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Abstract

This paper deals with the classical question of estimating the achievable resolution in terms of the configuration parameters

in inverse source problems. In particular, the study focuses on the case of a planar surface magnetic current which is to be

reconstructed from near-field observed over a bounded rectangular aperture parallel to the source domain. Here, the plan

is to work out a resolution estimation that precisely captures the spatially varying behaviour entailed by the near-field and

aspect-limited configuration. To this end, the pertinent radiation operator is inverted by an adjoint inversion scheme (a

backpropagation- like method) and the corresponding point-spread function is analytically estimated. Numerical examples

show that the derived resolution estimation clearly points out the role of the geometrical parameters of the configuration and

it is more accurate than other literature results.
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Near-Field Resolution in Planar Source
Reconstructions

Maria Antonia Maisto, Rocco Pierri, and Raffaele Solimene, Senior member, IEEE,

Abstract—This paper deals with the classical question of
estimating the achievable resolution in terms of the configuration
parameters in inverse source problems. In particular, the study
focuses on the case of a planar surface magnetic current which
is to be reconstructed from near-field observed over a bounded
rectangular aperture parallel to the source domain. Resolution
formulas are well known for far-field or Fresnel-zone configu-
rations, and also for near-field cases, when data are full-view
or the measurement aperture is an unbounded plane. For the
case of bounded near-field observations the resolution estimations
mainly rely on some asymptotic arguments in order to mimic
far-field reasoning. Here, the plan is to improve these results
and to work out a resolution estimation that precisely captures
the spatially varying behaviour entailed by the near-field and
aspect-limited configuration. To this end, the pertinent radiation
operator is inverted by an adjoint inversion scheme (a back-
propagation-like method) and the corresponding point-spread
function is analytically estimated. Numerical examples show that
the derived resolution estimation clearly points out the role of
the geometrical parameters of the configuration and it is more
accurate than other literature results.

Index Terms—Inverse problems, inverse source, radar imaging
and resolution.

I. INTRODUCTION

The reconstruction of a current from its radiated field is a
classical problem in electromagnetics [1], which besides being
theoretically intriguing, is relevant in a number of applications.
Just to quote a few of them, we mention antenna synthesis
[2], [3] and/or diagnostics [4] - [6], near-field to far-field
transformation [7], [8] or near-zone RCS estimation [9], [10].
Inverse source problems are also strictly linked to linearised
inverse scattering problems, where similar integral operators
have to be dealt with [11].

In this framework, the achievable resolution plays a key
role since it says which is the finest detail that can be
reconstructed and it is also linked to other important figures
like the number of degrees of freedom of the problem [12]
and the information content [13] that can be transmitted from
a source region to an observation domain [14]. In particular,
because of the ill-posedness of inverse source problems, which
is basically due to the filtering introduced by the propagator,
a trade-off between accuracy and stability must be established
[15]; hence the achievable resolution results limited and in
general dependent on the noise level. However, far from the
Green function’s singularity (i.e., when evanescent waves are
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negligible), the kernel of the radiation operator behaves like
an entire function of exponential type. As a consequence, the
corresponding singular values present a distinctive behaviour
which is characterised by an abrupt exponentially quick decay
beyond a certain critical index [16]. This entails that, unless
a very high (often impractical) signal-to-noise ratio (SNR)
is available, resolution is weakly dependent on the noise
and mainly related to the configuration parameters. This is
indeed the mathematical rationale (often implicitly assumed)
behind most of the studies reporting resolution estimation in
terms of ”only” the parameters of the configuration [17]- [24].
Of course, for very near-zone configurations, the evanescent
contribution cannot be neglected and so the SNR turns to
play a prominent role on the achievable resolution [25], [26].
However, in this contribution, very near-zone configurations
are ruled out.

The estimation of the achievable resolution for far-field
configurations greatly benefits from the k-space formulation
which allows to highlight the portion of the source spatial
spectrum that can be reconstructed and therefore to estimate
the resolution accordingly. In particular, analytical estimations
can be easily obtained for full-view data configurations [1]. For
aspect-limited cases, the shape of the spectrum region does
not in general permit to perform the Fourier transformation
in closed form. In this regard, it is worth mentioning the
study reported in [27], where the authors succeed in addressing
aspect-limited configurations by finding analytical approxima-
tions for the resolution, remarkably even by accounting for the
full vector nature of the problems.

For near-zone configurations (in the sense explained above),
the k-space approach can still be employed when data are
collected over an unbounded line [19] or plane [28]. For full-
view data, analytical resolution estimations can be obtained
by the multipole expansion if canonical measurement curves
or surfaces are considered [11], or again by means of the k-
space method under the framework of generalized holography
and the Porter-Bojarski integral equation inversion, as shown
in [29] and [30]. Indeed, more recently it has been shown that
the case of general observation curve can be also successfully
addressed by recasting the point-spread function as a Fourier
type integral operator [10].

For near-zone aspect-limited configurations previous meth-
ods cannot be rigorously applied because truncation affects the
computation of the Fourier transform stage. In these cases, the
retrievable spectrum region can still be approximately deter-
mined by resorting to stationary phase asymptotic arguments
[22]. What is interesting here is that the spectrum region
is spatially varying, which entails that (differently form far-
field cases or full-view or unbounded observation near-zone
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configurations) the achievable resolution is spatially varying.
This is a well known fact observed many times in literature
[24]. Nonetheless, often far-field estimations are still employed
[21] or the spatially varying behaviour is ignored since the
union of the spectrum regions is used to estimate the resolution
[24].

In this paper we are concerned with the study of the
achievable resolution in the reconstruction of planar sources
from near-field field aspect-limited observations. In partic-
ular, we consider a magnetic planar surface current which
radiates in free-space and with its radiated field observed
over a rectangular aperture. The main aim is to provide an
analytical estimation of the achievable resolution in terms
of the geometrical parameters of the measurement aperture
which is more accurate than the previous estimation based
on asymptotic arguments [22], [24] and that captures its
spatially varying behaviour. To this end, the resolution is
estimated by finding an analytical approximation of the point-
spread function obtained by a back-propagation like inversion
scheme. In particular, we use the same approach developed
in [18] for the case of strip currents. Basically, thanks to
suitable variable transformations, the point-spread function
is recast as a spatially varying band-limited function whose
spatially varying band is then enclosed within the smallest
spatially varying rectangular domain containing it. The derived
resolution estimation is numerically checked and shown to be
in excellent agreement with the one yielded by a truncated
singular value decomposition scheme, which is here used as
benchmark. The paper also includes a comparison with some
literature results addressing similar configurations.

II. PROBLEM STATEMENT

Consider a magnetic current J of bounded finite planar sup-
port SD whose radiated field is observed over another planar
domain, the observation domain OD, located in near-zone.
For the sake of simplicity, we assume SD and OD being the
rectangles [−Xs, Xs]× [−Ys, Ys] and [−X0, X0]× [−Y0, Y0]
located at z = 0 and z = zo, respectively. The source is
assumed to be directed in the x − y plane whereas only
the tangential components of the radiated field are collected.
Under this framework, the problem is split as two scalar
problems that can be addressed in the same way. Therefore,
here we just consider the current directed along the x-axis ,
i.e, J = J(x, y)x̂, and to collect the corresponding tangential
y-component of the radiated field (see Fig. 1). Also, OD is
assumed larger than SD. The problem is described in the
frequency domain by the following radiation operator (unless
an unessential factor)

A : J ∈ L2(SD)→ E(ro) =∫
SD

K(ro, r)e−jΦ(ro,r)J(r)dr ∈ L2(OD) (1)

with Φ(ro, r) = k|ro − r| and K(ro, r) = 1
|ro−r|2

[jk +
1

|ro−r| ] ≈
jk

|ro−r|2
, where the last approximation is because

|ro − r| ≥ zo ≥ λ.

Fig. 1. Geometry of the problem.

We are interested in the estimation of the achievable reso-
lution while inverting (1). This formally entails considering
a Dirac-delta like source whose reconstruction is the so-
called point-spread function (Fig. 2 illustrates this process). In
particular, using the singular system of A , the point-spread
function is expressed as

psf(r, r′) =

Nε∑
n=0

u∗n(r′)un(r) (2)

where ∗ means conjugation. Note that the summation in (2) is
stopped at a certain index Nε, which is in general dependent
on the noise level ε. This reflects the need to regularize
the inversion in order to counteract noise propagation. As a
consequence, the achievable resolution results limited.

Eq. (2) allows to find the point-spread function (and hence
the resolution could be deduced form it) in terms of the
singular functions of A. However, for the case at hand, those
singular functions are not known in closed form. Of course,
one can numerically compute them but this would not give an
analytical resolution estimation. Therefore, in the sequel, the
regularized inverse is approximated by the adjoint operator A†.
Note that this method is basically a back-propagation which
is reminiscent of migration, time-reversal and other similar
approaches, which are very commonly used in Radar imaging
[21], [31], [32]. Accordingly, the point-spread function can be
estimated by evaluating the following integral

ˆpsf(r, r′) =

∫
OD

K(ro, r
′)K∗(ro, r)e−j[Φ(ro,r

′)−Φ(ro,r)]dro

(3)
Naturally, it is necessary to establish how (3) relates to (2),

which is the actual point-spread function. To this end, it is
convenient to rewrite ˆpsf in terms of the singular system of
A, that is

ˆpsf(r, r′) =

∞∑
n=0

σ2
nu
∗
n(r′)un(r) (4)

where σn are the singular values. Since the σn tends to zero,
the adjoint based inversion is a stable procedure. Moreover,
since the singular values exhibit a ”step-like” behaviour (Fig.
3 shows some examples) the ˆpsf is practically coincident with
psf when Nε in (2) is chosen in correspondence of the index
for which the singular values start to abruptly decay. Note
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Fig. 2. Pictorial explanation of the resolution estimation via point-spread function. A−1
ε is the regularized inverse operator according to the noise level ε.
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Fig. 3. Normalized eigenvalues σ2
n in dB: a) Xs = 5λ, Ys = 3λ X0 =

Y0 = 5λ and zo = 7λ; b) Xs = Ys = 5λ, X0 = Y0 = 20λ and zo = 7λ.

that, as remarked in the introduction, because of this singular
value decay, the resolution is actually weakly dependent on
the noise and hence we are entitled to look for an analytical
expression which only highlights the role of the configuration
parameters. Also, by the adjoint inversion, there is no need
to estimate such an index since in (3) truncation is implicitly
obtained by the windowing imposed by the singular values
themselves.

Eventually, the problem of resolution estimation is cast as
the evaluation of (3).

III. POINT-SPREAD FUNCTION EXPRESSION

In order to obtain an analytical approximation of the point-
spread function in (3), the main idea it to recast it as a Fourier-
like transformation. To this end, we rewrite the phase term as

Φ(ro, r)− Φ(ro, r
′) =

∫ ν1

ν0

∇pΦ(ro,p(ν))
dp(ν)

dν
dν (5)

such that p(ν) is a curve whose starting and ending points
coincide with r′ and r, respectively, that is p(ν0) = r′ and
p(ν1) = r. Now, the curve p(ν) can be properly chosen in
order to let the phase term resemble a Fourier kernel. This can
be achieved, for example, in the following way. Consider r̃ ≡
(x, y′) and then perform integration in (5) along the polygonal
line with nodes r′, r̃ and r. Accordingly, we have that

Φ(ro, r)− Φ(ro, r
′) = w(ro, r, r

′) · (r − r′) (6)

where · denotes the scalar product, w ≡ (wx, wy) and

wx(ro, x, r
′) =

∫ 1

0

∂Φ(ro, px, y
′)

∂px

∣∣∣∣
px=x′+ν(x−x′)

dν (7)

wy(ro, r, y
′) =

∫ 1

0

∂Φ(ro, x, py)

∂py

∣∣∣∣
py=y′+ν(y−y′)

dν (8)

It can be easily shown that ∀r, r′ the transformation w :
ro → w(ro, r, r

′) is injective and the corresponding Jacobiam
matrix full rank. This allows to replace integration in ro with
integration in w, which in turn allows to rewrite (3) as

ˆpsf(r, r′) =

∫
Ω(r,r′)

H(r, r′w)ejw·(r−r
′)dw (9)

with

Ω(r, r′) = {(wx(ro, x, r
′), wy(ro, r, y

′) : ro ∈ OD} (10)

and

H(r, r′w) =

∣∣∣∣ ∂(xo, yo)

∂(wx, wy)

∣∣∣∣K(ro(w), r′)K∗(ro(w), r) (11)

with
∣∣∣ ∂(xo,yo)
∂(wx,wy)

∣∣∣ being the Jacobian determinant of the intro-
duced transformation. It is instructive to have an idea of what
Ω(r, r′) looks like. This is particularly simple when r = r′.
In fact, in this case

w(ro, r) = ∇rΦ(ro, r) (12)

and

Ω(r) = {w(ro, r) : ro ∈ OD} (13)

Now, if we look at how lines parallel to the y-axis map
in the w plane, as the intercept xo changes, we obtain the
following family of ellipses (parametric with respect to xo)
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wx = dx

√
1−

w2
y

k2
(14)

with |wy| ≤ k and dx(xo, x) = k(x−xo)√
(x−xo)2+z2o

. As a result, the

strip −X0 ≤ xo ≤ X0 of the ro plane maps into the convex
domain of the w plane contained between the two ellipses
obtained from (14) for xo = X0 and xo = −X0, respectively.
Analogously, the strip −Y0 ≤ xo ≤ Y0 is described by the
curves

wy = dy

√
1− w2

x

k2
(15)

where now |wx| ≤ k and dy(yo, y) = k(y−yo)√
(y−yo)2+z2o

. Hence,

Ω(r) is given by the intersection of the two domains returned
by (14) and (15). Some examples of Ω(r) are shown in
Fig. 4. It is interesting to highlight what happens when X0

and Y0 approach ∞. In this case, Ω(r) is independent on
r and becomes the circle of radius k ∀r ∈ SD. What is
more, because of (7) and (8), this holds true also for the
band described in (10). This is expected, since for non-aspect
limited configuration, the spatially varying behaviour is lost
and the retrievable spatial spectrum coincides to the visible
circle. In this case, the point-spread function can be easily
computed and turns out to be ∝ J1(k|r − r′|)/|r − r′|. Note
that this result could have also been obtained by resorting
to the plane-wave expansion of the propagator [11] which
naturally leads to the k-space approach.

Here, indeed, we are interested in aspect-limited configura-
tion for which things are more involved. In order to simplify a
little bit the matter, we note that, because H is a constant sign
function, (9) clearly shows that the leading order contribution
occurs for r − r′ = 0 [33]. This entitles us to approximate
the amplitude factor by its value assumed for r = r′, that is
H(r, r′,w)) ≈ H(r′, r′,w) = H(r′,w). Therefore, in order
to compute H(r′,w), we have to consider

w(ro, r, r
′) = w(ro, r

′) (16)

which is given by (12). The corresponding Jacobian transfor-
mation then yields

∣∣∣∣ ∂(xo, yo)

∂(wx, wy)

∣∣∣∣ =

[
k2z2

o

|ro − r|4

]−1

= 1/|K(ro(w), r′)|2 (17)

from which finally we have H(r′,w) = 1. Eventually, the
point-spread function is approximated as follows

ˆpsf(r, r′) =

∫
Ω(r,r′)

ejw·(r−r
′)dw (18)

Some comments concerning (18) are now in order. First,
since the assumption r = r′ has been used, we mainly expect
that (18) works in approximating the point-spread function
around its main beam. However, this is what is needed for
resolution estimation. Second, (18) shows the point-spread
function as a 2D spatially varying band-limited function
[34], which basically entails that resolution will be spatially
varying. This of course is a distinctive feature of near-zone

aspect-limited configuration and has been already observed in
literature by using more approximate (and hence less accurate
resolution estimation) arguments [24], [35]. Third, we have
already followed a similar procedure for strip currents [18].
In that case we were able to solve the integral expressing
the point-spread function by introducing a further non-linear
warping transformation [36] of the source spatial variable
which allowed to cast the point-spread function as a classical
band-limited function with respect to this new variable. In this
case, the spatially varying behaviour was embodied within the
non-linear transformation.

Here, we plan to apply the same approach. However, now
the matter is much more difficult because, unlike the strip
current case where spatially varying behaviour manifested in
terms of the varying size of the band only, here, both the size
and the shape of the band have changed.

IV. POINT-SPREAD FUNCTION APPROXIMATION AND
RESOLUTION ESTIMATION

According to the previous discussion, the main problem
to be faced in order to evaluate (18) is the change in shape
that Ω(r, r′) undergoes while r and r′ range over the source
domain SD. To cope with this point, herein, we are content
to find only an approximation for (18). To this end, in
(18), we consider the smallest rectangular domain ΩR(r, r′)
which contains Ω(r, r′), with r, r′ ∈ SD, and denote by
ˆpsfR the corresponding point-spread function approximation.

Accordingly, say 2∆wx(x, r′) and 2∆wy(r, y′) the sides
of ΩR(r, r′) and wmx(x, r′) and wmy(r, y′) their middle
points, the point-spread function assumes the following more
convenient expression

ˆpsfR(r, r′) = 4ejwm·(r−r
′)×

∆wx(x, r′)∆wy(r, y′)sinc[∆wx(x− x′)]sinc[∆wy(y − y′)]
(19)

with wm = (wmx, wmy).
Eq. (19) is the sought after expression for the

point-spread function. However, to be used, wm,
∆wx and ∆wy , that is ΩR(r, r′), still remain to
be determined. To achieve this end we have to
compute wmaxx (x, r′) = maxro∈OD{wx(ro, x, r

′)},
wminx (x, r′) = minro∈OD{wx(ro, x, r

′)}, wmaxy (r, y′) =
maxro∈OD{wy(ro, r

′, y′)} and wminy (r, y′) =
minro∈OD{wy(ro, r

′, y′)}. As mentioned above, the
Jacobian of the transformation w : ro → w(ro, r, r

′) is full
rank. Accordingly, both wx and wy cannot have stationary
points inside OD. Therefore, their maximum and minimum
must be looked for over the boundary of the observation
domain. After simple but tedious calculations, it results that

wmaxx (x, r′) = wx(−X0, yo = y′, x, r′)
wminx (x, r′) = wx(X0, yo = y′, x, r′)
wmaxy (r, y′) = wy(xo = x,−Y0, r, y

′)
wminy (r, y′) = wy(xo = x,−Y0, r, y

′)

(20)

from which it readily follows that
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Fig. 4. Illustrating the spatial spectrum regions with r = r′. Ω(r) is represented in blue whereas the enclosing rectangular domain, ΩR(r), in red. The
three columns refer to r = (−5λ,−5λ) (left), r = (0, 0) (middle) and r = (5λ, 0) (right), whereas across the rows the observation domain size changes
from X0 = Y0 = 5λ (top),X0 = Y0 = 10λ (middle) and X0 = Y0 = 20λ (bottom).The other parameters are zo = 7λ and Xs = Ys = 5λ.

∆wx(x, x′) =
wmaxx −wminx

2

wmx(x, x′) =
wmaxx +wminx

2

∆wy(y, y′) =
wmaxy −wminy

2

wmy(y, y′) =
wmaxy +wminy

2

(21)

Now, we can estimate the resolution from the main-beam
of the point-spread function when (21) is inserted in (19).
In particular, by doing so and by further introducing the
transformations

ξx(x) = k
2 [
√

(x+X0)2 + z2
o −

√
(X0 − x)2 + z2

o ]

ξy(y) = k
2 [
√

(y + Y0)2 + z2
o −

√
(Y0 − y)2 + z2

o ]
(22)

then eq. (19) can be rewritten in a more convenient way as

| ˆpsfR(r, r′)| = 4∆wx∆wy×

|sinc[ξx(r)− ξx(r′)]sinc[ξy(r)− ξy(r′)]| (23)

where we have considered the magnitude of the point-spread
function. If now we denote as ∆x and ∆y the resolution along
x and y, from (23) it readily follows that

ξx(x+ ∆x)− ξx(x) = π (24)

and

ξy(y + ∆y)− ξy(y) = π (25)

As could be expected from (19), (20) and (21), equations
(24) and (25) express the achievable resolution in a factorised
form with ∆x being dependent on the extent of OD (i.e.,
X0) along x and ∆y being solely related to Y0. This is not
only due to the considered spectral rectangular domain ΩR
in the computation of (18), but also to the polygonal path
used in (5) and because, since we have assumed [−Xs, Xs]×
[−Ys, Ys] ⊆ [−X0, X0]× [−Y0, Y0], ∆wx(x, x′) (∆wy(y, y′))
depends only on x-component (y-component) of r and r′. It is
also important to note that the shape of SD does not change
the obtained resolution estimation.

Eqs. (24) and (25) are indeed implicit expression of the
achievable resolution. Indeed, they are equal to the ones
obtained for the case of strip currents because of the occurred
point-spread function factorization. As such, the same manip-
ulations adopted in [18] can be employed to explicitly solve
them for ∆x and ∆y . This yields

∆x = f(x)

√
X2

0 +
z2
o

1− f(x)2
− x (26)

and

∆y = g(y)

√
Y 2

0 +
z2
o

1− g(y)2
− y (27)

with f(x) = 1/(2X0)[λ +
√

(X0 + x)2 + z2
o −√

(X0 − x)2 + z2
o ] and g(y) = 1/(2Y0)[λ +√

(Y0 + y)2 + z2
o −

√
(Y0 − y)2 + z2

o ].
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(a) The source point (x′, y′) is located at (0, 0).
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(b) The source point (x′, y′) is located at (0, 4λ).
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(c) The source point (x′, y′) is located at (4, 0λ).
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(d) The source point (x′, y′) is located at (4λ, 4λ).

Fig. 5. Comparison between the normalized |psf |, | ˆpsfR| for Xs = Ys = 5λ, X0 = 6λ, Y0 = 5λ and zo = 4λ and four different source positions. Each
sub-figure illustrates |psf | (panel 1)), | ˆpsfR| (panel 2)) and the corresponding cut-views (panels 3) and 4)) with the blue lines referring to psf and the red
ones to | ˆpsfR|.

Eqs. (26) and (27) predict that ∆x and ∆y are smaller at
the centre of the source region whereas they increase when
source point moves toward the edge of SD. Moreover, such
a spatially varying behaviour becomes more marked when zo
increases or the observation domain size decreases. Finally, as
X0, Y0 →∞ both ∆x and ∆y tend to become constant (i.e.,
the spatially varying resolution behaviour is lost) and approach
to λ/2, λ being the wavelength. This is consistent with the
point-spread function pertaining to the unbounded observation
domain previously reported in Section III. Indeed, in this case
Ω(r, r′) tends to the circle of radius k (independently from
r and r′) and (26) and (27) just refer to the square spectrum
domain of side 2k containing that circle. Of course in that
case there is no need to go through our estimation procedure
since closed form results can be easily obtained as (actually)
reported above.

A. Numerical check
In order to check the accuracy of the resolution estimations

(26) and (27), in this section we compare |psf | and | ˆpsfR|

as the source location varies in SD. In particular, the psf
is obtained by choosing Nε in (2) in correspondence to the
index for which the singular values start to abruptly decay.
The example in Fig. 5 shows the normalized point-spread
function amplitudes for Xs = Ys = 5λ, X0 = 6λ, Y0 = 5λ
and zo = 4λ. In order to appreciate the expected spatially
varying behavior, four source locations (x′, y′) are considered,
i.e., (0, 0), (0, 4λ), (4λ, 0) and (4λ, 4λ). More in detail, each
sub-figure of Fig. 5 reports |psf | (panel (1) ), | ˆpsfR| (panel
(2) ) and the comparison of the corresponding cuts (panels
(3) and (4)) along y = y′ and x = x′, respectively. As
can be seen, the point-spread functions’ main-lobes overlap,
meaning that (26) and (27) works very well in predicting the
achievable resolution. As expected, the side-lobe structure of
the estimated point-spread function differs from that of |psf |
because we have considered ΩR(r, r′) instead of Ω(r, r′) in
(18). However, as remarked above, the point-spread function
main lobe is what matters for resolution estimation. Moreover,
resolution degrades while moving away from the point (0, 0).
In particular, when the source point is moved along y, as
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expected, ∆x remains unchanged whereas ∆y increases; the
opposite occurs when the movement occurs along x axes.
Note that the increasing of ∆x appears less marked since the
observation domain has been chosen rectangular with X0 >
Y0. This behavior is perfectly, qualitatively and quantitatively,
captured by our theoretical estimations.

B. Number of degrees of freedom

The resolution can be conveniently used to estimate the so-
called number of degrees of freedom (NDF) of the problem
as well. Rigorously speaking the NDF is the dimension of the
subspace where the unknown can be reliably reconstructed or
equivalently the dimension of the subspace where the field data
projects more “significantly”. Accordingly, it is related to the
singular value behaviour of the radiation operator. In particular,
the NDF can be computed as the number of singular values
that are above a given noise dependent threshold. As discussed
above, the properties of the radiation operator are such that,
when evanescent waves are negligible, the singular values ex-
hibit a step-like behaviour and hence the NDF becomes weakly
dependent on the noise level and practically coincides with
those that precede the abrupt decay. However, in general (as
for the case at hand), the singular values cannot be determined
analytically. However, borrowing from Optics literature, the
NDF can be estimated by counting how many resolvable point-
spread functions are required to fill the source domain [14],
[37]. By doing so, and by working in the ξ domain, which
maps SD into [−ξx(Xs), ξx(Xs)]× [−ξy(Ys), ξy(Ys)], where
ξx(−Xs) = −ξx(Xs) and ξy(−Ys) = −ξy(Ys) have been
exploited, we readily obtain

NDF ≈ NDFxNDFy =

4

λ2
[
√

(X0 +Xs)2 + z2
o −

√
(X0 −Xs)2 + z2

o ]×

[
√

(Y0 + Ys)2 + z2
o −

√
(Y0 − Ys)2 + z2

o ] (28)

In order to check the NDF estimation returned by (28), we
turn again to consider the singular value behaviours shown in
Fig. 3. In this figure the σ2

m are shown for different configura-
tion parameters. For these examples, the NDF returned by (28)
are 60 and 324, respectively, and they adequately approximate
the index beyond which the singular values start to decay very
quickly. As seen in section III, when X0, Y0 →∞, the point-
spread function turns to be∝ J1(k|r−r′|)/|r−r′| whose main
lobe half-width is 3,8

k . Note that the latter is a factor 3,8
π = 1, 2

larger than one obtained by our estimation. Accordingly, this
entails that (28) leads to an overestimation of the actual NDF.
In fact, while the latter is 0, 68 [16XsYs

λ2 , its estimation returned
by (28) is 16XsYs

λ2 .

V. RELATING RESOLUTION ESTIMATION WITH
LITERATURE RESULTS

In this section, we briefly compare our resolution estimation
with some literature results. Since most of the results that we
found refer to radar imaging, we advise the reader that we
adapted those results to the case at hand. To this end, we

consider radar imaging cross-range resolution pertaining to
a monostatic configuration, which involves a similar integral
operator. In particular, since even under a multi-frequency
configuration, cross-range resolution is estimated in correspon-
dence to a single (the highest or the average) frequency, it is
sufficient to consider half those estimations (because in radar
imaging k is replaced by 2k in order to account for the two-
way propagation path) to obtain the benchmark.

Suppose to simplify (26) and (27) by arresting the Taylor
series expansions of ξx(x + ∆x) and ξy(y + ∆y) at the first
term. Then ∆x and ∆y are approximated as

∆x ≈
π
dξx
dx

=
λ

(sinθrx(x)− sinθlx(x))
(29)

with
sinθrx(x) =

(X0 − x)√
(X0 − x)2 + z2

o

sinθlx(x) = − (X0 + x)√
(X0 + x)2 + z2

o

and

∆y ≈
π
dξy
dy

=
λ

(sinθry(y)− sinθly(y))
(30)

with
sinθry(y) =

(Y0 − y)√
(Y0 − y)2 + z2

o

sinθly(y) = − (Y0 + y)√
(Y0 + y)2 + z2

o

Clearly, resolutions are still spatially varying and result
dependent on the angular sector under which the source point
is ”seen” by the observation domain. In particular, the spatially
varying bandwidth is basically approximated by dξx

dx ×
dξy
dy .

It is important to highlight that eqs. (29) and (30) could
have been obtained by resorting stationary phase arguments
as done in [22], [38]. However, in those papers the spatially
varying behavior is lost because resolution was estimated in
correspondence to the bandwidth obtained by the union of
the bands [22] or the averaged band [38] as the source point
ranges within the source domain. Eventually, we can conclude
that those results coincide with a first order approximation of
our estimation when the spatially varying behavior was not
neglected.

In other papers, such as [22], [23] and [31], the following
resolution formula is derived

∆x =
λ

2

zo
X0

=
λ

2tanθrx(0)
(31)

and
∆y =

λ

2

zo
Y0

=
λ

2tanθry(0)
(32)

with θrx(0) and θry(0), being the angular sectors under which
the centre of the source domain is ”viewed”. In particular, in
[23], θrx(0) and θry(0) are supposed small enough so that
tanθrx(0) ≈ sinθrx(0) and tan(θry(0) ≈ sinθry(0). These
formulas have shown to provide good resolution estimation for
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example in Fresnel zone. However, in near-field, they return
poor results because they approximate (29) and (30), which,
as observed above, are in turn first order approximation of our
estimation.

Summarizing, the literature resolution formulas considered
above are approximated version of (26) and (27) when a first
order approximation is applied and the Fresnel zone condition
is forced.

VI. CONCLUSION

The aim of this paper has been to provide an analytical
estimation of the achievable resolution in the reconstruc-
tion of planar sources from near-field data collected over a
bounded planar measurement surface. This has been pursued
by finding an analytical approximation of the point-spread
function returned by a back-propagation inversion scheme.
The obtained expressions for the resolution ∆x and ∆y are
spatially variant. This is a distinctive feature of near-zone
aspect-limited configuration that has been already observed in
some recent papers [17], [18] addressing the same problem for
strip currents. The obtained estimations have been numerically
checked and shown to be in excellent agreement with the
outcome yielded by a truncated singular value decomposition
scheme, used here as benchmark. A comparative discussion
with some literature results addressing similar configurations
has been addressed as well; it is shown that those resolution
formulas are indeed approximated versions of (26) and (27)
when a first order approximation is applied.

We end this paper by some further considerations. It is
worthwhile remarking that the peculiar singular value be-
haviour (which as mentioned above justifies deriving reso-
lution in term of configuration parameters) in certain cases
can show some little dynamic before the knee (i.e, before the
abrupt decay). This happens, for example, for electric currents
[38]. In those cases, (3) and (2) show some differences. These,
however, can be reduced by considering a suitable weighted
back-propagation inversion [18]. Also, as mentioned above,
while the shape of source domain does not play any role in
the obtained the resolution estimation, the one of measurement
surface affects the local band Ω(r, r′). In this regard, while
the obtained results are specific to the considered observation
domain, the proposed procedure is not and the same method
can be used to analyze configurations exploiting different
shape of measurement surfaces, including non planar ones.
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