
P
os
te
d
on

23
J
u
l
20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
26
86
05
1.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

FruitVegCNN: Power- and Memory-Efficient Classification of Fruits

& Vegetables Using CNN in Mobile MPSoC

Somdip Dey 1, Suman Saha 2, Amit Singh 2, and Klaus D. Mcdonald-Maier 2

1University of Essex
2Affiliation not available

October 30, 2023

Abstract

Fruit and vegetable classification using Convolutional Neural Networks (CNNs) has become a popular application in the agri-

cultural industry, however, to the best of our knowledge no previously recorded study has designed and evaluated such an

application on a mobile platform. In this paper, we propose a power-efficient CNN model, FruitVegCNN, to perform clas-

sification of fruits and vegetables in a mobile multi-processor system-on-a-chip (MPSoC). We also evaluated the efficacy of

FruitVegCNN compared to popular state-of-the-art CNN models in real mobile plat- forms (Huawei P20 Lite and Samsung

Galaxy Note 9) and experimental results show the efficacy and power efficiency of our proposed CNN architecture.

1



This is a preprint version of the work submitted to IEEE journal

FruitVegCNN: Power- and
Memory-Efficient Classification of
Fruits & Vegetables Using CNN in
Mobile MPSoC
Somdip Dey∗ Suman Saha†

Amit Singh∗, Klaus McDonald-Maier∗,

∗ Embedded and Intelligent Systems Laboratory, University of Essex, UK.
† Nosh Technologies, UK.

ABSTRACT

Fruit and vegetable classification using Convolutional Neural Networks (CNNs) has become a
popular application in the agricultural industry, however, to the best of our knowledge no pre-
viously recorded study has designed and evaluated such an application on a mobile platform. In
this paper, we propose a power-efficient CNN model, FruitVegCNN, to perform classification of
fruits and vegetables in a mobile multi-processor system-on-a-chip (MPSoC). We also evaluated
the efficacy of FruitVegCNN compared to popular state-of-the-art CNN models in real mobile plat-
forms (Huawei P20 Lite and Samsung Galaxy Note 9) and experimental results show the efficacy
and power efficiency of our proposed CNN architecture.

KEYWORDS: convolutional neural network (CNN), multi-processor system-on-a-chip (MPSoC), fruits,
vegetables, classification, flutter, mobile device, application, energy efficiency

1 Introduction and Motivation

In recent years, computer vision based Convolutional Neural Networks (CNNs) [CSJC10,
CL14,SZ14] approaches have become very popular to solve several real-life challenges such
as traffic categorization [LJLS15,DKS+18,DSPMM20], human rights violation [K+17], weather
forecasting [Z+98], fruits and vegetables’ classification [MO18,PSRGC18], etc due to its high
prediction accuracy/categorization in the aforementioned target applications. Moreover, we
can notice a steady growth in using CNNs in agriculture, especially for use cases such as au-
tomatic fruit harvesting, fruit sorting machines, and fruit scanning in supermarkets. Out of
several applications of using CNNs in agriculture, classification of fruits and vegetables are
an important one due to the fact that such an application could be used to automate and ret-

1Corresponding E-mail: somdip.dey@essex.ac.uk; dey@nosh.tech
2This work is supported by Nosh Technologies [nosh/agri-tech-000001] and the UK Engineering and Physical
Sciences Research Council EPSRC [EP/R02572X/1 and EP/P017487/1].

1



This is a preprint version of the work submitted to IEEE journal

rospectively improve productivity in agri-food system. For example, when a shopper goes
to supermarket to buy fruits and vegetables, instead of typing all the items manually to cre-
ate an inventory, the shopper can just take a picture of the bought fruits and vegetables and
it automatically classifies the bought items and input them in the inventory.

On the other hand, battery operated mobile devices are becoming more affordable due
to the improvement in chip manufacturing technology and also come equipped with mul-
tiple processing elements to cater for performance requirement of the executing applica-
tions [SDB+20, DGB+19]. Such a mobile platform, utilizing multi-processor system-on-a-
chip (MPSoC) [SDB+20, DGB+19, DSPMM19, DSWMM19, IDSMM19, DSS+19, DSWMM20,
DSMM19], implements different types of processing elements such as CPU and GPU, ca-
pable of computing demanding computer vision applications on the device. Given the im-
portance of adopting CNN based approaches in agricultural industry and the increase in
popularity of using mobile devices, it is very important to study, design and implement
CNN models for fruits and vegetables’ classification in mobile devices. A consumer can
use their mobile device to make an inventory of their bought fruits and vegetables using
such CNNs. However, implementing CNNs in mobile platforms come with their own chal-
lenges. Such challenges include implementing a power-efficient CNN, which is capable of
accurately classifying fruits and vegetables while consuming the least power and memory
on the device.

In this paper, we propose a CNN model, named FruitVegCNN, which can be utilized in
mobile devices for fruits and vegetables’ classification, and to the best of our knowledge this
is the first work on designing and implementing a CNN model for the same task in a mobile
platform. To this end, this paper makes the following contributions:

1. Proposal of FruitVegCNN, a light weight CNN model, capable of fruits and vegetables’
classification in battery operated mobile device.

2. Comparative study between FruitVegCNN and implementation of different CNN mod-
els on real mobile devices (Huawei P20 Lite [p20] and Samsung Galaxy Note 9 [gal]
mobile devices) to show the difference in memory consumption, power consumption,
CPU load and GPU load.

3. Evaluation of FruitVegCNN on Huawei P20 Lite and and Samsung Galaxy Note 9
mobile devices.

2 Preliminaries

2.1 Convolutional Neural Networks and Deep Learning

A Deep Learning (DL) model [K+12] consists of an input layer, several intermediate (hidden)
layers stacked on top of each other and an output layer. In the input layer, which is the first
layer of the model, the raw values of data features are fed into it. In each of the hidden layers
a mathematical operation called convolution is applied to extract specific features, which is
then utilized to predict the label of the raw data in the last (output) layer of the DL network.
Most of the time, if a model utilize an input layer, a hidden layer and an output layer then
the model is denoted as Convolutional Neural Network (CNN) model or simply, CovNet.
If such a model uses a lot of stacked hidden layers only then it is denoted as a DL model or
Deep Neural Networks (DNN).

2



This is a preprint version of the work submitted to IEEE journal

2.2 Pre-trained Networks and Transfer Learning

A conventional approach to enable training of DNN/CNN on relative small datasets is to
use a model pre-trained on a very large dataset, and then use the CNN as an initializa-
tion for the applicative task of interest. Such a method of training is called “transfer learn-
ing" [P+09] and we have followed the same principle. The chosen CNN models mentioned
in Sec. 4 are pre-trained on ImageNet. For the propose of classifying frtuis and vegetables on
the mobile device, we have utilized the following popular pre-trained CNN models: VGG
(VGG19) [SZ14], ResNet (ResNet152v2) [HZRS16], MobileNet (MobileNetv2) [H+17], NAS-
Net (NASNetMobile and NASNetLarge) [ZVSL18] and Inception-ResNet [SIVA17].

3 Related Work

There has been several studies to utilize CNNs and DNNs for fruit classification [SPL19,
WC18, ZDC+19, Lu16, PSRGC18, MO18, KSPS18] and fruit detection [BU17, CSD+17].

In [Lu16], Lu implemented CNN models with data expansion techniques to select images
in ten-class food items from the ImageNet to compare its method against bag-of-feature and
and support vector machine models. In [ZDC+19], Zhang et al. proposed a 13 layer CNN
for fruit classification, and compared the effects of different types of data augmentation ap-
proach and max-pooling techniques on the prediction accuracy.

Wang et al. in [WC18] proposed an 8 layer CNN by using a parametric rectified linear
unit (ReLU) and placing a dropout layer before each fully connected (FC) layer. Kausar et
al. [KSPS18] proposed another fruit classification methodology, Pure-CNN, consisting of
7 convolutional layers. The CNN models proposed in [WC18] only uses fully connected
layers at the end of the architecture, and [KSPS18] only utilizes convolutional layers in the
architecture with one fully connected layer in the last layer of the CNN for classification
purposes. Such models perform poorly for occluded images, which is the case for real life
scenarios of fruit classification. In a CNN while using convolutional layer, features extracted
from convolutional layer are spatially local [OL17] and due to use of only convolutional
layers for occluded images some important features defining the object in the image could
be lost, hence, failing to classify occluded images of fruits & vegetables properly during
testing. Therefore, using a mixture of fully connected layers along with convolutional layers
could resolve issues related to occlusion in images. On the other hand, fully connected layers
are computationally expensive and consumes more power because each neuron is connected
to the other neuron of the input and output of the layer. Therefore, in this paper we design a
CNN architecture, using a combination of convolutional layers and fully connected layers,
which overcomes the limitations of each other.

In [SPL19], Steinbrener et al. utilized a CNN model pre-trained for RGB image data to
classify fruits and vegetables. Whereas, Mureşan et al. [MO18] introduced a new dataset of
fruit images called Fruits-360 and utilized AlexNet and GoogleNet, pre-trained CNN mod-
els, to classify fruits’ images. In [PSRGC18], Patino-Saucedo et al. implemented AlexNet
CNN to classify tropical fruits.

In [BU17], Bargoti et al. proposed a framework based on CNN model to detect and
count apples and mangoes. This work was implemented on a robotic vehicle, however, the
platform was not a low powered device such as mobile phone. In another study, Chen et
al. [CSD+17] used a blob detector based on a fully convolutional network (FCN) to count

3



This is a preprint version of the work submitted to IEEE journal

total number of fruits in the input image.
In none of the aforementioned studies, designing and implementation of the CNN was

performed by keeping the power-efficiency of executing the CNN in a mobile platform for
classification purposes into consideration. This paper solves the aforementioned challenge
and proposes a CNN model catering for: performance (prediction accuracy), power con-
sumption and memory constraint of battery operated mobile platform.

4 Fine-tuning pre-trained CNNs for fruit and vegetable clas-
sification on mobile MPSoC

It is very common to choose a pre-trained CNN model and fine-tune the model to train on
a target application [MO18, PSRGC18]. Fine-tuning is the process of taking the weights of a
pre-trained CNN and using it as initialization for a new model being trained on a dataset
from the same domain. This approach is used to speed up the training process while be-
ing able to train on small dataset. Since, pre-trained models such as VGG (VGG19) [SZ14],
ResNet (ResNet152v2) [HZRS16], MobileNet (MobileNetv2) [H+17], NASNet (NASNetMo-
bile and NASNetLarge) [ZVSL18] and Inception-ResNet [SIVA17] are initially trained on
ImageNet, which coincides with several of the fruits and vegetables’ classes, hence, choos-
ing these CNN models for fine-tuning to train to classify fruits and vegetables based on our
dataset, as proposed in Sec. 4.1.

4.1 Dataset

For our fruits and vegetables’ classification task we have utilized the Fruits-360 dataset in-
troduced by Mureşan et al. [MO18]. The dataset consists of a total of 90483 images (67692
images for training and 22688 images for validation) for 131 different types (class labels) of
fruits and vegetables. Each image in this dataset contains only one fruit or vegetable per im-
age. We have also used the dataset introduced by Patino-Saucedo et al. [PSRGC18], which
consists of a total of 2633 images of 15 different types of tropical fruits. Fig. 1 shows some of
the representational images of different types of fruits and vegetables.

Since, the two dataset [MO18] & [PSRGC18] have some common fruits, we combined
the two dataset to create our own dataset to train the CNN for the classification task. The
common fruits/vegetables labels between the dataset are potato, peach, apple, melon, kiwi,
nectarine, onion, orange, plum, pear, lime and watermelon, which comprised of 14 out of 15
classes in Patino-Saucedo et al.’s dataset [PSRGC18]. Therefore, we consolidated the images
of the common classes/labels between the dataset, and the total number of class labels after
consolidation became 132. Since, the [PSRGC18] did not come with separate training and
validation images, we randomly select 25% of the dataset to be the validation set and the
rest 75% as the training set. In order to test the prediction accuracy of trained CNN models,
we also randomly chose 5 images per class label from the validation dataset and kept it
separate. Therefore, the total number of testing images were 660.

4.2 Training a pre-trained CNN

For our classification task we chose the following popular pre-trained CNNs: VGG (VGG19),
ResNet (ResNet152v2), MobileNet (MobileNetv2), NASNet (NASNetMobile and NASNet-

4



This is a preprint version of the work submitted to IEEE journal

(a) Granny Smith Ap-
ple

(b) Agata Potato (c) Braeburn Apple (d) Nectarine

Figure 1: Graphical representation of some of the classes from our dataset, as mentioned in
Sec. 4.1

Table 1: Comparison between CNN models based on disk size and parameters

CNN Model Size Parameters
ResNet152v2 232 MB 60,380,648
NASNetMobile 23 MB 5,326,716
NASNetLarge 343 MB 88,949,818
VGG19 549 MB 143,667,240
MobileNetv2 14 MB 3,538,984
Inception-ResNet 215 MB 55,873,736

Large) and Inception-ResNet. Out of these CNNs MobileNet and NASNetMobile are specif-
ically developed for mobile platforms. We chose these CNNs to evaluate their performance
on our experimental mobile device to deduce which pre-trained CNN is most suitable for
such classification task. Table 1 shows the difference in the memory (disk) size of the CNN
models (non mobile version) along with their total number of parameters.

Figure 2: Network architecture used for fine-tuning pre-trained CNN

We fine-tuned our pre-trained CNN models by adding our a new randomly initialized
classifier, and training the last fully connected layer by freezing all the layers of the base
model (frozen layers represented with gray colour in Fig. 2) and unfreezing the last fully
connected layer (unfrozen layers represented with green colour in Fig. 2). Given the com-
putational constraint of mobile devices we perform the training of our CNN model on a
general purpose computer using Tensorflow [ABC+16] backend for processing. Since, the
trained CNN models are in Tensorflow format (non mobile version), they can not be directly
implemented in mobile devices and have to be converted to Tensorflow Lite [LAD+19] for-

5



This is a preprint version of the work submitted to IEEE journal

mat, which is a machine learning framework for on-device inference, to be implemented on
the mobile device.

4.3 Hardware and software setup for training

The training was performed on a general purpose computer with 4 Intel(R) Xeon(R) Gold
6134 CPUs and CUDA enabled Nvidia Tesla P100 GPU with 12GB memory, which is utilized
to significantly accelerate the training of the CNN models. The training system was running
on Ubuntu version 16.04.6 LTS.

4.4 Hardware and software setup on mobile platforms

4.4.1 Huawei P20 Lite

We utilized Huawei P20 Lite [p20] smart-phone, which employs the HiSilicon Kirin 659 [kir]
MPSoC, to evaluate different trained CNN models. Kirin 659 MPSoC is based on ARM’s
big.LITTLE technology and contains a cluster of 4 big CPU cores and a cluster of 4 LITTLE
CPU cores. But the big.LITTLE implementation of this MPSoC is unique, since it uses the
same type of CPU core for big as well as LITTLE. Kirin 659 MPSoC uses Cortex A-53 as both
big and LITTLE CPU cores, which implements ARMv8-A ISA, supporting 64 bit instruction
set and is userspace compatible with 32-bit ARMv7-A architecture.

This MPSoC also provides dynamic voltage frequency scaling feature per cluster, where
the big core cluster has 5 frequency scaling levels ranging from 1402 MHz to 2362 MHz (at
the following frequencies: 1402 MHz, 1805 MHz, 2016 MHz, 2112 MHz, 2362 MHz), and the
LITTLE core cluster has 4 frequency scaling levels ranging from 480 MHz to 1709 MHz (at
the following frequencies: 480 MHz, 807 MHz, 1306 MHz, 1709 MHz). If we consider P as
the dynamic power consumption, V as the operating voltage, f as the operating frequency
of the processing core, dynamic voltage and frequency scaling (DVFS) [DGB+19,SDB+20] is
used to reduce the dynamic power consumption (P ∝ V 2f ) by executing the workload over
extra time at a lower voltage and frequency, which could be accounted for reduced power
consumption of the device. Kirin 659 MPSoC also comes equipped with 2 Mali-T830 MP2
GPUs and 4GB RAM. Huawei P20 Lite comes with a non-removable 3000 milliamp Hour
(mAh) battery.

4.4.2 Samsung Galaxy Note 9

We also chose Samsung Galaxy Note 9 [gal] to observe the computing resource utilizing of
the trained CNNs. Note 9 is a recent powerful mobile device from Samsung and utilizes the
Exynos 9810 MPSoC [exy]. Exynos 9810 has two CPU clusters (based on ARM’s big.LITTLE
technology), one for big CPU cores consisting of 4 Mongoose 3 CPU cores, and the other
cluster for LITTLE CPU cores consisting of 4 Cortex A-55 CPU cores. The Mongoose 3 CPU
cores allow cluster wise DVFS and has 18 frequency scaling levels ranging from 650 MHz
to 2704 MHz (2704 MHz, 2652 MHz, 2496 MHz, 2314 MHz, 2106 MHz, 2002 MHz, 1924
MHz, 1794 MHz, 1690 MHz, 1586 MHz, 1469 MHz, 1261 MHz, 1170 MHz, 1066 MHz, 962
MHz, 858 MHz, 741 MHz, 650 MHz). Whereas, the LITTLE Cortex-A55 CPU cores has 10
frequency scaling levels ranging from 455 MHz to 1794 MHz (1794 MHz, 1690 MHz, 1456
MHz, 1248 MHz, 1053 MHz, 949 MHz, 832 MHz, 715 MHz, 598 MHz, and 455 MHz). The

6



This is a preprint version of the work submitted to IEEE journal

Exynos 9810 MPSoC comes equipped with 18 Mali-G72 MP18 GPUs and 6GB RAM. Galaxy
Note 9 comes equipped with a non-removable 4000 mAh battery.

4.4.3 Software setup & Profilers

Huawei P20 Lite smart-phone has power sensors as well as 13 thermal sensors, but due
to lack of documentation from the vendor on the positioning of the thermal sensors it is
not feasible to associate all the installed temperature sensors with specific cores/cluster.
However, we were able to track one specific thermal sensor which is placed on the battery
and in our evaluation we report the thermal behaviour of the battery. On Samsung Galaxy
Note 9 we also observe the thermal sensor on the battery. To record different factors such
as power consumption, CPU load, GPU load, memory (RAM) consumption and battery
temperature, we used Trepn Profiler by Qualcomm (version 6.2) [tre] and the Profiler app
by Tomas Chladek (version 1.5.5) [pro]. Trepn Profiler doesn’t have support for GPU load
profiling and hence, we utilize Chladek’s Profiler app to observe the GPU load. The Kirin
659 MPSoC was running on the Android 8.0.0.168 (Oreo) [anda] OS (utilizing Linux Kernel:
4.4.23+ #1 SMP). The Galaxy Note 9 was running on Android 9 (Pie) [andb] OS utilizing
Linux kernel version 4.9.59.

To implement the trained CNN model (in Tensorflow Lite format) on the mobile de-
vice we developed a mobile application using Flutter [flu], which is a cross-platform mobile
application development framework by Google. In the Flutter app, we implemented a con-
tinuosly streaming camera module, which inputs the image from the camera and continu-
ously streams the images to the trained CNN for inference. Fig. 3 shows the user-interface
of our Flutter application with an overlay of the Profiler app while profiling the computing
resources during inference (classification).

4.5 Evaluation of trained CNN models

After the training of the CNNs completed on our dataset, we evaluated the validation accu-
racy of the respective models. In a trained CNN, validation accuracy and testing accuracy
reflects the performance of the CNN for the target application and hence, we observe the
respective values to compare the CNNs in Table 2 and Table 6. The testing accuracy and
comparison based on the same is discussed in details in Sec. 6 and in Table 6.

From Table 2 it could be noticed that VGG19 performed the best for validation testing for
fruits and vegetables’ classification, whereas, both the NASNet CNNs (NASNetMobile &
NASNetLarge) performed the worst. The NASNet CNN architecture is massive, consisting
of two different types of layers (Normal cell and Reduction cell) [ZVSL18] and training such
an architecture requires a lot of computational resources. Fig. 4 shows the improvement in
validation accuracy achieved during the training period (training epoch) of the respective
CNNs.

4.6 Evaluation of trained CNN models on the mobile device

After converting the trained models to Tensorflow Lite format, the memory (disk) size of the
trained VGG (VGG19), ResNet (ResNet152v2), MobileNet (MobileNetv2), NASNet (NAS-
NetMobile and NASNetLarge) and Inception-ResNet models got reduced. Table 3 shows

7



This is a preprint version of the work submitted to IEEE journal

Figure 3: An illustration of our Flutter app implementing the trained CNN (VGG19) model
for fruits & vegetables classification while the Profiler app [pro] runs overlaying the Flutter
app in Huawei P20 Lite

8



This is a preprint version of the work submitted to IEEE journal

Table 2: Comparison between trained CNN models on validation accuracy (%)

CNN Model Validation Accuracy (%)
ResNet152v2 95.027
NASNetMobile 10.108
NASNetLarge 10.054
VGG19 98.918
MobileNetv2 97.892
Inception-ResNet 98.432

Figure 4: Validation accuracy of trained VGG, ResNet, MobileNet, NASNetLarge (NASNet-
lar.), NASNetMobile (NASNetMob.) and Inception-ResNet (Ins.Res.) over training epochs

9



This is a preprint version of the work submitted to IEEE journal

Table 3: Comparison between trained CNN models in Tensorflow Lite format based on disk
size

CNN Model Size
ResNet152v2 335.5 MB
NASNetMobile 20.9 MB
NASNetLarge 352.5 MB
VGG19 182.9 MB
MobileNetv2 23.3 MB
Inception-ResNet 340.8 MB

Table 4: Comparison between trained CNN models in Tensorflow Lite format based on Ld.
time, RAM, CPU%, GPU%, Power and Bat. Temp. in Huawei P20 Lite

CNN Model Ld. time (sec) RAM (GB) CPU% GPU% Power (mW) Bat. Temp. (° C)
ResNet152v2 16 0.65 64 21 2150 37
NASNetMobile 13 0.53 61 15 3302 37
NASNetLarge 14 0.69 68 11 3475 33
VGG19 17 0.78 72 22 3458 30
MobileNetv2 11 0.54 59 13 2746 36
Inception-ResNet 12 0.62 59 22 2880 38

the reduced disk size of the trained CNNs in Tensorflow Lite format for mobile implemen-
tation.

To compare the trained CNNs on mobile device we observe the following factors: Av-
erage memory (RAM) consumption (denoted as RAM), Loading time of the CNN model in
seconds (denoted as Ld. time), average CPU load which is normalized across 8 CPUs of Kirin
659 & Exynos 9810 MPSoCs (denoted as CPU%), average GPU load (denoted as GPU%),
average power consumption in milliwatt (mW) (denoted as Power) and average battery tem-
perature in ° centigrades (denoted as Bat. Temp.). The Flutter application, implementing the
respective trained CNN, was executed for 60 seconds while profiling, which includes the
loading time of the model and inference of stream images from the camera. Table 4 shows
the comparative study between different CNNs in the Huawei P20 Lite based on Ld. time
(sec), RAM (GB), CPU%, GPU%, Power (mW) & Bat. Temp. (° C), whereas, Table 5 shows
the comparative study between different CNNs in the Galaxy Note 9.

Table 5: Comparison between trained CNN models in Tensorflow Lite format based on Ld.
time, RAM, CPU%, GPU%, Power and Bat. Temp. in Samsung Galaxy Note 9

CNN Model Ld. time (sec) RAM (GB) CPU% GPU% Power (mW) Bat. Temp. (° C)
ResNet152v2 4 0.72 56 1 4052 35
NASNetMobile 6 0.83 56 0 3953 34
NASNetLarge 19 1.39 54 1 4026 36
VGG19 3 0.9 62 1 7952 35
MobileNetv2 2 0.73 53 0 4019 35
Inception-ResNet 5 0.74 55 1 4042 35

10



This is a preprint version of the work submitted to IEEE journal

Figure 5: An illustration of the architecture of our FruitVegCNN

11



This is a preprint version of the work submitted to IEEE journal

5 The proposed architecture: FruitVegCNN

Based on the comparative study of different trained CNNs as shown in Tables 4 and 5 we
wanted to develop a CNN model, which has less number of trainable parameters and uti-
lizes less computing resources comparatively while performing almost similar to existing
popular CNNs. In this section, we introduce FruitVegCNN, a 10 layered network for fruit
and vegetable classification.

5.1 Overall architecture

The overall architecture of our proposed network, FruitVegCNN, for fruits and vegetables’
classification is illustrated in Fig. 5. FruitVegCNN consist of 10 learned layers with weights:
6 convolutional layers and 4 fully connected layers. The output of the last fully-connected
layer is fed to a 132-way softmax which produces a distribution over the 132 class labels.
The first convolutional layer filters the 224 x 224 x 3 input image with a kernel (neuron) of
size 5 x 5 x 3 with a stride of 4 pixels. The second convolutional layer takes the output of the
first convolutional layer and filters it with a kernel of size 3 x 3 x 32. The third convolutional
layer takes the response-normalized and pooled output of the second convolutional layer
as input and filters it with a kernel of size 3 x 3 x 32. In a CNN architecture the pooling
layer summarizes the outputs of neighboring groups of neurons in the same kernel map.
The fourth convolutional layer is connected to the first fully connected layer, whose input is
the response-normalized and pooled output of fourth convolutional layer, and filters it with
a kernel of size 32. The fourth, fifth and sixth convolutional layers, all has a kernel of size 3 x
3 x 32. In the learned layers we have utilized Rectified Linear Units (ReLUs) as the activation
function of the neurons. The standard way to model a neuron’s output (f ) as a function of
its input (x) is with f(x) = max(0, x), which is the activation function using ReLU.

5.2 Reducing overfitting

Our neural network architecture has 53,391 parameters and it makes it insufficient to learn
so many parameters without overfitting. To resolve this challenge we use the following two
approaches:

5.2.1 Data augmentation

One of the popular and easy way to reduce overfitting on the image data is to artificially
enhance the dataset using label-preserving transformations of the images. In our training
period we have utilized combination of the following data augmentation approaches: ro-
tation, random width and height shift, random zoom, horizontal flip, salt & pepper and
coarse dropout. The augmentation techniques of salt & pepper and coarse dropout are used
to mimic occlusion in images [OL17]. Fig. 6 shows the output of aforementioned data aug-
mentation approaches on an image of braeburn apple (as shown in Fig. 1.(c)). The augmenta-
tion/transformation of the images are done during the training period and the transformed
images does not have to be stored separately on the disk. Augmentation was performed
during the time of the training.

12



This is a preprint version of the work submitted to IEEE journal

Figure 6: Data augmentation output of Fig. 1.c - braeburn apple: (a) rotation + width shift; (b)
rotation + zoom; (c) rotation + width shift + zoom (d) zoom; (e) horizontal flip + width shift;
(f) horizontal flip + zoom; (g) rotation + height shift + zoom; (h) salt & pepper; (i) coarse
dropout

13



This is a preprint version of the work submitted to IEEE journal

Table 6: Comparison between trained CNN models on testing accuracy (%)

CNN Model Testing Accuracy (%)
ResNet152v2 68.18
NASNetMobile 2.5
NASNetLarge 1.515
VGG19 72.72
MobileNetv2 70
Inception-ResNet 70.45
FruitVegCNN 71.36

5.2.2 Dropout layer

To improve generalization and reduce overfitting in a CNN model, dropout layers [KSH12]
can be used. In a dropout layer neurons which are dropped out, do not contribute to the
forward pass and back propagation. In a dropout layer, the output of each hidden neuron is
set to zero with a probability of p. We used a dropout layer, which is denoted as DROPOUT1
in Fig. 5, of 0.3 probability (p) between the first fully connected layer (fc1 in Fig. 5) and
the second fully connected layer (fc2 in Fig. 5). DROPOUT1 is placed between fc1 and fc2
to improve learning generalization such that parts of the feature map produced from the
convolutional layers conv2d to conv2d_3 in Fig. 5 could be forgotten, hence, improving
learning and reducing overfitting. We have utilized another dropout layer of 0.5 p right
before the prediction (output) layer as well.

6 Evaluation of FruitVegCNN and comparative study

When we implemented FruitVegCNN on Huawei P20 Lite & Samsung Galaxy Note 9 the
disk storage of the model in Tensorflow Lite format was 220 KB, which is a very small frac-
tion of the disk size of other popular CNNs as shown in Table 3. The validation accuracy
achieved by FruitVegCNN during the training was 95.081% which is comparable to other
CNNs as shown in Table 2. When we evaluated FruitVegCNN against other popular CNNs
for the testing accuracy, FruitVegCNN performed very close comparatively and the eval-
uation results are illustrated in the Table 6. The Ld. time (sec), RAM (GB), CPU%, GPU%,
Power (mW) & Bat. Temp. (° C) for FruitVegCNN in Huawei P20 Lite are 9, 0.34, 58, 14, 1560
and 33 respectively. In Samsung Galaxy Note 9, the Ld. time (sec), RAM (GB), CPU%, GPU%,
Power (mW) & Bat. Temp. (° C) for FruitVegCNN are 1, 0.5, 45, 0, 3092 and 32 respectively. If
we compare the respective values for FruitVegCNN with other CNNs as specified in Table
4 and Table 5, we can definitely observe that FruitVegCNN performs most power efficiently
while occupying the least memory (disk and RAM). Compared to VGG, FruitVegCNN con-
sumes 54.88% less power, 56.41% less RAM memory and loads 47.06% faster in Huawei
P20 Lite. Whereas, in Samsung Galaxy Note 9, compared to VGG, FruitVegCNN consumes
61.12% less power, 44.44% less RAM memory and loads 66.67% faster.

14



This is a preprint version of the work submitted to IEEE journal

Figure 7: An illustration of our Flutter app implementing the FruitVegCNN model for fruits
& vegetables classification in Samsung Galaxy Note 9

15



REFERENCES REFERENCES

7 Conclusions

In this paper, we proposed a novel CNN architecture, FruitVegCNN, to perform fruit and
vegetable classification on Huawei P20 Lite and Samsung Galaxy Note 9 mobile devices
in a power-efficient manner. We also provided a comparative study of FruitVegCNN with
current state-of-the-art CNNs such as VGG, ResNet, MobileNet, NASNet and Inception-
ResNet. Comparative study and experimental evaluation shows the efficacy, power- and
memory-efficiency of our proposed CNN architecture.

8 Code availability

The program source code to implement and train each of the CNN models including FruitVeg-
CNN can be accessed from here: #Code will be made available upon acceptance#.

References

[ABC+16] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Is-
ard, et al. Tensorflow: A system for large-scale machine learning. In 12th
{USENIX} symposium on operating systems design and implementation ({OSDI}
16), pages 265–283, 2016.

[anda] Android 8 oreo. https://www.android.com/versions/oreo-8-0/.
Accessed: 2018-01-31.

[andb] Android 9 pie. https://www.android.com/versions/pie-9-0/. Ac-
cessed: 2018-01-31.

[BU17] Suchet Bargoti and James Underwood. Deep fruit detection in orchards. In
2017 IEEE International Conference on Robotics and Automation (ICRA), pages
3626–3633. IEEE, 2017.

[CL14] Xue-Wen Chen and Xiaotong Lin. Big data deep learning: challenges and
perspectives. IEEE access, 2:514–525, 2014.

[CSD+17] Steven W Chen, Shreyas S Shivakumar, Sandeep Dcunha, Jnaneshwar Das,
Edidiong Okon, Chao Qu, Camillo J Taylor, and Vijay Kumar. Counting ap-
ples and oranges with deep learning: A data-driven approach. IEEE Robotics
and Automation Letters, 2(2):781–788, 2017.

[CSJC10] Srimat Chakradhar, Murugan Sankaradas, Venkata Jakkula, and Srihari
Cadambi. A dynamically configurable coprocessor for convolutional neural
networks. In ACM SIGARCH Computer Architecture News, volume 38, pages
247–257. ACM, 2010.

[DGB+19] Somdip Dey, Enrique Zaragoza Guajardo, Karunakar Reddy Basireddy, Xi-
aohang Wang, Amit Kumar Singh, and Klaus McDonald-Maier. Edgecool-
ingmode: An agent based thermal management mechanism for dvfs enabled

16

https://www.android.com/versions/oreo-8-0/
https://www.android.com/versions/pie-9-0/


REFERENCES REFERENCES

heterogeneous mpsocs. In 2019 32nd International Conference on VLSI Design
and 2019 18th International Conference on Embedded Systems (VLSID), pages 19–
24. IEEE, 2019.

[DKS+18] Somdip Dey, Grigorios Kalliatakis, Sangeet Saha, Amit Kumar Singh, Shoaib
Ehsan, and Klaus McDonald-Maier. Mat-cnn-sopc: Motionless analysis of
traffic using convolutional neural networks on system-on-a-programmable-
chip. In 2018 NASA/ESA Conference on Adaptive Hardware and Systems (AHS),
pages 291–298. IEEE, 2018.

[DSMM19] Somdip Dey, Amit Kumar Singh, and Klaus Dieter McDonald-Maier. P-
edgecoolingmode: an agent-based performance aware thermal management
unit for dvfs enabled heterogeneous mpsocs. IET Computers & Digital Tech-
niques, 13(6):514–523, 2019.

[DSPMM19] Somdip Dey, Amit Kumar Singh, Dilip Kumar Prasad, and Klaus Dieter
Mcdonald-Maier. Socodecnn: Program source code for visual cnn classifica-
tion using computer vision methodology. IEEE Access, 7:157158–157172, 2019.

[DSPMM20] Somdip Dey, Amit Kumar Singh, Dilip Kumar Prasad, and Klaus Dieter
Mcdonald-Maier. Iron-man: An approach to perform temporal motionless
analysis of video using cnn in mpsoc. IEEE Access, 8, 2020.

[DSS+19] Somdip Dey, Amit Kumar Singh, Sangeet Saha, Xiaohang Wang, and
Klaus Dieter McDonald-Maier. Rewardprofiler: A reward based design space
profiler on dvfs enabled mpsocs. In 2019 6th IEEE International Conference on
Cyber Security and Cloud Computing (CSCloud)/2019 5th IEEE International Con-
ference on Edge Computing and Scalable Cloud (EdgeCom), pages 210–220. IEEE,
2019.

[DSWMM19] Somdip Dey, Amit Kumar Singh, Xiaohang Wang, and Klaus Dieter
McDonald-Maier. Deadpool: Performance deadline based frequency pool-
ing and thermal management agent in dvfs enabled mpsocs. In 2019 6th IEEE
International Conference on Cyber Security and Cloud Computing (CSCloud)/2019
5th IEEE International Conference on Edge Computing and Scalable Cloud (Edge-
Com), pages 190–195. IEEE, 2019.

[DSWMM20] Somdip Dey, Amit Singh, Xiaohang Wang, and Klaus McDonald-Maier. User
interaction aware reinforcement learning for power and thermal efficiency of
cpu-gpu mobile mpsocs. In 2020 DATE, pages 1728–1733. IEEE, 2020.

[exy] Exynos 9 series (9810). https://www.samsung.com/
semiconductor/minisite/exynos/products/mobileprocessor/
exynos-9-series-9810. Accessed: 2019-01-27.

[flu] Flutter: the first ui platform designed for ambient comput-
ing. https://developers.googleblog.com/2019/12/
flutter-ui-ambient-computing.html. Accessed: 2020-06-23.

[gal] Galaxy note9. https://www.samsung.com/global/galaxy/
galaxy-note9/. Accessed: 2018-01-27.

17

https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-9-series-9810
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-9-series-9810
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-9-series-9810
https://developers.googleblog.com/2019/12/flutter-ui-ambient-computing.html
https://developers.googleblog.com/2019/12/flutter-ui-ambient-computing.html
https://www.samsung.com/global/galaxy/galaxy-note9/
https://www.samsung.com/global/galaxy/galaxy-note9/


REFERENCES REFERENCES

[H+17] Andrew G Howard et al. Mobilenets: Efficient convolutional neural networks
for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[IDSMM19] Samuel Isuwa, Somdip Dey, Amit Kumar Singh, and Klaus McDonald-Maier.
Teem: Online thermal-and energy-efficiency management on cpu-gpu mp-
socs. In 2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 438–443. IEEE, 2019.

[K+12] Alex Krizhevsky et al. Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing systems, 2012.

[K+17] Grigorios Kalliatakis et al. Detection of human rights violations in images:
Can convolutional neural networks help? Proceedings of the 12th International
Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and
Applications - Volume 5: VISAPP, 2017.

[kir] Hisilicon kirin 650 (659). http://www.hisilicon.com/en/Solutions/
Kirin. Accessed: 2018-07-23.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural informa-
tion processing systems, pages 1097–1105, 2012.

[KSPS18] Asia Kausar, Mohsin Sharif, Jinhyuck Park, and Dong Ryeol Shin. Pure-cnn:
A framework for fruit images classification. In 2018 International Conference
on Computational Science and Computational Intelligence (CSCI), pages 404–408.
IEEE, 2018.

[LAD+19] Marcia Sahaya Louis, Zahra Azad, Leila Delshadtehrani, Suyog Gupta, Pete
Warden, Vijay Janapa Reddi, and Ajay Joshi. Towards deep learning using
tensorflow lite on risc-v. In Third Workshop on Computer Architecture Research
with RISC-V (CARRV), 2019.

[LJLS15] Zhiming Luo, Pierre-Marc Jodoin, Shao-Zi Li, and Song-Zhi Su. Traffic analy-
sis without motion features. In Image Processing (ICIP), 2015 IEEE International
Conference on, pages 3290–3294. IEEE, 2015.

[Lu16] Yuzhen Lu. Food image recognition by using convolutional neural networks
(cnns). arXiv preprint arXiv:1612.00983, 2016.

[MO18] Horea Mureşan and Mihai Oltean. Fruit recognition from images using deep
learning. Acta Universitatis Sapientiae, Informatica, 10(1):26–42, 2018.

[OL17] Elad Osherov and Michael Lindenbaum. Increasing cnn robustness to oc-
clusions by reducing filter support. In Proceedings of the IEEE International
Conference on Computer Vision, pages 550–561, 2017.

18

http://www.hisilicon.com/en/Solutions/Kirin
http://www.hisilicon.com/en/Solutions/Kirin


REFERENCES REFERENCES

[p20] Huawei p20 lite. https://consumer.huawei.com/uk/phones/m/
p20-lite/. Accessed: 2018-07-23.

[P+09] Sinno Jialin Pan et al. A survey on transfer learning. IEEE TKDE, 22(10), 2009.

[pro] Profiler by tomas chladek. https://play.google.com/store/apps/
details?id=cz.chladek.profiler. Accessed: 2020-06-23.

[PSRGC18] Alberto Patino-Saucedo, Horacio Rostro-Gonzalez, and Jorg Conradt. Trop-
ical fruits classification using an alexnet-type convolutional neural network
and image augmentation. In International Conference on Neural Information Pro-
cessing, pages 371–379. Springer, 2018.

[SDB+20] Amit Kumar Singh, Somdip Dey, Karunakar Reddy Basireddy, Klaus
McDonald-Maier, Geoff V Merrett, and Bashir M Al-Hashimi. Dynamic en-
ergy and thermal management of multi-core mobile platforms: A survey.
IEEE Design & Test, 2020.

[SIVA17] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.
Inception-v4, inception-resnet and the impact of residual connections on
learning. In Thirty-first AAAI conference on artificial intelligence, 2017.

[SPL19] Jan Steinbrener, Konstantin Posch, and Raimund Leitner. Hyperspectral fruit
and vegetable classification using convolutional neural networks. Computers
and Electronics in Agriculture, 162:364–372, 2019.

[SZ14] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[tre] Trepn profiler by qualcomm. https://www.apkmirror.com/apk/
qualcomm-innovation-center-inc/trepn-profiler. Accessed:
2020-06-23.

[WC18] Shui-Hua Wang and Yi Chen. Fruit category classification via an eight-
layer convolutional neural network with parametric rectified linear unit and
dropout technique. Multimedia Tools and Applications, pages 1–17, 2018.

[Z+98] Guoqiang Zhang et al. Forecasting with artificial neural networks:: The state
of the art. International journal of forecasting, 14(1):35–62, 1998.

[ZDC+19] Yu-Dong Zhang, Zhengchao Dong, Xianqing Chen, Wenjuan Jia, Sidan Du,
Khan Muhammad, and Shui-Hua Wang. Image based fruit category classi-
fication by 13-layer deep convolutional neural network and data augmenta-
tion. Multimedia Tools and Applications, 78(3):3613–3632, 2019.

[ZVSL18] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning
transferable architectures for scalable image recognition. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 8697–8710,
2018.

19

https://consumer.huawei.com/uk/phones/m/p20-lite/
https://consumer.huawei.com/uk/phones/m/p20-lite/
https://play.google.com/store/apps/details?id=cz.chladek.profiler
https://play.google.com/store/apps/details?id=cz.chladek.profiler
https://www.apkmirror.com/apk/qualcomm-innovation-center-inc/trepn-profiler
https://www.apkmirror.com/apk/qualcomm-innovation-center-inc/trepn-profiler

	Introduction and Motivation
	Preliminaries
	Convolutional Neural Networks and Deep Learning
	Pre-trained Networks and Transfer Learning

	Related Work
	Fine-tuning pre-trained CNNs for fruit and vegetable classification on mobile MPSoC
	Dataset
	Training a pre-trained CNN
	Hardware and software setup for training
	Hardware and software setup on mobile platforms
	Huawei P20 Lite
	Samsung Galaxy Note 9
	Software setup & Profilers

	Evaluation of trained CNN models
	Evaluation of trained CNN models on the mobile device

	The proposed architecture: FruitVegCNN
	Overall architecture
	Reducing overfitting
	Data augmentation
	Dropout layer


	Evaluation of FruitVegCNN and comparative study
	Conclusions
	Code availability

