
P
os
te
d
on

23
J
u
l
20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
26
83
83
7.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

Radiation of a Circular Arc Source in a Limited Angle for

Non-uniform Conformal Arrays

Giovanni Leone 1, Fortuna Munno 1, and Rocco Pierri 1

1Affiliation not available

October 30, 2023

Abstract

Conformal antennas lack of general analysis methods of their radiation properties. For a circumference source, we examine the

role of the angular width of the observation domain both in far and near zone in determining the set of radiated fields. By

an inverse problem approach, the evaluation of the number of independent pieces of information, i.e. the number of degrees of

freedom (NDF), and the analysis of the reconstructions of point-like sources allow to introduce optimal array configurations.

The results are relevant to the radiation pattern synthesis problem and to array diagnostics applications.
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Abstract—An inverse problem approach is adopted to 

investigate the role of a limited observation domain in conformal 

source radiation both in far and near zone. The spectral 

decomposition of the relevant operator drives the investigation, 

especially by the discussion of the singular values behavior and the 

Point Spread Function (PSF). For a circular source geometry, 

accurate closed form evaluations of the PSF allow to establish its 

angular variant behavior for limited observation angular 

domains. This leads to introduce a numerical procedure, based on 

the widths of the PSF main lobes, able to define an optimal source 

discretization, that is the spacing of the array elements whose 

radiated field has the same number of degrees of freedom of the 

continuous conformal source. A non-uniform spacing is derived 

and the performances of the corresponding conformal arrays are 

compared with the uniform case, the number of elements being 

equal. Numerical results about pattern synthesis and array 

diagnostics of faulty elements support the improvement achieved 

by the approach when the same number of array elements are 

located in a non-uniform pattern. 

 
Index Terms—Conformal antennas, Electromagnetic scattering 

inverse problems, Inverse source problem, Number of Degrees of 

Freedom, Singular Value Decomposition. 

I. INTRODUCTION 

HE radiation properties of antennas of general shape 

depend on both the source geometry and the angular 

domain of interest. A planar antenna can radiate a focusing 

broadside beam, while scanning its maximum leads to beam 

broadening. Instead, a spherical source can radiate identical 

beams, but occupies a large volume. In principle, intermediate 

geometries may provide a good trade-off between electrical and 

geometrical requirements. The radiation properties depend also 

on the source discretization, that is the spacing between 

individual elements in an array antenna. An optimal 

configuration requires the least number of sources to minimize 

the feeding network complexity and the mutual coupling 

influence. Conformal arrays are commonly designed with 

equispaced elements, a criterion derived from the planar ones 

in order to suppress radiation via grating lobes. However, in 

some circumstances the array element positions have been 

arranged in a non-uniform way to enhance the array 

performances. The elements’ positions have been determined 

by various approaches, mostly relating to the minimization of 
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some cost functional. For instance in [1] a combination of 

global and local minimization algorithms are employed to 

design the positions of spherical array elements while in [2] a 

stochastic minimization procedure is adopted for a 

multiobjective optimization problem and applied to a limited 

number of array elements, as in [3] by the genetic algorithm. 

Also, in [4] a local minimization under least square condition is 

performed for non-uniform array by representation of the far 

field under orthogonal basis. [5] resorts to the compressive 

sensing approach to introduce a positioning synthesis 

algorithm. 

Due to the complexity of the problem, all procedures lead to 

ad hoc solutions, without taking into account the peculiar 

radiation properties of the source according to its geometry. 

   On the other hand, the source optimal discretization issue 

is an important problem whenever, in testing and diagnostics, 

the near zone field is to be probed and reliable results are 

required also when only a limited observation domain is 

available.    

A unified strategy to deal with these points may be provided 

by adopting an inverse problem approach [6,7] where the 

spectral decomposition of the relevant operator is investigated.  

In particular, the ill-conditioning [8,9] of the relevant integral 

operator implies that only a finite number of source current 

functions can be correctly reconstructed in presence of 

uncertainties on data, otherwise small noise on data can provide 

a large error on the reconstructed current. As a matter of fact, 

this can provide limitations on the number of array elements 

that can be reliably diagnosed in an array antenna. On the other 

hand, the above regularization issue narrows the set of fields 

that can be radiated by the source, too. In far zone, this can 

reduce the set of achievable radiation patterns and impacts on 

the antenna synthesis problem.   

For these reasons it is important to evaluate the Number of 

Degrees of Freedom (NDF) [10-12] of the source current in 

connection to its geometry, as the (finite) number (i.e. the 

dimension of the subspace) of source current functions that can 

be stably reconstructed [12]. 

In addition, this number is also related to the achievable 

resolution [13], i.e. to the capability of the solution algorithm to 

reconstruct two close point-like sources. This is associated to 

the Point Spread Function (PSF) whose properties are fixed by 
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the NDF. It is clear that a detailed knowledge about the NDF 

and, hence, the achievable resolution is of primary importance 

in these kinds of problems. 

In [6], for the first time, we proposed to apply the Singular 

Value Decomposition (SVD) to the analysis of the radiation 

operator connecting a source with non rectilinear geometry to 

the far field. The final goal is to provide a general way of 

comparing their radiation properties in connection with their 

geometries by examination of the numerical results of the SVD 

of the relevant operators. However, the main results about the 

Singular Values’ (SVs) behavior and NDF are only numerical 

and only a qualitative comparison of some different source 

geometries is performed. 

In [7, 14] a circumference conformal geometry is fully 

examined by the SVD approach, with the effort of providing 

closed form evaluations and/or estimation of the NDF. First, for 

different full angle circles, closed form SVDs are recalled or 

derived and discussed. Next, an arc of circumference is 

considered, and asymptotic arguments are introduced and 

numerically validated to provide an estimate of both the NDF 

and the Singular Functions (SFs) behavior. To this end, the 

main result is concerned with the role of the source angle, or, 

rather, its electrical length, in determining the NDF and, thus, 

the dimension of the subspace of realizable far field patterns. 

Finally, the role of the NDF is sketched with a simple numerical 

example of the synthesis of a focusing beam pointing at 

different directions. In [15] the approach has been applied to 

other conformal conic curves, while in [16] it has led to define 

an optimal array geometry for wide angle coverage  

In this paper we are interested in examining the role of a finite 

observation domain on the spectral analysis of the radiation 

operator both in far and in the near zone and discuss the 

consequences on optimal spacing of the elements of a 

conformal array. The proposed analysis, which is formulated in 

Section II, is based on the above mentioned two parameters 

arising in the regularized solution of linear inverse problems: 

the NDF, which is connected to the SVs behaviour, and the PSF, 

which is connected to the SFs. Since for a circumference 

geometry some analytical result for the SVD of the relevant 

operators can be found, our discussion is developed for this 

case. In fact, in Section III, closed form expressions of the SVs 

can be established when the observation domain is the round 

angle, also in presence of a weight factor to be introduced to 

improve the accuracy of the evaluation of the PSF. The role of 

the introduced weight function in providing a flatter behaviour 

of the SVs is emphasized, both in the far and then ear zone. In 

addition, the same behaviour is numerically verified in the case 

of a limited angular observation domain. 

The next step of the analysis, discussed in Section IV, 

concerns with the PSF evaluation. A closed form approximate 

form is derived and its accuracy verified. For large observation 

domains an angularly invariant behaviour is predicted, that is 

the invariance of its main beam with respect to the maximum 

direction, whereas for smaller observation domain things 

change markedly. 

The angularly variant behaviour of the PSF is exploited in 

Section V to define a discretized source providing the same 

NDF of the continuous one. A procedure is introduced leading 

to a non-uniform step of the elementary discretized sources. In 

this way their number is optimized with respect to the uniform 

counterpart, so that it can be reduced to a minimum the NDF 

being equal. 

Sections VI and VII are devoted to show numerical results 

about the applications of the previous results to some problems 

of interest in antenna engineering. In particular, the role of an 

optimal non-uniform discretization is emphasized in array 

synthesis and diagnostics in comparison with a uniform one. 

Conclusions end the paper.  

II. PROBLEM GEOMETRY 

We suppose that the source is an 𝑦-oriented surface current 

density function 𝐽(𝜙) supported over a circumference arc of 

radius 𝑅 laying in the 𝑥 − 𝑧 plane, with 𝜙 being the angular 

variable spanning the angular domain [−𝛼, 𝛼] of the source. 

The radiated electric field 𝐸(𝜃) is observed over a 

circumference arc in the angular variable 𝜃, spanning the 

observation domain [−𝛾, 𝛾] (see Fig. 1).  

 
Fig. 1 Considered geometry. 

 

By introducing the subscript 𝑖 ∈ {𝐹, 𝑁 } for identifying the 

case we are referring to, whether to a far (𝐹) or a near (𝑁) 

observation zone, the electric field, except for inessential 

factors, writes as 

 

𝐸𝑖(𝜃) = 𝑅 ∫ 𝐽(𝜙)𝐺𝑖(𝑅, 𝜙, 𝑅𝑜 , 𝜃)
𝛼

−𝛼
 𝑑𝜙 = 𝐴𝑖𝐽,     (1) 

 

where 𝛽 = 2𝜋/𝜆 is the wavenumber, 𝜆 is the wavelength and 

𝑅𝑜 is the radius of the observation arc in near zone. The 𝐺𝑖(⋅) 

function represents the 2D Green function particularized to 

each observation zone when the background is a homogeneous 

one, namely,  

𝐺𝑖(𝑅, 𝜙, 𝑅𝑜 , 𝜃) = {
𝑒𝑗𝛽𝑅 𝑐𝑜𝑠(𝜃−𝜙)

𝐻0
(2)

(𝛽|𝑟(𝜃) − 𝑟(𝜙)|)

𝑓𝑜𝑟 𝑖 = 𝐹
𝑓𝑜𝑟 𝑖 =  𝑁

,  (2) 

where 𝑟(𝜃) is the position vector pointing at the observation 

point at 𝜃 angle, 𝑟(𝜙) is the position vector of the source point 

at 𝜙 angle, and  𝐻0
(2)(⋅) is the second kind Hankel function of 
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zeroth order. Equation (1) defines the radiation operator 𝐴𝑖 

between source and observation domain, with 𝐽 and 𝐸𝑖 

belonging to 𝐿[−𝛼,𝛼]
2  and 𝐿[−𝛾,𝛾]

2 , respectively, that is, the set of 

square integrable functions supported over the interval 

specified by the subscript. 

In the following analysis, we refer to the SVD [9] of the 

relevant operator. It consists of the left singular functions 𝑢𝑖𝜈, 

the singular values 𝜎𝑖𝜈 and the right singular functions 𝑣𝑖𝜈. In 

particular, the {𝑢𝑖𝜈} and {𝑣𝑖𝜈} functions correspond to an 

orthonormal basis of the operator range and operator domain, 

respectively. Since for a compact operator as in (1), with a 

kernel function behaving like an entire function of exponential 

type, the singular values decay exponentially fast, the NDF of 

the source can be defined as the number of “significant” 

singular values [12]. It provides the dimension of the subspace 

of fields that can be represented with an assigned accuracy and 

identifies the dimension of the subspace of sources that can be 

correctly reconstructed.  

 

III. SINGULAR VALUES BEHAVIOR 

In order to consider a more general operator we introduce an 

appropriate weight function ℎ(𝜃 − 𝜙) inside the integral 

operators (1). This can be associated to an element factor of the 

current, identical for each source element, except for a rotation. 

For a circumference source and an element factor maximum at 

the zero argument, it provides a directive behavior pointing at 

the normal direction of each source element. For an array source 

it provides exactly the element factor of the antenna. From now 

on, hence, the radiation operators to be considered can be 

rewritten as  

𝐸𝑖(𝜃) = 𝑅 ∫ 𝐽(𝜙)ℎ(𝜃 − 𝜙)𝐺𝑖(𝑅, 𝜙, 𝑅𝑜 , 𝜃)
𝛼

−𝛼
 𝑑𝜙 = 𝐴𝑖𝐽. (3) 

In this paper we have chosen to consider the weight functions  

ℎ(𝜃 − 𝜙) = (1 + 𝑐𝑜𝑠(𝜃 − 𝜙))
𝑚

, 𝑚 = 0,1,2, ….     (4) 

As m increases, (4) provides a more directive single lobe 

pattern, while for 𝑚 = 0 the effect of the weight function is 

cancelled and the standard radiation operators are recovered. 

When 𝛼 = 𝛾 = 𝜋,  i.e. the case of a circumference source 

observed on a full angle, a closed form analytical evaluation of 

the eigenvalue decompositions of (3) are provided in Appendix 

A. In particular, the analytical results of the eigenvalues 𝜆𝑖𝑛 

both in the far  

𝜆𝐹𝑛 = 2−𝑚+1𝜋𝑅 ∑ (
2𝑚
𝑘

) 𝑗𝑛+𝑘−𝑚𝐽𝑛+𝑘−𝑚(𝛽𝑅)2𝑚
𝑘=0     (5) 

and the near zone  

𝜆𝑁𝑛 = 2−𝑚+1𝜋𝑅 ∑ (
2𝑚
𝑘

) 𝐽𝑛+𝑘−𝑚(𝛽𝑅)𝐻𝑛+𝑘−𝑚
(2) (𝛽𝑅𝑜)2𝑚

𝑘=0  (6) 

are available. 

In Appendix A it is also shown how the above expressions 

can be rewritten as a combination of a reduced number of 

Bessel functions (for the 𝑛 −th eigenvalue, the Bessel/Hankel 

functions of 𝑛 −order and their derivatives). In particular, for 

the very first values of 𝑚 it is obtained:  

• for 𝑚 = 0 

λ𝐹𝑛 = 2𝜋𝑅𝑗𝑛𝐽𝑛(β𝑅),               (7) 

𝜆𝑁𝑛 = 2𝜋𝑅𝐽𝑛(𝛽𝑅)𝐻𝑛
(2)

(𝛽𝑅𝑜);           (8) 

• for m=1 

λ𝐹𝑛 = 2𝜋𝑅𝑗𝑛[𝐽𝑛(𝛽𝑅) − 𝑗𝐽′
𝑛

(𝛽𝑅)],         (9) 

𝜆𝑁𝑛 = 2𝜋𝑅[𝐽𝑛
′ (𝛽𝑅)𝐻𝑛

(2)
′(𝛽𝑅𝑜) +

(
𝑛2

𝛽2𝑅𝑅𝑜
+ 1) 𝐽𝑛(𝛽𝑅)𝐻𝑛

(2)
(𝛽𝑅𝑜)]

;          (10) 

In Fig 2 the |𝜆𝑖𝑛| of (5) and (6) are plotted in descending 

order according to the ν index, for different 𝑚. First of all, we 

point out that all curves decay exponentially for indices 𝜈 >
𝑁𝑁𝐷𝐹 =  2[𝛽𝑅] + 1 as to be expected since the NDF of any 

circumference source is 𝑁𝑁𝐷𝐹 [7] independently from the 

source current. In addition, they exhibit a flattening for any 𝑚 ≠
0, so leading to a more pronounced step-like behavior beyond 

the NDF value. In particular, the more 𝑚 increases and the more 

the behavior flattens in the case of the near zone, while for the 

far zone the maximum observed flattening is for 𝑚 = 2.  

 

 
Fig. 2 Normalized eigenvalues’ modulus |𝜆𝐹𝑛 | and |𝜆𝑁𝑛| by (5) and (6) 

respectively, sorted in decreasing order, of 𝒜F (left panel) and 𝒜N  (Ro = 15λ) 

(right panel) for a circumference source of radius R = 10λ, for different m 

values of the weight (4). 

 

The flattening effect of a fixed 𝑚 depends on the observation 

radius 𝑅𝑜 also. This is shown in the example of Fig. 3, where 

the curves corresponding to 𝑚 = 2, 𝑚 = 3 and 𝑚 = 5 are 

plotted varying 𝑅𝑜 for the same configuration of Fig. 2. In fact, 

for 𝑚 > 2, the eigenvalues curves become smoother as 𝑅𝑜 

increases. On the contrary, for 𝑚 = 2 it behaves flatter as 𝑅𝑜 

increases, while for 𝑚 = 0 it is always a smooth function of the 

index. Therefore, the choice 𝑚 = 2 allows to achieve a flatter 

behavior at every observation distance from the source. This 

result can be exploited when the flat behavior of the singular 

functions (more than their dynamic range) plays an important 

role in approximating a function of interest of the present 
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discussion, as it is shown in next Section as far as the PSF is 

concerned. 

 
Fig. 3 Normalized eigenvalues’ modulus |𝜆𝑁𝑛| by (6), sorted in decreasing 

order, of 𝒜𝑁  for a circumference source of radius 𝑅 = 10𝜆, for different m 

values in the weight and different radii 𝑅𝑜.  

 

In the more general case of limited angular intervals for both 

source and observation, an analytic expression of the singular 

values is no longer available, and it is necessary to evaluate 

them numerically by densely discretizing both source and 

observation domains. However, the above analytical results can 

be usefully employed to predict the general behavior of the SVs. 

In fact, Figs. 4 and 5 show that also for limited source and 

observation the introduction of the weight function (4) allows 

to obtain a flatter behavior of the SVs before their common 

exponential decay. It refers to the case of a semi-circumference 

observed on a 3π/4 angle. Since similar numerical results have 

been obtained for other source and observation geometries, we 

can confirm again that an NDF estimation found for 𝑚 = 0 still 

works for 𝑚 ≠ 0 and that the effect of the introduced weight 

function (4) consists only in flattening the behavior of the SVs.  

Since for every source and observation geometries the flatter 

behavior of the SVs is achieved for 𝑚 = 2 in the weight 

function (4), this choice is pursued in all numerical examples to 

follow. 

 

 
Fig. 4 Numerically computed normalized singular values of 𝒜𝐹  (left panel) and 

𝒜𝑁  (right panel, 𝑅𝑜 = 15𝜆), for an arc of circumference source of radius 𝑅 =
10𝜆,  𝛼 = 𝜋 2⁄   and 𝛾 = 3𝜋 4⁄ .  

 

 
Fig. 5 Numerically computed normalized singular values of 𝒜N of a 

circumference arc source with radius R = 10λ and α = π/2 observed on a 

circumference arc with γ = 3π/8 and varying radius Ro. 

 

IV. PSFS EVALUATION 

In this section, we are concerned with an approximate 

analytical expression of the PSF both in the source domain and 

in the observation domain. The PSF, by definition, represents 

the impulsive response of a system formed from the cascade of 

the regularized inverse operator and the direct operator, leading, 

for instance, in the source domain to 

𝑃𝑆𝐹𝑖  (𝜙, 𝜙0) = 𝒜𝒾
−1𝒜𝑖𝛿(𝜙′ − 𝜙0),         (11) 

where δ(∙) represents the Dirac impulsive function centered 

at the source domain point 𝜙0.  

The amplitude of the main lobe of the PSF, in particular, is 

linked to the resolution issue in inverse source problems, that is 

the capability of the inversion scheme to distinguish reliably 

two close point-like sources. This affects both the problems of 

array antenna synthesis and diagnostics. In fact, for instance, by 

adjusting the spacing of the array elements according to the 

amplitude of the main lobe of the PSF, we may be able to 

achieve the best possible performances by the least number of 

radiating elements. 

We adopt the Truncated SVD algorithm (TSVD) [9] to 

perform the regularized inversion of the relevant operators to be 

discussed. It consists in retaining in the singular function 

expansion of the generalized inverse solution only those terms 

corresponding to singular values greater than a certain threshold 

value. Such a value is chosen in correspondence of the start of 

their exponential decay, that is the NDF. 

Accordingly, from (11) it follows 

𝑃𝑆𝐹𝑖(𝜙, 𝜙0) = ∑ 𝑣𝑖𝜈(𝜙)𝑣𝑖𝜈
∗ (𝜙0)𝑁𝐷𝐹

𝜈=1 ,         (12) 

so that it involves the right singular functions of operators (3) 

which, unfortunately, are only analytically known for particular 

geometrical configurations, as in the case of a source supported 

on a circumference observed on a full angle (Appendix A). For 

those cases where (12) is not easily calculable, a different 

strategy may be used involving an approximation of (12).  

To this end we consider the adjoint operator 𝒜𝑖
†
 

corresponding to the radiation operator 𝒜𝑖 which is defined by 

the  
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< 𝒜𝑖𝐽, 𝐸𝑖>
𝐿[−𝜋,𝜋]

2
=< 𝐽, 𝒜𝑖

†𝐸𝑖 >𝐿[−𝛼,𝛼]
2 ,        (13) 

where <∙,∙> stands for the scalar product within the 

appropriate space. Then a good approximation of (12) may be 

achieved by using the adjoint operator as a regularized inverse, 

namely by reformulating (11) as   

𝑃𝑆𝐹̃𝑖  (𝜙, 𝜙0) = 𝒜𝒾
†𝒜𝑖𝛿(𝜙′ − 𝜙0).          (14) 

By expressing (14) in terms of singular functions, one gets 

𝑃𝑆𝐹̃𝑖  (𝜙, 𝜙0) = ∑ 𝜎𝜈
2𝑣𝜈(𝜙)𝑣𝜈

∗(𝜙0)𝑁𝐷𝐹
𝜈=1 ,        (15) 

where, the same singular functions as in (12) are now 

weighted by the corresponding singular values. The two 

expressions (12) and (15), then, are the more similar the more 

the significant singular values maintain a flat behavior.  So the 

analysis of the previous Section can be helpful to provide a 

proper choice of 𝑚 in the weight function of the relevant 

operators (3) so that the approximate PSF deviates from the 

exact one in the least.  

It is possible to demonstrate (see Appendix B) that (14) leads 

to the following explicit expression of the PSF in far zone  

𝑃𝑆𝐹𝐹̃(𝜙, 𝜙0) = 𝛾𝑅22−2𝑚+1𝑒−𝑗𝑚(𝜙+𝜙0) ⋅

∑ 𝐽𝑛 (2𝛽𝑅 𝑠𝑖𝑛 (
𝜙0−𝜙

2
))+∞

𝑛=−∞ 𝑒−𝑗𝑛
𝜙+𝜙0

2
 ∑ (

2𝑚
𝑘

)2𝑚
𝑘=0 ⋅

⋅ 𝑒𝑗𝑘𝜙 ∑ (
2𝑚

𝑠
) 𝑒𝑗𝑠𝜙02𝑚

𝑠=0 𝑠𝑖𝑛𝑐[(𝑛 + 2𝑚 − 𝑘 − 𝑠)𝛾]

,   (16) 

that for 𝑚 = 0 reduces to  

𝑃𝑆𝐹𝐹̃(𝜙, 𝜙0) = 2𝛾𝑅2 ∑ 𝐽𝑛 (2𝛽𝑅 𝑠𝑖𝑛 (
𝜙0−𝜙

2
)) ⋅+∞

𝑛=−∞

⋅ 𝑒−𝑗𝑛
𝜙+𝜙0

2
 𝑠𝑖𝑛𝑐(𝑛𝛾)

.   (17) 

By similar procedures, for the near zone the approximate PSF 

is given by 

𝑃𝑆𝐹𝑁̃(𝜙, 𝜙0) = 𝛾𝑅22−2𝑚+1𝑒−𝑗𝑚(𝜙+𝜙0) ∑ 𝐽𝑝(𝛽𝑅)+∞
𝑝=−∞ ∙

∙ 𝐻𝑝
(2)∗(𝛽𝑅𝑜)𝑒𝑗𝑝𝜙 ∑ 𝐽𝑙(𝛽𝑅)𝐻𝑙

(2)(𝛽𝑅𝑜)+∞
𝑙=−∞ 𝑒−𝑗𝑙𝜙0 ∑ (

2𝑚
𝑘

)2𝑚
𝑘=0 ∙

∙ 𝑒𝑗𝑘𝜙 ∑ (
2𝑚

𝑠
) 𝑒𝑗𝑠𝜙02𝑚

𝑠=0 𝑠𝑖𝑛𝑐[(2𝑚 − 𝑝 + 𝑙 − 𝑘 − 𝑠)𝛾]

, (18) 

that for 𝑚 = 0 becomes 

𝑃𝑆𝐹𝑁̃(𝜙, 𝜙0) = 2𝛾𝑅2 ∑ 𝐽𝑝(𝛽𝑅)𝐻𝑝
(2)∗(𝛽𝑅𝑜) ⋅+∞

𝑝=−∞

⋅ ∑ 𝐽𝑙(𝛽𝑅)+∞
𝑙=−∞ 𝐻𝑙

(2)
(𝛽𝑅𝑜)𝑒𝑗(𝑝𝜙−𝑙𝜙0)𝑠𝑖𝑛𝑐[(𝑙 − 𝑝)𝛾]

.        (19) 

In order to check, that the presence of  the weight term, 

improves the approximate PSF effectively, we compare the 

numerically PSFs obtained from (12) with the closed form 

expressions of the approximate ones for the cases 𝑚 = 0 and 

𝑚 = 2. From Figs. 6 and 7 we can immediately appreciate that 

the PSF is generally spatially variant along the source domain, 

implying a non-uniform resolution too.  

On the other hand, when 𝛾 = 𝜋, both 𝑃𝑆𝐹𝑖̃ depend only on 

the 𝜙0 − 𝜙 difference, which means that they are angularly 

invariant, so implying an uniform resolution in point-like 

source reconstructions. This property holds approximately also 

when 𝛾 is large; since in this paper we are interested in 

examining the effect of a limited observation domain, hereafter 

we consider mainly examples where 𝛼 > 𝛾, so enhancing the 

expected angularly variant behavior of the relevant PSFs. 

Furthermore, we see that the choice 𝑚 = 2 (which ensures a 

flattening of the singular values both for the near and the far 

zones, as discussed in the previous Section) the PSFs  (16) and 

(18) follow better the behavior of the exact PSFs than in the 

case 𝑚 = 0. This result accounts for the need of the deep 

investigation of the role of the weight function in the operators 

of interest. In all circumstances a fairly good agreement is 

obtained especially in the main lobe regions. Therefore, the 

approximate PSF can be fruitfully employed in the solution of 

inverse problems founded on its knowledge, as it is shown in 

next Section. 

 

 
Fig. 6 Normalized amplitude of the PSF̃F (red line) and the numerically 

computed PSFF (12) (blue line) for an arc of circumference with R = 10λ and 

α = π/2 observed in far zone for γ = 3π/8. The upper panel refers to the case 

for m=0, whereas the lower panel is for m = 2.  
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Fig. 7 Normalized amplitude of PSFÑ (red line) and  the numerically computed 

PSFN (12) (blue line) for an arc of circumference with R = 10λ and α = π/2 

observed in near zone for Ro = 15λ and γ = 3π/8. The upper panel refers to 

the case m=0, whereas the lower panel is for m = 2. 

 

From Figs. 6 and 7, a markedly angularly variant behavior of 

the PSFs is apparent as also predicted by the analytical 

functions (16) and (18). However, when 𝛾 increases, the 

relevance of the factors depending on the summation 𝜙 + 𝜙0 

reduces and a nearly invariant behavior occurs. Figs. 8 and 9 

displays numerically this result as 𝛾 > 𝛼. 

 

Fig. 8  Normalized amplitude of the PSFF̃ for ϕ0 = 0 (blue line) and ϕ0 = 0.63 

(red line) for an arc of circumference with R = 10λ and α = π/4 observed in 

far zone for γ = π/2. The left panel refers to the case for m=0, whereas the 

right panel is for m = 2. 

 

 
Fig. 9  Normalized amplitude of the 𝑃𝑆𝐹𝑁̃   for 𝜙0 = 0 (blue line) and 𝜙0 =
0.63 (red line) for an arc of circumference with 𝑅 = 10𝜆 and 𝛼 = 𝜋/4 observed 

in near zone for 𝛾 = 𝜋/2 and 𝑅𝑜 = 15𝜆 . The left panel refers to the case for 

m=0, whereas the right panel is for 𝑚 = 2. 

V. DISCRETE SOURCES 

The analytical expressions of the PSFs found in the previous 

Section are not only important to determine the intrinsic 
resolution limits of the inversion algorithm according to the 

source and the observation domain geometrical width, but they 

may be usefully employed to devise a scheme either for an 

efficient discretization of the source or to adequately sample the 

radiated field.  

In fact, for a prefixed geometry of the source support, an 

interesting question that can be raised concerns with deducing 

the positioning and the minimum number of point-like sources 

able to guarantee the same performances of the corresponding 

continuous source. At the same time, it would be very useful to 

investigate whether an efficient way (in terms of the number of 

measurement points) to sample the radiated field for the 
purpose of source reconstruction and diagnostics exists, without 

impairing their accuracy. To this end, the NDF of the relevant 

radiation operator is the fundamental information to be 

considered, as the maximum dimension of the set of current 

functions that can be reliably reconstructed in presence of 

uncertainties on data. So we assume it as the reference 

parameter and suppose also that it may provide the maximum 

number of point-like sources that can be reconstructed reliably. 

However, the spacing between these sources is not provided by 

the SVD evaluation of the operators (3) and there is no 

guarantee that a uniform one might achieve the optimal results, 
that is, the minimum number of point-like sources capable to 

radiate a set of fields whose dimension is just the NDF of the 

corresponding continuous current source.  

A. Model Operator 

Now we consider an array of 𝑁𝐴 point-like elements spaced 

at  𝛥𝜙𝑙
𝑘 , 𝑙 = 1, … , 𝑁𝐴 step as source, where the superscript 𝑘 ∈

{𝑁𝑈, 𝑈}  refers to either a non-uniform or an uniform angular 

step. The discrete counterpart of the radiation operators (3) are 

to be defined in terms of two semi-discrete mappings 𝒜̃𝑖 , 𝑖 =
{𝐹, 𝑁} transforming vectors into functions. Hence, (3) leads to 
the operators 

𝐸̃𝑖(𝜃) = ∑ 𝑐𝑙𝐼𝑙ℎ(𝜃 − 𝜙𝑙)𝐺𝑖(𝑅, ϕ𝑙
𝑘, 𝑅𝑜 , θ)𝑁𝐴

𝑙=1   = 𝐴̃𝑖𝐼,       (20) 

mapping the vector 𝐼 ∈ ℂ𝑁𝐴 into the function 𝐸̃𝐹 ∈ 𝐿[−𝛾,𝛾]
2 , 

where 𝑐𝑙 = 𝑅 𝛥𝜙𝑙
𝑘  . Each component of the 𝐼 vector represents 

the 𝐼𝑙 array excitation coefficient corresponding to the 𝑙 −th 

element of the 𝑘 configuration. 

The array element positions are defined by the angles 

𝜙𝑙
𝑘 = −𝛼 + 𝛥𝜙𝑙

𝑘  for 𝑙 = 1, … , 𝑁𝐴          (21) 

belonging to the arc of circumference with radius 𝑅 within the 

angular interval 𝜙 ∈ (−𝛼, 𝛼). Therefore the relevant SVD of 

(20) consists in the triple {𝜎̃𝑖𝜈 , 𝑢̃𝑖𝜈(𝜃), 𝑣̃𝑖𝜈}. 
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B. Discretization Method  

In order to illustrate a strategy to define an array with the same 

NDF of the corresponding continuous current source, we, now, 

consider the far zone case and show the proposed approach with 

reference to the source domain. It is based on the consideration 

of the PSF function since, by its very definition, it is able to 

reconstruct reliably two close point-like sources. This can be 

achieved successfully when the two sources are adequately 

spaced away each other. In particular, the PSF main lobe width 

may provide a quantitative measure of the adequate spacing. 

Accordingly, an intuitive procedure to establish the locations of 
the sources can be established as the maxima of the main lobes 

of the normalized PSFs, when they overlap at a prefixed level 

𝜅𝑖 (see Fig. 10). Accordingly, the centers of the main bells of 

the PSFs provide the points where to discretize the source to 

ensure a resolution equal to the width of the normalized PSF 

main lobe at the height 𝜅𝑖. In order to perform this procedure 

by analytical expressions, we adopt the approximate 

evaluations of the PSFs of previous Section by (16), whose 

accuracy has been demonstrated within the relevant main lobe.  

We point out explicitly that, as the PSFs are spatially variant, 
this procedure will result in a non-uniform discretization. In 

addition, the chosen value of 𝜅𝑖 plays an important role in 

defining  the number of discrete sources: the higher the value of 

𝜅𝑖, the higher the level where the PSFs’ main lobes will overlap 

and, accordingly, the higher the number of discrete points 

obtained (see Fig. 10).  

 
Fig. 10 A pictorial example of the behavior of the normalized 𝑃𝑆𝐹𝐹 𝑠̃  overlapped 

along part of the source domain. The black crosses on the horizontal axis 

identify the resulting centers of the main lobes and, therefore, the points of 

discretization. The higher the level 𝜅𝐹  (right panel) the higher the number of 

points. 

 

The adopted strategy, then, can be depicted as follows: 

• we choose the ϵ𝑖 truncation level of the normalized 

SVs of the 𝒜𝑖 operator in (3) so to fix the relevant 

NDF of the problem;   

• we fix  𝜅𝑖 , where the PSFs main lobes overlap, at a 

rather high value; 

• we identify the discretization points as the centers 

of the main lobes of the approximate PSFs 

overlapping at the 𝜅𝑖 level along the full source 

domain; 

• we compute the SVs of the operator, say 𝒜̃𝑖, 

mapping the resulting discrete source into the 

corresponding far field; 

• if the behavior of the corresponding normalized 

singular values is not flat, the 𝜅𝑖 level is further 

lowered since this means that the found number of 

point-like sources is higher than the NDF; 

• we return to the previous steps and identify a new 

set of discretization points and the last steps are 

repeated until the achieved discretization returns for 

𝒜̃𝑖 a singular values flat behavior. 

This procedure ensures that the number of point-like sources 

is equal to the NDF of the corresponding continuous source, so 

that both the dimension of the set of radiated fields are equal. 

Of course, the actual sets may differ, but the requirement of a 

common dimension can be adopted to establish a meaningful 

comparison between their radiated fields. 

The relevance of the non-uniform spacing in discretization of 

the operators (3) can be appreciated by the numerical results 
shown in Fig. 11. In fact, the behavior of the singular values of 

operators (20) are displayed in comparison with the ones of the 

continuous source case, with the goal of defining an array 

geometry whose radiated field belongs to a functional subspace 

with the same dimension (i.e. the number of significant singular 

values before the step) of the continuous case. The source 

geometry consists in an arc of circumference with R = 10λ and 

𝛼 = 𝜋/2 observed for 𝛾 = 3𝜋/8 in far zone and for Ro = 15λ 

and 𝛾 = 3𝜋/8 in near zone, respectively. For the far zone case, 

indeed, the number of significant singular values of both 𝒜𝐹   
and 𝒜̃𝐹 in the NU case is 43, whereas for 𝒜̃𝐹 in the U case the 

number decreases to 37. For the near zone, the NDF of 

both 𝒜𝑁   and 𝒜̃𝑁   (NU case) is 47 and reduces to 40 when the 

points are uniformly spaced.  

On the other hand, if we would obtain the same source 
subspace dimension by a discrete source with uniform spacing, 

we should increase the number of radiating elements so 

implying a more complex source and additional costs. In fact, 

for the examples of Fig. 11, 𝑁𝐴 = 57 is required so that 𝒜̃𝐹 

admits 43 significant singular values and 𝑁𝐴 = 65 is required 

so that 𝒜̃𝑁 admits 47 significant singular. In any case the 
number of elements required would increase with respect to the 

non-uniform step, by 32% and 38%, respectively. 

This means that a non-uniform source discretization is more 

efficient than a uniform one, since it requires a lower number 

of array elements for a circumference arc geometry, when the 

radiated field is observed along a limited angular domain. 

 

 
Fig. 11 Comparison of the normalized singular values (left panel) of  𝒜𝐹  for 

the continuous source (blue line), of 𝒜𝐹  for the non-uniform case (red line), of 

𝒜𝐹  for the uniform spacing with the same number of array elements (yellow 

line). The right panel displays the same results for near zone case for the same 

geometries as in Fig. 4. The dashed yellow curve refers to a uniform array with 

the minimum number of elements (57 and 67 for the far and the near zone, 

respectively) needed to achieve the NDF of the continuous case. Since 𝜖𝐹 =
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−5𝑑𝐵 is chosen for the far zone and 𝜖𝑁 = −14𝑑𝐵 for the near zone, it results 

𝜅𝐹 = 0.65 and 𝜅𝑁 = 0.5, respectively.  

 

 
Fig. 12 The non-uniform array configurations corresponding to the SVs of the 

geometries of Fig. 11 in the far (left panel) and near (right panel) cases. The 

discrete source positions are depicted red crosses. For symmetry reasons, only 

the upper half of the array sources are shown. 

 

It can be pointed out that the discretization procedure leads to 

a non-uniform spacing between the elements of a discrete 

(array) source (Fig. 12) so that it is worth to investigate how 
this affects the array performance especially in comparison with 

a standard uniform array with the same number of source 

points. 

 

VI. NUMERICAL APPLICATIONS TO ARRAY PROBLEMS 

The previous Sections have been devoted to apply an inverse 

problem approach to the analysis of the radiation operator by 

means of its SVD, when the field observation domain is limited. 
The singular values behavior defines the dimension of the 

relevant sets of fields that can be radiated, through the 

evaluation of the NDF of the source. The PSF analysis leads to 

a procedure to define the optimal locations of a discrete source 

whose set of radiated field has the same dimension as the one 

of the corresponding continuous circumference arc geometry. 

These results can be very useful for conformal arrays since 

general analytical methods lack for their design. 

Therefore, in this section, we show how the NU array allows 

to achieve better performances and results closer to those of the 

corresponding continuous source than the U array. The first two 
applications are concerned with the synthesis of a focusing 

beam and the diagnosis of the faulty elements within the array. 

To this end we refer to same source geometries considered in 

Fig. 11 of the previous Section. So, the source (both in the 

continuous and the discrete cases) is supposed to be supported 

over a semi-circumference of radius 𝑅 = 10𝜆. Because of the 

results shown in Fig. 7, which allows to define the minimum 

number of array elements in the NU case, we choose to compare 

this NU array with a uniform one with the same number of 

elements, but evenly spaced. 

A. Array Synthesis 

First, we deal with a pattern synthesis problem so to consider 

the far zone operators. According to the result of Fig. 11, a NU 

array composed of 𝑁𝐴 = 43 elements radiating a pattern 

complying with (4) (see left panel of Fig. 12) is able to provide 

a set of far fields with the same dimension as the continuous 
source of the same geometry. Therefore, the U array to be 

considered for the purpose of comparison is composed of the 

same number of equispaced elements at ∆𝜙 = 0.0748 rad, 

corresponding to 0.748𝜆. Since in some applications, as in 

surveillance radar, it is required to radiate identical beams 

pointing at different directions, a conformal source can achieve 

a uniform coverage over an angular range larger than a line 
array, we require a sinc-like focusing beam with main lobe 

amplitude 𝛥𝜃 = 0.142 rad   

𝑈𝐷(𝜃) = 𝑠𝑖𝑛𝑐 [
2𝜋

𝛥𝜃
(𝜃 − 𝜃0)],            (22) 

where 𝜃0 is the direction where the beam maximum is to be 

pointed.  
The synthesis procedure amounts to projecting the assigned far 

field onto the relevant left singular functions  

𝐸̃𝐹(𝜃) = ∑ 〈𝑈𝐷(𝜃), 𝑢̃𝐹𝜈(𝜃)〉𝑁(𝜖)
𝜈=1 𝑢̃𝐹𝜈(𝜃).        (23) 

The amplitude of these projections is plotted in Fig. 13 and 

shows that the NU array configuration provides the better 
results in terms of beams uniformity. For the sake of 

comparison, also the results of a continuous source of the same 

length as the discrete one are reported, since they can be 

assumed as a reference for the array radiation. 

In addition, the directivity of the projected beams is computed 

as 

𝐷(𝜃0) =
|𝐸̃𝐹(𝜃0)|2

1

2𝛾
∫ |𝐸̃𝐹(𝜃)|2𝛾

−𝛾  𝑑𝜃
              (24) 

under Table I. By comparing it with the continuous source case 

as well, again the better results are obtained for the 𝑁𝑈 

configuration, since the directivity values are more similar also 

for the off-set maximum direction. 

 
Fig. 13 The amplitude of 𝑈𝐷(𝜃) (blue line), of 𝐸̃𝐹(𝜃) for the NU (red line) and 

U (yellow line) array configurations and of EF(θ) (violet dotted line) for the 

continuous source.  

 
 

TABLE I 

𝐷(𝜃0) VARYING THE BEAM MAXIMUM ANGLE 𝜃0. 

𝜃0 0 𝑟𝑎𝑑  1 𝑟𝑎𝑑  

Continuous source 30.4 dB 29.3 dB 

𝑁𝑈 array 30.4 dB 29.8 dB 

𝑈 array 30.5 dB 28.4  dB 

  

B. Array Diagnostic 

In order to consider the application of the results of the 

previous Sections to the near field zone, we consider an array 

diagnostic problem from near zone data, collected over a 
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limited angular domain and compare the two array 

configurations again, i.e. the one with non-uniform element 

spacing and the one with uniform spacing. We assume that 

some array elements may develop an "on-off" fault, so the 

faulty elements do not radiate at all. This type of fault is 

common in practical applications when mechanical defects may 

prevent the feeding of antenna elements. We assume, then, that 

the NU array configuration correspond to the result shown in 

the right panel of Fig. 12, namely it is composed of 𝑁𝐴 = 47 

elements, while the U configuration consists of the same 

number of elements spaced at ∆𝜙 = 0.0683 rad. Both arrays 

are designed to radiate a focusing field at the direction 𝜃0 = 0, 

that is, their elements are fed by currents with constant modulus 

and different phases 

𝐼𝑙 = 𝑒−𝑗𝛽𝑅 𝑐𝑜𝑠 𝜙𝑙
𝑘
.                (25) 

The radiated field measurements are collected in near zone 

and corrupted by a complex gaussian noise with zero mean such 

to assure a signal-to-noise ratio (SNR) of 20 dB. Once the 

radiated field data are gathered, the source is reconstructed by 

a TSVD algorithm as 

𝐼 = ∑
<𝐸,𝑢𝑁𝜈

𝑘 >

𝜎̃𝑁𝜈

𝑁(𝜖𝑁)
𝜈=1 𝑣̃𝑁𝜈

𝑘 ,              (26) 

with 𝑘 ∈ {𝑁𝑈, 𝑈}. 

 From the results of Fig. 14, one can clearly see that the faulty 

elements are well detected only in the 𝑁𝑈 configuration. This 

result is also quantitatively confirmed by the values shown in 

Table II reporting the relative error defined as 

𝑒𝑘 =
‖𝐼−𝐼‖

‖𝐼‖
,                  (27) 

where 𝐼𝑘 stands for the actual excitation vector. 

 

 
Fig. 14 Source reconstruction for a 𝑁𝑈 (upper panel) and a 𝑈 (lower panel) 

configuration with noisy data (𝑆𝑁𝑅𝑑𝐵 = 20𝑑𝐵) collected in near zone. The 

source and observation geometries are the same as in Figs. 11 and 12. 

 

 

 

TABLE II 

NORMALIZED RECONSTRUCTION ERROR FOR NEAR ZONE OBSERVATIONS. 

𝑒𝑁𝑈  𝑒𝑈  

7.67  10−2 1.99 10−1 

 

VII.  CONCLUSION 

The role of a limited observation domain in the radiation of 

conformal sources has been highlighted by referring to a 2D 

circumference geometry. The analysis has been carried out by 

the investigation the SVD of the relevant operator and the 

resulting PSFs. The influence of an appropriate weight 

function, connected to the source element factor, has been 

examined in achieving an approximate closed form expression 

of the PSF.  

Then, the main consequence of the limited observation 

domain on the PSF behavior has been emphasized, i.e. the 

dependence of the PSF on its maximum direction. This has led 

to its angularly variant behavior whose relevance in not only 

mathematical, but also has several practical applications in 

antenna analysis and synthesis.  

To this end, a source discretization strategy has been 

introduced, leading to an optimal non-uniform spacing of an 

array radiating a field with the same NDF of the continuous 

source. The comparison of its performance with the case of an 

equispaced array of the same number of elements has revealed 

better performances both in the synthesis of radiation pattern 

and in the diagnostics of faulty elements. 

 

APPENDIX A 

In the general case of source and field functions belonging to 

the set of square integrable functions 𝐿2 supported over 

different intervals  as in (1), the singular functions are solution 

of the following shifted eigenvalue problem introduced by 

Lanczos [17] 

𝒜𝒾𝑣𝑖𝜈 = σ𝑖𝜈𝑢𝑖𝜈,                (A1) 

𝒜𝑖
†𝑢𝑖𝜈 = σ𝑖𝜈𝑣𝑖𝜈,                (A2) 

where 𝑖 = 𝐹 or 𝑁. 

When source and field functions are supported on the same 

full angle circumference observed on a full angle, the 

eigenfunctions are of exponential type and we can derive the 

analytic expressions of the eigenvalues for both the far and the 

near zone for different weight functions (4). 

Let us consider the equation (A1) for the far zone and show 

that, by choosing 𝑣𝐹𝑛(𝜙) = 𝑒𝑗𝑛𝜙 and 𝑢𝐹𝑛(𝜃) = 𝑒𝑗𝑛𝜃 , (A1) is 

satisfied. In fact, by direct substitution 

𝒜𝐹𝑒𝑗𝑛𝜙 = 𝑅 ∫ 𝑒𝑗𝑛𝜙𝑒𝑗𝛽𝑅 𝑐𝑜𝑠(𝜃−𝜙)𝜋

−𝜋
∙

⋅ (1 + 𝑐𝑜𝑠(𝜃 − 𝜙))𝑚  𝑑𝜙
.        (A3) 

and application of the Jacobi-Anger expansion of the 

exponential function and of the half-angle formula for the 
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cosine, we obtain 

2𝑚𝑅 ∑ 𝑗𝑝𝐽𝑝(β𝑅)+∞
𝑝=−∞ 𝑒𝑗𝑝θ ⋅

⋅ ∫ 𝑒𝑗(𝑛−𝑝)𝜙π

−π
𝑐𝑜𝑠2𝑚 (

θ−ϕ

2
)  𝑑𝜙

.                               (A4) 

Next, the Euler's formula and the application of the binomial 

theorem  

(𝑎 + 𝑏)𝑚 = ∑ (
𝑚
𝑘

) 𝑎𝑚−𝑘𝑏𝑘𝑚
𝑘=0 ,          (A5) 

leads to 

2−𝑚𝑅 ∑ 𝑗𝑝𝐽𝑝(𝛽𝑅)+∞
𝑝=−∞ 𝑒𝑗𝑝𝜃 ∑ (

2𝑚
𝑘

) ⋅2𝑚
𝑘=0

⋅ ∫ 𝑒𝑗(𝑛−𝑝)𝜙𝑒𝑗(2𝑚−𝑘)(
𝜃−𝜙

2
)
𝑒−𝑗𝑘(

𝜃−𝜙

2
)π

−π
 𝑑𝜙

.      (A6) 

If we single out of the integral the terms that do not depend 

on ϕ, the resulting integral is elementary and is different from 

zero only if 𝑝 = 𝑛 + 𝑘 − 𝑚. Accordingly, (A6) becomes 

𝒜𝐹𝑒𝑗𝑛ϕ =

2−𝑚+1𝜋𝑅 ∑ (
2𝑚
𝑘

)2𝑚
𝑘=0 𝑗𝑛+𝑘−𝑚𝐽𝑛+𝑘−𝑚(β𝑅)𝑒𝑗𝑛𝜃.    (A7) 

Therefore, the eigenvalues (5) are recovered.  

For 𝑚 = 0, it is straightforward to obtain the known result 

λ𝐹𝑛 = 2𝜋𝑅𝑗𝑛𝐽𝑛(β𝑅).              (A8) 

For larger values of 𝑚 the expression (5) can become 

complicated, but thanks to the recurrence relations of the Bessel 

functions we can simplify it and, consequently, the 𝑛 −th 

eigenvalue turns out a combination of the 𝑛 −th Bessel 

functions and its derivatives in a more compact form. Let us 

show this for the first values of 𝑚.  

For 𝑚 = 1, (5) returns 

λ𝐹𝑛 = 2𝜋𝑅𝑗𝑛 [−
𝑗

2
𝐽𝑛−1(β𝑅) + 𝐽𝑛(β𝑅) +

𝑗

2
𝐽𝑛+1(β𝑅)]. (A9) 

 Eq. (A9) can be recast as 

λ𝐹𝑛 = 2𝜋𝑅𝑗𝑛[𝐽𝑛(𝛽𝑅) − 𝑗𝐽′
𝑛

(𝛽𝑅)],        (A10) 

where 𝐽𝑛
′ (⋅) is the derivative of the Bessel function of 𝑛 −th 

order with respect to its argument. 

For 𝑚 = 2, (5) returns  

λ𝐹𝑛 = 6𝜋𝑅𝑗𝑛 [−
1

12
𝐽𝑛−2(𝛽𝑅)−

𝑗

3
𝐽𝑛−1(𝛽𝑅)+

1

2
𝐽𝑛(𝛽𝑅)

+
𝑗

3
𝐽𝑛+1(𝛽𝑅)−

1

12
𝐽𝑛+2(𝛽𝑅)]

, (A11) 

and, again, by resorting to the recurrence relations of the 

Bessel functions we finally obtain 

λ𝐹𝑛 =
2𝜋𝑅𝑗𝑛 [(2 − (

𝑛

β𝑅
)

2

) 𝐽𝑛(β𝑅) +

+ (
1

β𝑅
− 𝑗2) 𝐽𝑛

′ (β𝑅)]
.       (A12) 

Let us, now, repeat the same reasoning for the near zone. If 

the near zone radiation operator is applied to the exponential 

function 𝑒𝑗𝑛𝜙, we get 

𝒜𝑁𝑒𝑗𝑛ϕ = 𝑅 ∫ 𝑒𝑗𝑛ϕ𝐻0
(2)

(β|𝑟(θ) − 𝑟(ϕ)|)
π

−π
⋅

⋅ (1 + 𝑐𝑜𝑠(θ − ϕ))𝑚  𝑑𝜙
.    (A13) 

By exploiting the addition theorem for the Hankel functions 

related to the case 𝑅𝑜 > 𝑅, namely,  

𝐻0
(2)

(β|𝑟(θ) − 𝑟(ϕ)|) =

= ∑ 𝐽𝑝(𝛽𝑅)𝐻𝑝
(2)(𝛽𝑅𝑜)𝑒𝑗𝑝(θ−𝜙)+∞

𝑝=−∞

,         (A14) 

and the same mathematical details as before, except for the 

presence of the Hankel function, we reach (6). 

Let us now particularize the expression of the eigenvalues for 

the case 𝑚 = 0, 𝑚 = 1 and 𝑚 = 2. 

For 𝑚 = 0 (6) easily returns the known result 

λ𝑁𝑛 = 2𝜋𝑅𝐽𝑛(𝛽𝑅)𝐻𝑛
(2)(𝛽𝑅𝑜).          (A15) 

If 𝑚 = 1, instead, the eigenvalues have a little more 

complicated expression since they write as 

λ𝑁𝑛 = 2𝜋𝑅 [
1

2
𝐽𝑛−1(𝛽𝑅)𝐻𝑛−1

(2) (𝛽𝑅𝑜) +

𝐽𝑛(𝛽𝑅)𝐻𝑛
(2)(𝛽𝑅𝑜) +

1

2
𝐽𝑛+1(𝛽𝑅)𝐻𝑛+1

(2) (𝛽𝑅𝑜)]
.                (A16) 

In order to provide a more compact form, like before, we 

make use of the recurrence formulas of the Bessel/Hankel 

function as a function of the corresponding Bessel/Hankel 

function of 𝑛 −th order and its derivative.  

This allow us to recast (A16) as 

λ𝑁𝑛 = 2𝜋𝑅 [
1

2
(𝐽𝓃

′ (𝛽𝑅) +
𝑛

𝛽𝑅
𝐽𝓃(𝛽𝑅)) ⋅

⋅  (𝐻𝑛
(2)

′(𝛽𝑅𝑜) +
𝑛

𝛽𝑅𝑜
𝐻𝑛

(2)
(𝛽𝑅𝑜)) +

𝐽𝑛(𝛽𝑅)𝐻𝑛
(2)(𝛽𝑅𝑜) +

1

2
(−𝐽𝓃

′ (𝛽𝑅) +
𝑛

𝛽𝑅
𝐽𝓃(𝛽𝑅)) ⋅

⋅ (−𝐻𝑛
(2)

′(𝛽𝑅𝑜) +
𝑛

𝛽𝑅𝑜
𝐻𝑛

(2)(𝛽𝑅𝑜))]

.   (A17) 

Combining together the similar terms, we finally get 

λ𝑁𝑛 = 2𝜋𝑅[𝐽𝑛
′ (𝛽𝑅)𝐻𝑛

(2)
′(𝛽𝑅𝑜) +

(
𝑛2

𝛽2𝑅𝑅𝑜
+ 1) 𝐽𝑛(𝛽𝑅)𝐻𝑛

(2)(𝛽𝑅𝑜)]
 .        (A18) 
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When 𝑚 = 2, we obtain the following expression for the 

eigenvalues 

λ𝑁𝑛 = 𝜋𝑅 {4 (
𝑛2+1

𝛽2𝑅𝑅𝑜
+ 1) 𝐽𝓃

′ (𝛽𝑅)𝐻𝑛
(2)

′(𝛽𝑅𝑜) +

+2 (
1

β𝑅
−

4𝑛2

𝛽3𝑅𝑅𝑜
2) 𝐽𝓃

′ (𝛽𝑅)𝐻𝑛
(2)(𝛽𝑅𝑜) +

+2 (
1

β𝑅𝑜
−

4𝑛2

𝛽3𝑅2𝑅𝑜
) 𝐽𝑛(𝛽𝑅)𝐻𝑛

(2)
′(𝛽𝑅𝑜) +

(4 +
2𝑛2[2𝑛2+2+β2(𝑅𝑜

2−𝑅2+2𝑅𝑅𝑜)]

(𝛽2𝑅𝑅𝑜)2 ) 𝐽𝓃(𝛽𝑅)𝐻𝑛
(2)

(𝛽𝑅𝑜)}

. (A19) 

 

APPENDIX B 

Hereafter, we derive the analytical expression of the 

approximate PSF for operators 𝒜𝐹 e 𝒜𝑁. For the far zone, (14) 

writes 

𝑃𝑆𝐹𝐹̃(𝜙, 𝜙0) = 𝑅2 ∫ 𝑒−𝑗𝛽𝑅 𝑐𝑜𝑠(𝜃−𝜙)𝛾

−𝛾
∙

∙ (1 + 𝑐𝑜𝑠(𝜃 − 𝜙))
𝑚

∫ 𝑒𝑗𝛽𝑅 𝑐𝑜𝑠(𝜃−𝜙′)𝛼

−𝛼
∙

∙ (1 + 𝑐𝑜𝑠(𝜃 − 𝜙′))
𝑚

𝛿(𝜙′ − 𝜙0)𝑑𝜙′ 𝑑𝜃

.       (B1) 

By applying the sifting property of delta function, (B1) 

becomes 

𝑃𝑆𝐹𝐹̃(𝜙, 𝜙0) = 𝑅2 ∫ 𝑒𝑗𝛽𝑅[𝑐𝑜𝑠(𝜃−𝜙0)−𝑐𝑜𝑠(𝜃−𝜙)] ⋅
𝛾

−𝛾

⋅ (1 + 𝑐𝑜𝑠(𝜃 − 𝜙))
𝑚

(1 + 𝑐𝑜𝑠(𝜃 − 𝜙0))
𝑚

𝑑θ
,          (B2)   

and, by using the sum-to-product formula to the exponential 

term, we get 

𝑃𝑆𝐹𝐹̃(𝜙, 𝜙0) = 𝑅2 ∫ 𝑒𝑗2𝛽𝑅 𝑠𝑖𝑛(
𝜙0−𝜙

2
) 𝑠𝑖𝑛(𝜃−

𝜙+𝜙0
2

)
⋅

𝛾

−𝛾

⋅ (1 + 𝑐𝑜𝑠(𝜃 − 𝜙))
𝑚

(1 + 𝑐𝑜𝑠(𝜃 − 𝜙0))
𝑚

𝑑θ
.   (B3) 

At this point, it is possible to use the Jacobi-Anger expansion 

for the exponential in order to obtain 

𝑃𝑆𝐹𝐹̃(𝜙, 𝜙0) = 𝑅2 ∫ ∑ 𝐽𝑛 (2𝛽𝑅 𝑠𝑖𝑛 (
𝜙0−𝜙

2
))+∞

𝑛=−∞ ⋅
𝛾

−𝛾

⋅ 𝑒𝑗𝑛 (𝜃−
𝜙+𝜙0

2
)
(1 + 𝑐𝑜𝑠(𝜃 − 𝜙))

𝑚
⋅

⋅ (1 + 𝑐𝑜𝑠(𝜃 − 𝜙0))
𝑚

𝑑𝜃

,  (B4) 

where 𝐽𝑛(⋅) is the Bessel function of the first kind and 𝑛 −th 

order. Then, applying the half-angle and Euler’s formula to the 

cosine terms, we can state that  

𝑃𝑆𝐹𝐹̃(𝜙, 𝜙0) = 𝑅22−2𝑚 ⋅

⋅ ∫ ∑ 𝐽𝑛 (2𝛽𝑅 𝑠𝑖𝑛 (
𝜙0−𝜙

2
)) 𝑒𝑗𝑛 (𝜃−

𝜙+𝜙0
2

)
⋅+∞

𝑛=−∞
𝛾

−𝛾

⋅ (𝑒𝑗
𝜃−𝜙

2 + 𝑒−𝑗
𝜃−𝜙

2 )
2𝑚

(𝑒𝑗
𝜃−𝜙0

2 + 𝑒−𝑗
𝜃−𝜙0

2 )
2𝑚

𝑑𝜃

,    (B5) 

and, by resorting to the binomial theorem, we get 

𝑃𝑆𝐹𝐹̃(𝜙, 𝜙0) = 𝑅22−2𝑚𝑒−𝑗𝑚(𝜙+𝜙0) ⋅

⋅ ∑ 𝐽𝑛 (2𝛽𝑅 𝑠𝑖𝑛 (
𝜙0−𝜙

2
))+∞

𝑛=−∞ 𝑒−𝑗𝑛
𝜙+𝜙0

2
 ⋅

⋅ ∑ (
2𝑚
𝑘

) 𝑒𝑗𝑘𝜙2𝑚
𝑘=0 ∑ (

2𝑚
𝑠

) 𝑒𝑗𝑠𝜙02𝑚
𝑠=0 ∫ 𝑒𝑗(𝑛+2𝑚−𝑘−𝑠)𝛾

−𝛾
𝑑𝜃

. (B6) 

The integral, now, is easily solvable and leads to the 

following final expression for the approximate PSF 

𝑃𝑆𝐹𝐹̃(𝜙, 𝜙0) = 𝛾𝑅22−2𝑚+1𝑒−𝑗𝑚(𝜙+𝜙0) ⋅

⋅ ∑ 𝐽𝑛 (2𝛽𝑅 𝑠𝑖𝑛 (
𝜙0−𝜙

2
))+∞

𝑛=−∞ 𝑒−𝑗𝑛
𝜙+𝜙0

2
 ∑ (

2𝑚
𝑘

)2𝑚
𝑘=0 ⋅

⋅ 𝑒𝑗𝑘𝜙 ∑ (
2𝑚

𝑠
) 𝑒𝑗𝑠𝜙02𝑚

𝑠=0 𝑠𝑖𝑛𝑐[(𝑛 + 2𝑚 − 𝑘 − 𝑠)𝛾]

.   (B7) 

We can point out that for 𝑚 = 0 the expression just found 

reduces to  

𝑃𝑆𝐹𝐹̃(𝜙, 𝜙0) = 2𝛾𝑅2 ∑ 𝐽𝑛 (2𝛽𝑅 𝑠𝑖𝑛 (
𝜙0−𝜙

2
))+∞

𝑛=−∞

⋅ 𝑒−𝑗𝑛
𝜙+𝜙0

2
 𝑠𝑖𝑛𝑐[𝑛𝛾]

.         (B8) 

When 𝛾 = 𝜋, the 𝑠𝑖𝑛𝑐 function in (B7) has a non-null 

contribution only for 𝑛 = 𝑘 + 𝑠 − 2𝑚 and the resulting 

approximate PSF depends on the difference ϕ − ϕ0  

𝑃𝑆𝐹𝐹̃(𝜙, 𝜙0) = 𝜋𝑅22−2𝑚+1 ∑ (
2𝑚
𝑘

)2𝑚
𝑘=0 𝑒𝑗

𝑘

2
(𝜙−𝜙0)

⋅

⋅

⋅ ∑ (
2𝑚

𝑠
) 𝑒−𝑗

𝑠

2
(𝜙−𝜙0)

𝐽𝑘+𝑠−2𝑚 (2𝛽𝑅 𝑠𝑖𝑛 (
𝜙0−𝜙

2
))2𝑚

𝑠=0

,   (B9) 

that is, it is spatially invariant. We expect this property to 

hold even for γ approaching π, since the 𝑠𝑖𝑛𝑐 terms adding in 

(B7) become smaller and smaller when the indices’ sum in the 

argument grows in module, so that, again, the main contribution 

is  for 𝑛 = 𝑘 + 𝑠 − 2𝑚. 

As far as the near zone is concerned, (14) is made explicit as 

𝑃𝑆𝐹𝑁̃(𝜙, 𝜙0) = 𝑅2 ∫ 𝐻0
(2)∗

(β|𝑟(θ) − 𝑟(ϕ)|) ⋅
γ

−γ

⋅ (1 + 𝑐𝑜𝑠(𝜃 − 𝜙))
𝑚

∫ 𝐻0
(2)

(β|𝑟(θ) − 𝑟(ϕ′)|) ⋅
𝛼

−𝛼

⋅ (1 + 𝑐𝑜𝑠(𝜃 − 𝜙′))
𝑚

𝛿(𝜙′ − 𝜙0)𝑑𝜙′𝑑θ

,  (B10) 

that, thanks to the sifting property of the delta function, 

becomes 

𝑃𝑆𝐹𝑁̃(𝜙, 𝜙0) = 𝑅2 ∫ 𝐻0
(2)∗

(β|𝑟(θ) − 𝑟(ϕ)|) ∙
γ

−γ

∙ (1 + 𝑐𝑜𝑠(𝜃 − 𝜙))
𝑚

𝐻0
(2)

(β|𝑟(θ) − 𝑟(𝜙0)|) ∙

∙ (1 + 𝑐𝑜𝑠(𝜃 − 𝜙0))
𝑚

𝑑θ

.   (B11) 

By exploiting the half-angle formula and the Euler’s formula 

in order to cast the cosines in form of exponentials, the previous 

expression turns into 
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𝑃𝑆𝐹𝑁̃(𝜙, 𝜙0) = 𝑅22−2𝑚 ∫ 𝐻0
(2)∗

(β|𝑟(θ) − 𝑟(ϕ)|)
γ

−γ
∙

∙ (𝑒𝑗
𝜃−𝜙

2 + 𝑒−𝑗
𝜃−𝜙

2 )
2𝑚

𝐻0
(2)

(β|𝑟(θ) − 𝑟(𝜙0)|) ∙

∙ (𝑒𝑗
𝜃−𝜙0

2 + 𝑒−𝑗
𝜃−𝜙0

2 )
2𝑚

𝑑θ

. (B12) 

Once again, resorting to the binomial theorem and singling 

out of the integral the term which does not depend on 𝜃, we 

come to 

𝑃𝑆𝐹𝑁̃(𝜙, 𝜙0) = 𝑅22−2𝑚𝑒−𝑗𝑚(𝜙+𝜙0) ∙

∙ ∫ 𝐻0
(2)∗

(𝛽|𝑟(𝜃) − 𝑟(𝜙)|)
𝛾

−𝛾
𝐻0

(2)
(𝛽|𝑟(𝜃) − 𝑟(𝜙0)|) ∙

∙ 𝑒𝑗2𝑚𝜃 ∑ (
2𝑚
𝑘

) 𝑒−𝑗𝑘(𝜃−𝜙)2𝑚
𝑘=0 ∑ (

2𝑚
𝑠

) 𝑒−𝑗𝑠(𝜃−𝜙0)2𝑚
𝑠=0  𝑑𝜃

,(B13) 

and then, by exploiting the addition theorem (A14) of Hankel 

functions for 𝑅𝑜 ≥ 𝑅 and substituting it into (B13), the PSF 

becomes 

𝑃𝑆𝐹𝑁̃(𝜙, 𝜙0) = 𝑅22−2𝑚𝑒−𝑗𝑚(𝜙+𝜙0) ∙

∙ ∑ 𝐽𝑝(𝛽𝑅)+∞
𝑝=−∞ 𝐻𝑝

(2)∗(𝛽𝑅𝑜)𝑒𝑗𝑝𝜙 ∙

∙ ∑ 𝐽𝑙(𝛽𝑅)𝐻𝑙
(2)

(𝛽𝑅𝑜)𝑒−𝑗𝑙𝜙0+∞
𝑙=−∞ ∑ (

2𝑚
𝑘

)2𝑚
𝑘=0 𝑒𝑗𝑘𝜙 ∙

∙ ∑ (
2𝑚

𝑠
) 𝑒𝑗𝑠𝜙02𝑚

𝑠=0 ∫ 𝑒𝑗(2𝑚−𝑝+𝑙−𝑘−𝑠)𝜃𝑑𝜃
𝛾

−𝛾

,   (B14) 

The latter integral, at this point, is easily resolved and we get 

the final expression of the approximate PSF 

𝑃𝑆𝐹𝑁̃(𝜙, 𝜙0) = 𝛾𝑅22−2𝑚+1𝑒−𝑗𝑚(𝜙+𝜙0) ∑ 𝐽𝑝(𝛽𝑅)+∞
𝑝=−∞ ∙

∙ 𝐻𝑝
(2)∗(𝛽𝑅𝑜)𝑒𝑗𝑝𝜙  𝑜𝑛𝑙𝑦𝑒−𝑗𝑙𝜙0 ∑ (

2𝑚
𝑘

) 𝑒𝑗𝑘𝜙2𝑚
𝑘=0 ∙

∙ ∑ (
2𝑚

𝑠
) 𝑒𝑗𝑠𝜙02𝑚

𝑠=0 𝑠𝑖𝑛𝑐[(2𝑚 − 𝑝 + 𝑙 − 𝑘 − 𝑠)𝛾]

.(B15) 

Finally, we notice that in absence of weight (𝑚 = 0) the 

expression (B15) is reduced to  

𝑃𝑆𝐹𝑁̃(𝜙, 𝜙0) = 2𝛾𝑅2 ∑ 𝐽𝑝(𝛽𝑅)𝐻𝑝
(2)∗(𝛽𝑅𝑜) ⋅+∞

𝑝=−∞

⋅ ∑ 𝐽𝑙(𝛽𝑅)+∞
𝑙=−∞ 𝐻𝑙

(2)
(𝛽𝑅𝑜)𝑒𝑗(𝑝𝜙−𝑙𝜙0)𝑠𝑖𝑛𝑐[(𝑙 − 𝑝)𝛾]

.   (B16) 

We point out that, again, spatial invariance is found when 

𝛾 = 𝜋 in (B15) since the main contribution in the 𝑠𝑖𝑛𝑐 

summation would occur for 𝑙 = 𝑝 + 𝑘 + 𝑠 − 2𝑚, leading for 

𝛾 = 𝜋 to the following expression  of the approximate PSF 

𝑃𝑆𝐹𝑁̃(𝜙, 𝜙0) = 𝜋 𝑅22−2𝑚+1𝑒−𝑗𝑚(𝜙−𝜙0) ∙

∙ ∑ 𝐽𝑝(𝛽𝑅)𝐻𝑝
(2)∗(𝛽𝑅𝑜)𝑒𝑗𝑝(𝜙−𝜙0)+∞

𝑝=−∞ ∙

∙ ∑ (
2𝑚
𝑘

)2𝑚
𝑘=0 𝑒𝑗𝑘(𝜙−𝜙0) ∑ (

2𝑚
𝑠

) 𝑒𝑗𝑠(𝜙−𝜙0)2𝑚
𝑠=0 ∙

∙ 𝐽𝑝+𝑘+𝑠−2𝑚(𝛽𝑅)𝐻𝑝+𝑘+𝑠−2𝑚
(2) (𝛽𝑅𝑜)

,    (B17)  

which depends only on the difference between the point 

source angle 𝜙0  and the observation one 𝜙. The same holds true 

approximately also for 𝛾 approaching π since the main 

contribution to s summation comes from the same 𝑙 = 𝑝 + 𝑘 +
𝑠 − 2𝑚 index. 
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