the 

curve parametrization is 

 

‖𝛾′(𝜙)‖ = 𝑟(𝜙)√1 + (
𝑠𝑖𝑛 𝜙

1+𝑐𝑜𝑠 𝜙
)

2

          (A8) 

 

In (6), the phase function reads as 

 

𝑔(𝜙) =
𝑐𝑜𝑠(𝜃−𝜙)

1+𝑐𝑜𝑠 𝜙
+

𝑚𝜋

𝛼𝛽𝑝
𝜙             (A9) 

 

As before, in order to determine the indices’ interval where 

the stationary phase point occurs, we are interested in the first 

derivative of function (A9), that is, 

 

𝑔′(𝜙) =
𝑠𝑖𝑛(𝜃−𝜙)+𝑠𝑖𝑛 𝜃

(1+𝑐𝑜𝑠 𝜙)2 +
𝑚𝜋

𝛼𝛽𝑝
             (A10) 

 

By the application of the sum-to-product identity and the 

half-angle formula, respectively, to the numerator and 

denominator of the first term of (A10), the previous expression 

becomes 

 

𝑔′(𝜙) =
2 𝑠𝑖𝑛(𝜃−

𝜙

2
) 𝑐𝑜𝑠

𝜙

2

4 𝑐𝑜𝑠4𝜙

2

+
𝑚𝜋

𝛼𝛽𝑝
             (A11) 

 

which finally leads to 

 

TABLE IV 

MAXIMUM DIRECTIONS OF THE ACTUAL FIELD FOR A RECTIINEAR, 

ELLIPTICAL, PARABOLIC AND SEMI-CIRCUMFERENCE SOURCE. 

Source geometry 𝜃𝑚𝑎𝑥 

Linear source 1.31 rad 

Elliptical arc 1.40 rad 

Parabolic arc 1.39 rad 

Semi-circumference 1.42 rad 

 

TABLE V 

RATIO BETWEEN THE MAXIMUM AMPLITUDE OF THE PROJECTED FIELD AND 

ITS VALUE AT THE HORIZON FOR A RECTILINEAR, ELLIPTICAL, PARABOLIC 

AND SEMI-CIRCUMFERENCE SOURCE. 

Source geometry |𝐸̃(𝜃𝑚𝑎𝑥)|

|𝐸̃(𝜃 = π/2)|
 

Linear source 4.72 dB 

Elliptical arc 19.9 dB 

Parabolic arc 16.2 dB 

Semi-circumference 27.5 dB 

 

TABLE VI 

𝐷(𝜃0) FOR A RECTILINEAR, ELLIPTICAL, PARABOLIC AND SEMI-

CIRCUMFERENCE SOURCE, VARYING THE BEAM MAXIMUM ANGLE 𝜃0. 

Source 

geometry 
𝐷(𝜃0 = 0 𝑟𝑎𝑑) 𝐷(𝜃0 = 0.7 𝑟𝑎𝑑) 𝐷(𝜃0 = 1.13 𝑟𝑎𝑑) 

Lin. source 25.5 dB 25.0 dB 20.6 dB 

Ellipt. arc 27.0 dB 26.0 dB 24.5 dB 

Parab. arc 26.1 dB 26.1 dB 22.9 dB 

Semi-circ. 30.2 dB 30.6  dB 30.5  dB 
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𝑔′(𝜙) =
𝑠𝑖𝑛(𝜃−

𝜙

2
)

2 𝑐𝑜𝑠3𝜙

2

+
𝑚𝜋

𝛼𝛽𝑝
               (A12) 

 

Provided 𝛽𝑝 ≫ 1, the stationary point 𝜙𝑠 results from the 

equation 

 

𝑔′(𝜙𝑠) =
𝑠𝑖𝑛(𝜃−

𝜙𝑠
2

)

2 𝑐𝑜𝑠3𝜙𝑠
2

+
𝑚𝜋

𝛼𝛽𝑝
= 0             (A13) 

 

 Since 𝑠𝑖𝑛(𝜃 − 𝜙
𝑠

2⁄ ) is equal to 1 at most and 𝑐𝑜𝑠3(𝜙
𝑠

2⁄ ) 

is equal to 𝑐𝑜𝑠3(𝛼 2⁄ ) at least when 𝜃 ∈ [−𝜋, 𝜋] and 𝜙 ∈
[−𝛼, 𝛼], the stationary phase point occurs as long as 

 

|𝑚| <
𝛼𝛽𝑝

2𝜋

1

𝑐𝑜𝑠3(
𝛼

2
)
.                   (A14) 

 

We can deduce, hence, that the maximum number of Fourier 

harmonics is 𝑁𝑝
ϕ

= 2𝑀 + 1, with 

 

𝑀 = [
𝛼𝛽𝑝

2𝜋 𝑐𝑜𝑠3(
𝛼

2
)
].                  (A15) 

C Arc length parametrization: elliptic arc 

The phase function of (10) is provided by 

 

𝑔(𝑠) =
𝑐𝑜𝑠(𝜃−𝜙(𝑠))

1+𝑒 𝑐𝑜𝑠 𝜙
+

𝑚2𝜋

𝛽𝑝𝐿
𝑠              (A16)  

 

When β𝑝 ≫ 1, the main contribution to the integral is due to 

the stationary phase point 𝑠𝑠 making it zero the first derivative 

of the phase function. By applying the chain rule, the condition 

satisfied by the stationary point can be written as 

 
𝑑𝑔

𝑑𝜙
|

𝜙(𝑠𝑠)
 

𝑑𝜙

𝑑𝑠
|

𝑠𝑠

= 0                 (A17) 

 

where 
𝑑𝑠

𝑑𝜙
= ‖𝛾′(𝜙)‖. 

Since the source arc must have a length different from zero 

to be of interest and  ‖𝛾′(𝜙)‖
−1

> 0 for any 𝜙, to satisfy (A17) 

𝑑𝑔

𝑑𝜙
|

𝜙(𝑠𝑠)
  must vanish, and, as a result, we obtain the equation 

 
𝑑𝑔

𝑑𝜙
|

𝜙(𝑠𝑠)
=

𝑒 𝑠𝑖𝑛 𝜃+𝑠𝑖𝑛(𝜃−𝜙(𝑠𝑠))

(1+𝑒 𝑐𝑜𝑠 𝜙(𝑠𝑠))2
+

𝑚2𝜋

𝛽𝐿

√1+𝑒2+2𝑒 𝑐𝑜𝑠 𝜙(𝑠𝑠)

(1+𝑒 𝑐𝑜𝑠 𝜙(𝑠𝑠))2
= 0   (A18) 

 

We can notice that (A18) differs from (A13) only in the 

second term where, besides the argument of the Fourier 

exponential (11), a factor due to the derivative of 𝑠(𝜙) with 

respect to 𝜙 appears. The maximum allowable harmonic such 

that the previous condition is satisfied and the stationary phase 

points belongs to the source domain, is given by 

 

𝑀 = [
𝐿

𝜆
𝜈]                    (A19) 

 

where 𝜈 = (1 + 𝑒) √1 + 𝑒2 + 2𝑒 𝑐𝑜𝑠 𝛼⁄ . 

D Arc length parametrization: parabolic arc 

Turning the attention to the parabolic arc, we first point out 

that (9) can be evaluated in closed form as 

 

𝑠(𝜙) = −
𝐿

2
+

𝑝

2
[𝑙𝑛 (

𝑐𝑜𝑠2α

2
(2 𝑐𝑜𝑠

ϕ

2
+𝑠𝑖𝑛 ϕ)

𝑐𝑜𝑠2ϕ

2
(2 𝑐𝑜𝑠

α

2
−𝑠𝑖𝑛 α)

) +
1

2
(

𝑠𝑖𝑛 ϕ

𝑐𝑜𝑠3ϕ

2

+
𝑠𝑖𝑛 α

𝑐𝑜𝑠3α

2

)]   (A20) 

 

 By repeating the same previous steps, we draw the following 

condition, slightly different from (A13) 

 

𝑑𝑔

𝑑𝜙
|

𝜙(𝑠𝑠)
= 2

𝑠𝑖𝑛(𝜃−
𝜙(𝑠𝑠)

2
) 𝑐𝑜𝑠

𝜙(𝑠𝑠)

2

(1+𝑐𝑜𝑠 𝜙(𝑠𝑠))2 +
𝑚4𝜋

𝛽𝐿

𝑐𝑜𝑠
𝜙(𝑠𝑠)

2

(1+𝑐𝑜𝑠 𝜙(𝑠𝑠))2 = 0   (A21) 

 

Therefore, the maximum Fourier harmonic order m allowing 

to a real solution of (A21) is provided by 

 

𝑀 = [
𝐿

𝜆
]                        (A22) 

 

and, consequently, the maximum number of Fourier harmonics 

is 𝑁𝑝
𝑠 = 2𝑀 + 1. It can be noted that a closed form of the length 

of a parabolic arc can be obtained as 

 

𝐿 =
𝑝

2
[

𝑠𝑖𝑛 𝛼

𝑐𝑜𝑠3(𝛼/2)
+ 𝑙𝑛 (

2 𝑐𝑜𝑠(𝛼/2)+𝑠𝑖𝑛 𝛼

2 𝑐𝑜𝑠(𝛼/2)−𝑠𝑖𝑛 𝛼
)]            (A23)   

 

APPENDIX B 

The numerical procedure to define the focused, symmetric 

far field pattern for a semi-circumference source of Section V.B 

is sketched as follows. 

We start from the 𝑃𝑆𝐹𝐹𝐹(𝜃, 1.13), which is an element 

belonging to the subspace of the physically realizable far fields.  

Next, we consider 𝐸(𝜃) =  𝑃𝑆𝐹𝐹𝐹(𝜃 − 0.28,1.13) and the 

corresponding physically realizable radiation pattern 𝐸̃(𝜃) by 

(38). 

Finally, the far fields assigned in Fig. 13 (solid lines) consist 

in this latter 𝐸̃(𝜃) function centered at three different maximum 

directions. Note that, strictly speaking, such far fields do not 

belong to the set of physically realizable radiation patterns, and 

must be denoted as 𝐸(𝜃) in accordance with the notation of 

Section V. 
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