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Abstract

The well-known Lighthill-Whitham-Richards (LWR) theory is the fundamental pillar for most macroscopic traffic models. In the

past, many methods were developed to numerically derive solutions for LWR problems. Examples for such numerical solution

schemes are the cell transmission model, the link transmission model, and the variational theory (VT) of traffic flow. So far, the

latter framework found applications in the fields of traffic modelling, macroscopic fundamental diagram estimation, multi-modal

traffic analyses, and data fusion. However, these studies apply VT only at the link or corridor level. To the best of our knowledge,

there is no methodology yet to apply VT at the network level. We address this gap by developing a VT-based framework

applicable to networks. Our model allows us to account for source terms (e.g. inflows and outflows at intersections) and the

propagation of spillbacks between adjacent corridors consistent with kinematic wave theory. We show that the trajectories

extracted from a microscopic simulation fit the predicted traffic states from our model for a simple intersection with both

source terms and spillbacks. We also use this simple example to illustrate the accuracy of the proposed model. Additionally, we

apply our model to the Sioux Falls network and again compare the results to those from a microscopic simulation. Our results

indicate a close fit of traffic states, but with substantially lower computational cost. The developed methodology is useful for

network-wide traffic state estimations in real-time, or other applications within a model-based optimization framework.
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Abstract

The well-known Lighthill-Whitham-Richards (LWR) theory is the fundamental pillar for
most macroscopic traffic models. In the past, many methods were developed to numerically
derive solutions for LWR problems. Examples for such numerical solution schemes are the
cell transmission model, the link transmission model, and the variational theory (VT) of
traffic flow. So far, the latter framework found applications in the fields of traffic modelling,
macroscopic fundamental diagram estimation, multi-modal traffic analyses, and data fusion.
However, these studies apply VT only at the link or corridor level. To the best of our
knowledge, there is no methodology yet to apply VT at the network level. We address this
gap by developing a VT-based framework applicable to networks. Our model allows us to
account for source terms (e.g. inflows and outflows at intersections) and the propagation
of spillbacks between adjacent corridors consistent with kinematic wave theory. We show
that the trajectories extracted from a microscopic simulation fit the predicted traffic states
from our model for a simple intersection with both source terms and spillbacks. We also
use this simple example to illustrate the accuracy of the proposed model. Additionally, we
apply our model to the Sioux Falls network and again compare the results to those from a
microscopic simulation. Our results indicate a close fit of traffic states, but with substantially
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lower computational cost. The developed methodology is useful for network-wide traffic state
estimations in real-time, or other applications within a model-based optimization framework.

Keywords variational theory · network modeling · kinematic wave theory · LWR model · traffic flow theory

1 Introduction

The Lighthill-Whitham-Richards (LWR) theory (Lighthill and Whitham, 1955; Richards, 1956) is the base for
most macroscopic models of traffic dynamics at the link level. The first-order model relates the conservation
law (see eq.(1)) and the fundamental diagram (FD) q = Q(k) of traffic:

∂k

∂t
+ ∂q

∂x
= 0, (1)

where q is the flow in vehicles per hour, k is the density in vehicles per kilometer, and t, x represent the time
and space coordinates, respectively. Newell (1993) formulated the LWR theory in terms of the cumulative
vehicle count N(x, t) in his simplified kinematic wave theory (KWT). It describes the number of vehicles N
that have passed point x by time t. The cumulative count N across all (x, t) forms a surface which is also
known as the Moskowitz function (Moskowitz, 1965). The derivatives of this surface at a given point (x, t)
are the flow q(x, t) and the density k(x, t). Newell (1993) formulated the problem as follows:

∂N

∂t
−Q(−∂N

∂x
) = 0. (2)

The formulation of the LWR in terms of N(x, t) corresponds to a partial differential equation of the Hamilton-
Jacobi type. Over the past decades numerous approaches have been developed to numerically solve the LWR
partial differential equation. Generally, the equation can be represented in three different coordinate systems
(Laval and Leclercq, 2013): eulerian (t, x), lagrangian (t,N), and in (N, x). Numerical schemes exist for two
of these systems. In the eulerian representation, popular methods are the cell transmission model (CTM)
(Daganzo, 1992, 1995), the link transmission model (LTM) (Yperman, 2007; Tampère et al., 2011; Han et al.,
2015; Jin, 2015), techniques from partial differential equations theory such as the grid-free method by Mazaré
et al. (2011), and the variational theory (VT) of traffic flow (Daganzo, 2005a,b; Daganzo and Menendez,
2005; Claudel and Bayen, 2010a,b). Several works have also explored the lagrangian space for solving LWR
partial differential equations (e.g. Leclercq et al., 2007). For a more detailed overview on numerical schemes
to solve KWT problems, we refer the reader to Seo et al. (2017).
The comparison of VT to other solution methods such as the CTM or the LTM reveals several advantages.
The CTM is known to exhibit numerical viscosity in which shock waves are inaccurately represented as
smooth variations. These numerical errors converge to zero with decreasing time-step sizes. The solution
provided by VT is exact for piece-wise linear flow-density FDs independent of the time-step size. While
such numerical error is small for the LTM as well, the latter does not allow to explicitly consider complex
heterogeneous KWT problems. Such problems might include space-time dependent FDs, in combination with
any type of stationary and/or moving bottlenecks. In contrast, VT permits the evaluation of KWT problems
including heterogeneities in time and space (Daganzo and Menendez, 2005). These aspects distinguish VT
from the CTM and the LTM, and underline its superiority at the link level. Thus, we focus on VT and
propose a framework to further extent its applicability to the network level.
The concept of VT has been applied in several contexts so far, with a few studies advancing the existing VT
modelling techniques. Friesz et al. (2013) developed a dynamic user equilibrium framework for networks.
Traffic dynamics were modeled based on the LWR theory, and numerically represented with VT. Yet, they
did not consider spillbacks across intersections in their study, and thus underestimated delays for heavily
congested scenarios. Similarly, Li and Zhang (2015) described the performance of queuing systems with
multiple sequential and parallel bottlenecks based on VT. However, their framework did not account for
spillover effects. Chow et al. (2015) utilized the ability of VT to model complex traffic dynamics at the
corridor level on urban arterials in London (UK) and compared it to CTM. They confirmed the high-quality
results of VT for such settings, especially for platoon dispersion and moving bottlenecks. Hans et al. (2015)
developed a mesoscopic model based on VT to exactly estimate travel times for urban arterials. While the
application of VT was still limited to the link and corridor levels, these studies show that VT has been
recognized as a powerful numerical scheme for solving KWT problems.
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VT is not restricted to the study of car traffic only. It has also been utilized for multi-modal traffic
analysis. Guler et al. (2016) investigated innovative transit signal priority designs and estimated its effects on
intersection performance with VT. Similarly, Wu et al. (2017) analyzed the impacts of bus stop locations
and TSP on intersection operations. Gayah et al. (2016) studied the impacts of general obstructions on the
capacity of an isolated intersection, and computed the capacity losses using VT. Saeednia and Menendez
(2016) evaluated the effect of truck platoons on freeway traffic also using VT.
Additionally, VT has been applied for the approximation of the macroscopic fundamental diagram (MFD).
The method of cuts introduced by Daganzo and Geroliminis (2008) estimates the MFD for a homogeneous
ring road based on VT. Accordingly, related extensions and studies also refer and exploit VT (Boyaci and
Geroliminis, 2011; Leclercq and Geroliminis, 2013; Laval and Castrillón, 2015; Tilg et al., 2020; Daganzo
and Knoop, 2016; Leclercq and Paipuri, 2019; Girault et al., 2016; Ambühl et al., 2018; Loder et al., 2019).
Again, these approximation methods apply VT only at the corridor level, even when trying to estimate traffic
conditions at the network level.
Another field of application is traffic state estimation and data fusion (Mehran et al., 2012; Sun and Ban,
2013). This line of research has explored the application of VT to reconstruct vehicle trajectories based on
data from fixed and/or mobile sensors, as well as data fusion algorithms. Mehran and Kuwahara (2013)
further extended this approach to predict vehicle trajectories based on real-time and historical data. Duret
and Yuan (2017) proposed a traffic state estimation framework based on eulerian and lagrangian observations.
Their data fusion framework includes the concept of VT. More works on developing data fusion frameworks
exploiting the concept of VT concern real-time applications (Kawasaki et al., 2017) and measurements from
vehicles running on opposite lanes (Kawai et al., 2019; Takenouchi et al., 2019).
Not only has VT been applied in several contexts, but a number of attempts to extend the original framework
have also been reported. For example, Lebacque and Khoshyaran (2013) showed that generic second-order
models admit a Hamilton-Jacobi and variational formulation as an optimal control problem. Costeseque and
Lebacque (2014) numerically investigated the VT formulation for higher order traffic models. Additionally,
the deterministic nature of VT was questioned and by the inclusion of stochastic shortest path algorithms
new fields of application were made accessible. Wada et al. (2018) applied VT for coordinated traffic signal
control for both deterministic and stochastic demands. Dakic et al. (2020) applied a stochastic shortest path
search within VT, to estimate the capacity of bi-modal corridors. Laval et al. (2016) explored the impact of
source terms on VT. They developed a framework to consider continuous inflows and outflows (i.e. source
terms) which could represent trips starting and ending throughout the link.
The investigation of the related literature indicates the potential of VT for traffic modelling, MFD estimation,
data fusion, and other methodological extensions. However, to the best of our knowledge, none of the previous
studies have started to explore the application of VT at the network level accounting for its complexities. To
address this gap, we propose a VT extension that allows us to model the traffic dynamics at the network
level. The contributions are fourfold. First, we include inflows and outflows in the mathematical formulation
of VT. Contrary to Laval et al. (2016), these source terms accept any values from the set of real numbers,
most importantly, they also include zero. Second, we model the propagation of spillbacks across the network.
This allows us to model the evolution of network-wide congestion patterns. Third, we evaluate the proposed
methodology and compare it with a microscopic KWT model implemented in SUMO (Lopez et al., 2018).
This enables us to show a proof of our concept, and to investigate the model’s accuracy. Fourth, we propose
an algorithm to apply our model to any road network, and show its applicability using the well-known
example of the Sioux Falls network.
This paper is organized as follows. Section 2 provides a brief background of VT. Section 3 proposes a VT-based
methodology to estimate traffic state propagation throughout a network. This includes the consideration of
inflows and outflows at intersections and the correct propagation of spillbacks. Section 4 provides a proof of
concept and evaluates the accuracy of the proposed framework for small networks. Section 5 demonstrates the
applicability of our methodology for the case of the Sioux Falls network. Section 6 highlights the conclusion
of this study and outlines potential future research topics.

2 Background

Daganzo (2005a) formulated the VT framework the first time to determine the cumulative number of vehicles,
i.e. the Moskowitz function, N(x, t) which have passed the location x of a road by time t for given boundary
conditions. The surface formed by N across all (x, t) is continuous but not differentiable at shockwaves under
the assumption of flow conservation. Figure 1 illustrates the basic concept of VT.
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P(x,t)
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Figure 1: Concept of VT.

A necessary input for solving a KWT problem is an FD, i.e. Q(k). Such an FD is characterized by the
free-flow speed u, the backward wave speed w, and the jam density κ. The capacity is derived at the critical
density, i.e. Q(kc). Additionally, boundary data NB along a curve B are required, as illustrated by a thick
black line in Figure 1. Let us now discuss, how to determine N at point P (x, t). We define a set of valid
paths p ∈ P, that start at the boundary B and end at P . A path p is valid if its slope ranges between the
extremal speeds v ∈ [w, u]. Related to the slope, each path p has a certain cost cp, corresponding to the
maximum traffic rate that can pass a moving observer traveling along that path. Given the set P with costs
cp for all paths p ∈ P, and the boundary value NB,p associated to the path p, the cumulative count NP is
found as follows:

NP = min
p∈P
{NB,p + cp}. (3)

Assuming a triangular FD further simplifies the procedure. In this case, the formulation becomes exact
(Daganzo, 2005a). We also define θ = u

w as the ratio of the free-flow and the backward wave speed. If θ is
an integer, the so-called lopsided variational graph can be constructed (see Daganzo and Menendez, 2005).
This graph represents a discretized grid, where ∆t and ∆x = u∆t are the spatial and temporal grid lengths,
respectively. We denote the variational graph as G(C, I), where C is the set of corridors, and I is the set
of intersections. For the original VT formulation, |C| = 1. The case of a multi-dimensional graph will be
explained in the following sections. One can then solve a KWT problem to determine N on each node of G,
by conducting a shortest-path search starting at the boundary. In the absence of moving bottlenecks, the
necessary paths to consider become straight lines and have either extremal slopes, or slopes equal to zero at
signals, i.e. v ∈ {w, 0, u}. We can find N(x, t) for this case as the minimum of the shortest paths coming
from three nodes, one upstream node at x−∆x, one downstream node at x+ ∆x, and one node at the same
location x (Daganzo and Menendez, 2005; Leclercq and Paipuri, 2019):

N(x, t) = min(N(x−∆x, t−∆t),
N(x+ ∆x, t− θ∆t) + ∆xκ,
N(x, t−∆t) + β).

(4)

The first term in equation (4) refers to free-flow states travelling from upstream, the second one to congested
states travelling from downstream, and the third term accounts for bottleneck induced capacity constraints
at the same location as the target node. For free-flow states the cost of the edge, i.e. the maximum rate at
which traffic can pass a moving observer travelling at a speed corresponding to the slope of that edge, is zero.
For congested states the cost of the edge is ∆xκ. For capacity constraints at the same location the cost of
the edge is β. If a signal at position x is red during the interval [t −∆t, t], β = 0. Otherwise, β = Q(kc),
i.e. the link capacity. This formulation allows to apply VT to any signalized or unsignalized corridor with a
triangular FD, where θ is integer.
Figure 2 represents an excerpt of the variational graph G which allows for a graphical interpretation of eq. (4).
The graph G is represented as a numerical grid with ∆x in the spatial and ∆t in the temporal dimension. For
this figure, we set θ = 2. Note that VT is valid for any integer value of θ. Additionally, the figure shows the
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three “from nodes”: upstream, at the same location, and downstream of P (x, t), as well as the corresponding
paths along which the costs are calculated.

x

t

P(x,t)

Dt

Dx

Figure 2: Excerpt of the variational graph.

Eq. (4) implies there are no inflows nor outflows within the corridor. This is because the occurrence of such
source terms violates flow conservation along the corridor, which is the main assumption of the conservation
equation (see eq.(1)). While the assumption of zero net inflows might hold for singular corridors, it represents
an issue for general networks. Laval et al. (2016) studied the incorporation of such source terms into the VT
framework. They provided a method to consider source terms when they are piece-wise continuous in space
and time. However, their method is not able to handle source terms at intersections, as they are discrete in
space and time, and include non-zero values during green and values equal to zero during red phases.
In the next section, we provide a framework to account for source terms in VT at intersections and model
spillbacks. This constitutes the first building block to apply the VT-based framework at the network level.
Hereafter, we refer to our framework as ‘nVT’ as abbreviation for network VT, and ‘original VT’ to the
formulation introduced by Daganzo (2005a).

3 Generalizing the VT framework to networks

In this paper, we modify VT and establish a comprehensive model that allows to numerically solve complex
heterogeneous KWT problems at the network level. We limit our networks to combinations of signalized
corridors without partially conflicting traffic streams. Therefore, the focus lies on networks with signalized
intersections with dedicated phases for the conflicting traffic streams. The relaxation of this assumption will
be discussed later in Section 6. Below, we describe the overall framework which consists of three steps.
Step 0 initializes the problem by defining the infrastructure and the demand. This consists of the definition
of the network topology, the signal control settings, and the temporal and spatial demand patterns. The
latter aspect includes the origins as well as turning ratios at each intersection. Note that this implies an
indirect definition of destinations. This allows to generate the network N and the data at the boundaries.
Step 1 involves the decomposition of the network N into a set of corridors C ∈ C. This enables us to define
a multi-dimensional variational graph in order to solve the given KWT problem. The graph has (|C|+1)
dimensions, consisting of the corridors in C, and one temporal dimension. We provide more details on this
step in subsection 3.1.
Step 2 applies our VT framework, the nVT, taking the multi-dimensional variational graph as input. Our
framework builds an extension that incorporates source terms into the original VT concept. We treat turning
flows as source terms at the location of intersections which are discrete in time and space. Moreover, the
model replicates spillbacks across intersections in the network. This step is explained in detail in subsection
3.2.

3.1 Step 1: Decomposition of networks into corridors

The problem initialization results in a network N consisting of intersections I ∈ I and links L ∈ L.
Additionally, we specify signal control settings, i.e. red and green times, and turning ratios α ∈ A at each

5
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intersection I ∈ I, as well as origin flows. As discussed above, the definition of the variational graph requires
the decomposition of the network N into a set of corridors C. Thereby, the topological order including turning
ratios αij between each pair of corridors Ci and Cj as well as control settings for I ∈ I have to be stored.
There are two main requirements for decomposing the network N into a variational graph:

1. The set C includes all links L ∈ L.
2. Each link L exists only once in C, i.e. the corridors do not have any overlapping segments.

For small toy networks, we can determine the set C manually from N . In other cases, this decomposition can
be performed according to the actual layout of roads in the real network. This includes arterials, avenues and
streets. Each road can be represented as a corridor C and as such be incorporated in G. This will always
satisfy both conditions mentioned above. Note that the resulting decomposed network, i.e. the set C, will
not affect the result. The KWT solution is determined by the demand (origin flows and turning ratios), as
well as the supply (link FDs, link lengths, etc.). As these parameters are not affected by assigning links L
to corridors C, the KWT and therefore the VT solution are unaffected as well. In other words, the KWT
solution is independent of the decomposition method.
Figure 3 schematically illustrates the process with an example. Figure 3a depicts a network N consisting
of five intersections, I = {I1, I2, I3, I4, I5}, and six unidirectional links, L = {L1, L2, L3, L4, L5, L6}. Note
that our method is not limited to unidirectional links, but this assumption simplifies the example. The
intersections connecting the different corridors play an important role, as they serve as interfaces where flow
is transferred from one corridor to the other, i.e. where source terms apply. We denote such intersections as
inter-corridor connections to distinguish them from intersections without any turning flows (e.g. pedestrian
crossings). For our example, we assume that α > 0 for all intersections. That is, they are all inter-corridor
connections.

I1

I2

I3

I4

I5

L5 L6

L3

L1

L2

L4

a) Network N .

C1 C2 C3 C4

I1 I1

I2

I2

I3

I3

I4

I4
I5

I5

L1

L2

L3

L4

L5 L6

b) Set of corridors C.

C3
x

t t

C1
x

… …
I2

I4 I3

I2

I1

c) (|C|+1)-dimensional variational
graph.

Figure 3: Schematic illustration of the network decomposition and definition of a multi-dimensional variational
graph.

We manually decompose N into a set C = {C1, C2, C3, C4} as shown in Figure 3b. This set contains only
non-overlapping corridors covering the whole network. Both requirements stated above are then fulfilled.
The inter-corridor connections are highlighted as dashed lines. As observed, the network’s topology is fully
retained in this decomposition.
In Figure 3c one can see an excerpt of the multi-dimensional variational graph G for corridors C3 and C1.
Red and green phases are represented by the corresponding colors at the inter-corridor connections. The grey
plane illustrates the inter-corridor connection I2, and a single trajectory from a vehicle changing from one
corridor to the other is shown as a dashed line for illustration purposes.

3.2 Step 2: Integration of inter-corridor connections

Once the multi-dimensional variational graph G is defined, we apply nVT to solve the KWT problem. The
original formulation, introduced in Section 2, cannot be applied as it does not account for discrete source terms.
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The implications of source terms for variational theory and the underlying concept of the Moskowitz function
are shown in subsections 3.2.1 and 3.2.2. Mathematical formulations for upstream and downstream traffic
state propagation across inter-corridor connections are presented in subsections 3.2.3 and 3.2.4, respectively.

3.2.1 Discontinuous Moskowitz function

In this section, we highlight the effects of source terms on the Moskowitz function on corridors by means of
two examples, a ‘free-flow case’ and a ‘congested case’.
Consider two uni-directional corridors Ci and Cj that intersect each other at the signalized inter-corridor
connection Iij as displayed in Figure 4a. As there exist no bottlenecks on the corridors upstream of Iij ,
we refer to this example as the ‘free-flow case’. Let us denote the Moskowitz function at the position right
downstream of Iij on each corridor as N i

d and N j
d , respectively. The Moskowitz function for positions right

upstream of Iij are N i
u and N j

u, respectively. We further assume a high demand on both corridors, such that
the inter-corridor connection is saturated. Moreover, we consider a case where all vehicles from Cj merge
onto Ci, i.e. the turning ratio αji = 1, and all vehicles on corridor i continue straight at the inter-corridor
connection, i.e. αij = 0. Figure 5b depicts possible time series of N i

d, N i
u, N

j
d and N j

u.

Ci

Cj

Iij

a) Two corridors Ci and Cj and a simple inter-corridor
connection.

N

t

𝑁𝑑
𝑖

𝑁𝑢
𝑖

𝑁𝑑
𝑗

𝑁𝑢
𝑗

Discontinuities

b) Moskowitz function N for the upstream and down-
stream demands.

Figure 4: Free-flow case: network and Moskowitz function.

The Moskowitz functions N i
u and N j

u at the upstream positions show discharge flows during green phases,
and zero flows during red phases. The downstream Moskowitz function for Ci is the sum of both upstream
functions, i.e. N i

d = N i
u +N j

u, assuming that the travel time between u and d is negligible. The Moskowitz
function downstream of the inter-corridor connection on corridor Cj equals to zero, i.e. N j

d = 0, since no
vehicles enter from Ci and all flow on Cj turns at the inter-corridor connection Iij .
Recall that the Moskowitz function is in general continuous and respects the flow conservation principle (see
Section 2). Since this assumption also applies to the original VT, it requires a continuous surface across space
x and time t. However, in our example, a discontinuity of the function occurs at the inter-corridor connection
Iij , as N on the same corridor jumps drastically from upstream to downstream of Iij (see Figure 4b). In other
words, no flow conservation applies considering each corridor separately although flow is indeed conserved at
the network level, i.e. when flows are aggregated across the two corridors. Note that the discontinuous change
in N is positive when a net inflow occurs (e.g. at corridor Ci), and negative when a net outflow occurs (e.g.
at corridor Cj). Additionally, the absolute value of the discontinuity increases with time depending on the
volumes of the transfer flows.
The second example is the ‘congested case’ which is depicted in Figure 5. We examine a simple network
with active bottlenecks somewhere downstream of the inter-corridor connection Iij , from which congestion
propagates upstream, as schematically illustrated in Figure 5a. The bottlenecks on each corridor are displayed
by the black points, while the bold black arrow represents the back-propagation of congestion. Figure 5b
shows possible time-series of the Moskowitz functions on both corridors, upstream and downstream of Iij , i.e.
N i
d, N i

u, N
j
d and N j

u.

In the figure, the occurrence of the spillback appears as a reduction in N i
d growing from t = tc onward which

we denote as ∆N i
d. To ensure the correct propagation of spillbacks across inter-corridor connections, we have
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Ci

Cj

Iij

a) Two corridors Ci and Cj , including two bottlenecks,
and a simple inter-corridor connection.

N

t
tc

𝑁𝑑
𝑖

𝑁𝑢
𝑖

𝑁𝑑
𝑗

𝑁𝑢
𝑗

∆𝑁𝑑
𝑖

∆𝑁𝑢
𝑗

b) Moskowitz function N for the upstream and down-
stream demands.

Figure 5: Congested case: network and Moskowitz function.

to account for the discontinuity at Iij . Moreover, we have to define how to apportion ∆N i
d into the Nu of

each corridor. As discussed in the previous section, N i
d is the sum of N i

u and N j
u. In order to divide ∆N i

d
into the summands, we have to consider its time-dependency. Flows from the connected corridors can never
occur simultaneously for the case of a signalized intersection without partially conflicting flows. This implies
that congestion only propagates to the currently discharging corridor. Thus, only the Moskowitz function
of this corridor is adapted. In our example, congestion is propagated from N i

d to N j
u, i.e. N j

u is reduced by
∆N j

u = ∆N i
d. Therefore, ∆N i

d is transferred to N j
u, while N i

u stays constant until corridor Ci gets the green
light at the inter-corridor connection.
These examples for the ‘free-flow case’ and the ‘congested case’ highlight the existence of a discontinuity
of the Moskowitz function at inter-corridor connections. Moreover, they show that the propagation of
spillbacks necessitates the knowledge of the current signal phase. We have to extend the concept of VT to a
discontinuous Moskowitz function to be able to solve the KWT represented by the variational graph G. In
the following, we propose a framework to cope with this discontinuity for both the downstream and upstream
traffic state propagation. This ensures a complete model including network-wide effects of spillbacks. For the
sake of clarity, we avoid using the indices i, j as much as possible for the explanations below, and only use
them when strictly necessary. We will show that our methodology inherits the numerical exactness from the
original VT for triangular FDs.

3.2.2 Multi-dimensional variational graph at inter-corridor connections

To further examine the effects of the discontinuous Moskowitz function, the analysis of corresponding excerpts
of the variational graph G is convenient. We define the location of an inter-corridor connection Iij in G as xΦ.
At this position, the turning ratio αij determines which portion of the flow is transferred from one corridor
to another. Therefore, x = xΦ + ∆x is the first location in G for a specific corridor, where N is influenced by
transfer flows. In other words, the discontinuity is located between xΦ and xΦ + ∆x.
We recall that eq.(4) is valid as long as the Moskowitz function is continuous. It is then valid for all (x, t),
where x is not in the vicinity of the inter-corridor connection, i.e. x 6= xΦ and x 6= xΦ + ∆x. Between
those positions, a discontinuity exists and the original formulation has to be modified as per the following
two criteria. First, recall that the graphical interpretation of eq. (4) consists of three from-nodes and the
corresponding edges. In order to account for transfer flows in the case of multiple corridors, eq.(4) should
also reflect the traffic states from the adjacent corridor and the turning ratios. Second, eq.(4) cannot be
evaluated at xΦ and xΦ + ∆x because the edges in G related to the terms of the minimum operation cross
the discontinuity which violates the underlying assumptions of VT. This is shown in Figure 6. Thus, eq.(4)
must be modified for x = xΦ and x = xΦ + ∆x.
Figure 6 depicts two excerpts of the multi-dimensional variational graph G for corridors Ci and Cj around
the inter-corridor connection located at xΦ. Edges which cross the discontinuity are shown as dashed lines.
The terms in the minimum operation of eq.(4) corresponding to these dashed edges need to be modified in
order to account for the existence of the discontinuity. The black color represents edges which are evaluated
for corridor Ci, and the grey those being evaluated for corridor Cj . We label the points which have to be
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Figure 6: Excerpts of the multi-dimensional variational graph G at the inter-corridor connection located at
xΦ.

treated differently from the original formulation. These points are P ′′ at (xΦ, tP ′′), P ′ at (xΦ + ∆x, tP ′), and
P at (xΦ, tP ). Note that tP ′′ = tP − (1 + θ)∆t, tP ′ = tP − θ∆t, and tP ′′ = tP ′ −∆t. The explanations in
Section 3.2.3 and 3.2.4 refer to these points.
Figure 6a depicts the propagation of traffic states from upstream nodes (i.e. free-flow traffic states). This
propagation is affected by the discontinuity when the corresponding edges start at xΦ and end at xΦ + ∆x.
Thus, the first term in eq.(4) has to be modified when calculating N(x, t) for x = xΦ + ∆x. Figure 6b shows
the propagation of traffic states from downstream nodes (i.e. congested traffic states). It is affected by the
discontinuity when the corresponding edges start at xΦ + ∆x and end at xΦ. Consequently, the second term
in eq.(4) has to be modified when calculating N(x, t) for x = xΦ. The following subsections describe this
extension of eq. (4) for the propagation of traffic states from upstream and downstream nodes in the vicinity
of the inter-corridor connection, i.e. at x = {xΦ, xΦ + ∆x}.

3.2.3 Propagation of traffic states from upstream nodes at x = xΦ + ∆x

This section explains how to include source terms when traffic states propagate from upstream nodes across
the discontinuity of the Moskowitz function. In this case, the first term in the minimum operator in eq.(4)
becomes decisive, as it refers to the free-flow states traveling from upstream. We modify this term at
x = xΦ + ∆x to account for the upstream demand, and incorporate inflows and outflows based on turning
ratios at inter-corridor connections.
Recall that each term in eq.(4) consists of a known N and the costs c along a path. In order to modify the
equation, we adapt these two elements for its first term.
First, we focus on the known N -value at the upstream node, which equals to NP ′′ following the designations
in Figure 6a. We assume that N is known for all t < tP ′ . This is feasible because we can solve for N moving
from left to right in the variational graph. The turning ratio αij specifies the transfer flow from xi,Φ to
xj,Φ + ∆x. Similarly, the turning ratio αji specifies the transfer flow from xj,Φ to xi,Φ + ∆x. The demand
at P ′i can be calculated as the sum of the flow which stays on the corridor Ci, i.e. N i

P ′′ · (1− αij), and the
inflow from corridor Cj , i.e. N j

P ′′ · αji. This is depicted by the black dashed lines in Figure 6a for Ci.
Second, we examine the costs c associated to the path from NP ′′ to NP ′ . Note that c = 0 for the propagation
of traffic states from upstream nodes, as such states correspond to free-flow conditions. This fact does not
change by considering inflows, and therefore the costs for these edges remain equal to zero.
Eventually, we determine the term N i

P ′ by evaluating the following equation:
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N i
P ′(xΦ + ∆x, tP ′) = min(N i

P ′′(xΦ, tP ′′) · (1− αij) +N j
P ′′(xΦ, tP ′′) · αji,

N i(xΦ + 2∆x, t− θ∆t) + ∆xκ,
N i(xΦ + ∆x, t−∆t) + β).

(5)

The term N j
P ′ can be determined analogously. For both corridors, it can be seen that this equation only

requires to consider NP ′′ at the position of the inter-corridor connection xΦ. All other N are known from the
original VT formulation. Note that signal phases do not have to be considered explicitly as they are already
reflected in the values of N i

P ′′ and N j
P ′′ , i.e. they are implicitly taken into account.

3.2.4 Propagation of traffic states from downstream nodes at x = xΦ

In order to complete our modeling framework, we have to ensure the correct propagation of traffic states
from downstream nodes across the inter-corridor connections where discontinuities of the Moskowitz function
appear. Recall that only congested traffic states can be propagated from downstream. Thus, we modify the
second term in eq.(4) for x = xΦ which is decisive when congestion occurs. In other words, in this section we
explain how to model spillbacks. Without the loss of generality, the formulation in the following refers to
corridor Ci only. The formulation applies analogously for evaluating the traffic conditions on corridor Cj . For
the sake of clarity, we avoid using the coordinates of the points P ′′, P ′, and P in the following formulations
except for the eq.(11). They are described in subsection 3.2.3 and illustrated in Figure 6.
Again, the second term of the minimum operation consists of two elements. The first element is the known
Moskowitz function value NP ′ at the downstream node P ′(xΦ + ∆x, t− θt). The second one refers to the
costs c, i.e. the number of vehicles which can pass a moving observer travelling from the downstream node
P ′ to the point P (xΦ, t).
We first focus on the value NP ′ . Notice that any changes in NP ′ , i.e. ∆NP ′ (see Figure 5b) should first be
apportioned to each of the corridors upstream of Iij according to the signal phases and turning ratios. In
the absence of congestion the portion of NP ′ which corresponds to the Moskowitz surface related to NP
would simply be NP ′′ · (1− αij) as per the first term in eq.(5). The effect of congestion can be described as a
reduction of N , denoted as ∆N in Figure 5b. Since we know NP ′ and NP ′′ , we can calculate ∆N . Note that
corresponding spillbacks can originate on both corridors Ci and Cj . Thus, we have to consider two different
scenarios for each corridor. For corridor Ci we can write:

∆N ii
P ′ =

(
N i
P ′′ · (1− αij) +N j

P ′′ · αji
)
−N i

P ′ , (6a)

∆N ij
P ′ =

(
N i
P ′′ · αij +N j

P ′′ · (1− αji)
)
−N j

P ′ . (6b)

Recall that VT is built upon the concept of the moving observer. Keeping this notion in mind, one can
interpret ∆NP ′ as the difference in the number of vehicles a moving observer traveling from NP ′′ to NP ′

passes due to congestion compared to free-flow conditions. The indices i and j correspond to the corridors
where flows originate and propagate to, respectively. For example, ∆N ij

P ′ relates to vehicles in congestion
coming from corridor Ci with destination in corridor Cj . ∆N ii

P ′ relates to vehicles in congestion coming
from Ci with destination in corridor Ci. Note that the portion of NP ′ related to the upstream Moskowitz
functions on each corridor is determined based on the respective turning ratios α, as shown for the free-flow
case in eq.(5). This has to be considered when the change in the vehicle number ∆NP ′ is apportioned. We
do so by dividing ∆NP ′ by the turning ratio associated to each corridor. As an example assume a turning
ratio of αij = 50% and a ∆N ij

P ′ = 5 vehicles. That would mean that 5 vehicles coming from P ′′i did not
reach P ′j due to congestion. Moreover, this ∆N ij

P ′ = 5 would mean that 10 vehicles departed P ′′i as only
every second vehicle wanted to travel to P ′j . To find then the portion of NP ′ corresponding to the Moskowitz
function related to NP , denoted as N̂P ′ in eq.(7), we subtract from NP ′′ the total number of vehicles leaving
P ′′ being blocked by the congestion at P ′. This lets us formulate the effects of congestion at P ′ related to
the Moskowitz function at xΦ.
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N̂ ii
P ′ = N i

P ′′ −∆N ii
P ′ ·

1
1− αij

, (7a)

N̂ ij
P ′ = N i

P ′′ −∆N ij
P ′ ·

1
αij

. (7b)

To find the upper bound for NP due to congestion, we further have to consider the costs along the path from
P ′ to P which corresponds to the second element of the term related to congestion in eq.(4). Again, we
consider the case of congestion propagation only on corridor Ci. Note that the costs are ∆xκ in the original
formulation. In our case, these costs only apply when the signal phase does not change during the interval
[t− (1 + θ)∆t, t], i.e. in the time interval between NP ′′ and NP . However, when a signal phase change occurs
during that interval, flows from both corridors might occur at different times within the interval. Thus, the
costs c include vehicles originating from both corridors. We need to apportion c according to the vehicles’
origin for a correct spillback propagation. In other words, we need to ensure that costs only reflect the
vehicles related to the corridor where congestion is propagating to. Otherwise, we would overestimate the
costs of the edge, and consequently the second term in eq.(4). Ultimately, it could result in an overestimation
of NP and thus in an erroneous traffic state propagation from downstream. Assuming reasonable backward
wave speeds and that there is only one signal phase change during the considered time interval, there are
only two possibilities for such a phase change to occur:

• Change from red to green: In this case, a green phase is active at t = tP . The correct maximum
number of vehicles from Ci that a moving observer travelling from P ′i to Pi and from P ′j to Pi would
count has thus to be reduced by the vehicles coming from Cj . Let the variable r denote the duration
of the red phase for Ci starting at t = tP ′′ = tP − (1 + θ)∆t. This is equivalent to the green time for
Cj for that same period. Then, the maximum number of vehicles discharging from Cj and going
to Ci is ∆xκ · r

(1+θ)∆t · αji. Consequently, the maximum number that can discharge from Ci and
stay on that corridor is ∆xκ−∆xκ · r

(1+θ)∆t · αji. As for ∆NP ′ , we consider that a part of the total
inflow on corridor Ci stays on that corridor and a part turns into corridor Cj , so we divide by the
appropriate turning ratios, i.e. 1− αij for flow staying in Ci and αij for flow from Ci to Cj . The
costs c can then be formulated as:

cii = 1
1− αij

·
(

∆xκ−∆xκ · r

(1 + θ)∆t · αji
)
, (8a)

cij = 1
αij
·
(

∆xκ−∆xκ · r

(1 + θ)∆t · (1− αji)
)
. (8b)

• Change from green to red: In this case, a red phase is active at t = tP . Let the variable g denote the
duration of the green phase starting at t = tP ′′ = tP − (1 + θ)∆t. Then, the maximum number of
vehicles discharging from Ci and staying on this corridor is ∆xκ · g

(1+θ)∆t · (1− αij). Analogously to
the previous case, an formulation for the costs c can be found. However, for the case of an active red
phase at t = tP , the term related to capacity constraints in eq.(4) becomes decisive. Therefore, and
for the sake of clarity, we do not explicitly state the corresponding mathematical formulation in this
paper.

The sum of N̂P ′ from eq.(7) and the costs c from eq.(8) is an important step for the final formulation of the
spillback-induced upper bound for NP . This sum can be written as:

N̂ ii
P ′ + cii = N i

P ′′ + 1
1− αij

·
[
∆xκ ·

(
1− r

(1 + θ)∆t · αji
)
−∆N ii

P ′

]
,

N̂ ij
P ′ + cij = N i

P ′′ + 1
αij
·
[
∆xκ ·

(
1− r

(1 + θ)∆t · (1− αji)
)
−∆N ij

P ′

]
.

Note that the term in the squared brackets can become negative. This is for example the case when
∆NP ′ = ∆xκ, i.e. the space between P ′′ and P ′ is fully congested, and both r and α are unequal to zero.
Since the Moskowitz function is a monotonically increasing function, such values are impossible. We avoid
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them by applying a maximum function on the term in the squared brackets. Then, we can describe the
influence of congestion from corridors Ci and Cj on the Moskowitz function N i

P as:

N i
P = N i

P ′′ + 1
1− αij

·max
(

0,∆xκ ·
(

1− r

(1 + θ)∆t · αji
)
−∆N ii

P ′

)
, (10a)

N i
P = N i

P ′′ + 1
αij
·max

(
0,∆xκ ·

(
1− r

(1 + θ)∆t · (1− αji)
)
−∆N ij

P ′

)
. (10b)

This equation formally corresponds to the intuition that we have to consider the different Moskowitz functions
upstream and downstream of the discontinuity, as well as the current signal phases. Eq.(10a) becomes
constraining when spillbacks come from corridor Ci, and eq.(10b) becomes constraining for spillbacks from
corridor Cj . The general formulation for NP (xΦ, t) includes then eq.(10), as well as the free-flow and the
capacity related terms.

N i
P (xΦ, t) = min(N i(xφ −∆x, t−∆t),

N i
P ′′(xφ, t− (1 + θ)∆t) + 1

1− αij
·max

(
0,∆xκ ·

(
1− r

(1 + θ)∆t · αji
)
−∆N ii

P ′

)
,

N i
P ′′(xφ, t− (1 + θ)∆t) + 1

αij
·max

(
0,∆xκ ·

(
1− r

(1 + θ)∆t · (1− αji)
)
−∆N ij

P ′

)
,

N i(xφ, t−∆t) + β).
(11)

3.3 Implementation

The derived equations enable us to numerically derive the KWT solution for a network with turning flows.
The corresponding pseudo-algorithm is shown in algorithm 1. It describes the application of the proposed
equations for a network N . Based on this network, the set of corridors C is derived. It includes all turning
ratios A, the control settings, and the inflow at origins. For a total simulation period T , one iterates through
all t for each corridor C and evaluates eq.(4) - eq.(11).

Algorithm 1 Application of nVT on a network N
Step 0: Initialize network N including turning ratios A, control settings, and inflows at origins
Step 1: Derive the set of corridors C from N
Step 2: Apply the nVT framework on C:
for t in T do
for C ∈ C do
Evaluate eq.(4) for all x 6= xΦ and x 6= xΦ + ∆x
Evaluate eq.(5) for all x = xΦ + ∆x
Evaluate eq.(11) for all x = xΦ

end for
end for

This nVT model allows to solve complex heterogeneous KWT problems related to networks with signalized
control. Such problems involve source terms which are discrete in time and space. The required inputs are
the triangular FD, network topology, control settings, and demand patterns including turning ratios. As VT
allows the incorporation of any type of bottlenecks, nVT inherits this ability. The exact evaluation of N(x, t)
makes it superior to other methods like the CTM. The ability to handle complex heterogeneities at the link
level is advantageous compared to the LTM. Similar to the original VT framework, the computational effort
of our nVT only scales with time and space. This is beneficial compared to microscopic simulations which
usually also scale with the number of vehicles and thus congestion occurrence. We will discuss these points in
more detail in the next sections.
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4 Evaluation of nVT and its accuracy

In this section, we investigate the performance of our nVT on a small toy network, including the incorporation
of source terms and the propagation of congestion across inter-corridor connections. Moreover, we analyze
the role of the time-step size ∆t on the accuracy of the framework.

4.1 Proof of concept

As a proof of concept, we now test our nVT model for a ‘free-flow scenario’ and a ‘congested scenario’ on the
networks depicted in Figure 7. The network on the left consists of two corridors, C1 and C2, that intersect each
other at the inter-corridor connection I1. Recall that we defined inter-corridor connections as intersections
with turning ratios α > 0. While the right-hand network is similar, two additional intersections exist, one on
each corridor. These intersections act as active bottlenecks downstream of the inter-corridor connection I2
and therefore lead to congestion. The corridors are labelled as C3 and C4, respectively. The designation of the
two scenarios refers to the occurring traffic states downstream of the inter-corridor connection. We assume
possible turning movements for both inter-corridor connections I1 and I2, as illustrated by the blue arrows in
the figure. We set a cycle length of 90 s, and a red and green phase of 45 s for all approaches at all intersections.
All offsets are set to zero. We assume a triangular FD with jam density κ = 150 veh/km, a free-flow speed
u = 10m/s and a backward wave speed w = 5m/s. The inflow demand is set to a volume-to-capacity ratio of
V OC = 1.0, which refers to the intersection capacity, for both scenarios.

C1

C2

I1

a) Free-flow scenario.
C3

C4

I2

b) Congested scenario.

Figure 7: Test networks.

In the following, we first evaluate the traffic dynamics for the network displayed in Figure 7a. We discuss our
implementation of source flows for the case where no congestion is propagated from downstream of I1 (Section
4.1.1). We then analyze the results for the congested case (see Figure 7b), where the bottlenecks downstream
of I1 are active (Section 4.1.2). This will confirm that our proposed nVT model is able to capture traffic
dynamics in its full range including spillbacks, which occur due to the active bottlenecks. Additionally, we
verify our results by reproducing the traffic conditions on the same networks (given its topology and control
settings) with the microscopic simulator SUMO (Lopez et al., 2018) and an implementation of Newell’s
car-following model. This allows to show that the predicted traffic states using nVT are in agreement with
the KWT solution for the test networks.

4.1.1 Inclusion of source terms

The evaluation of nVT for the first network enables us to isolate the effects of source terms for the case where
no downstream congestion affects the traffic flow close to the inter-corridor connection. This allows us to
study the effects of different turning ratios. We assume turning ratios of α1,2 = 0.25 and α2,1 = 0.5. The
total simulated time is T = 500 s, and the time-step length which determines the size of the multi-dimensional
variational graph G is ∆t = 0.1 s. Recall that this specifies ∆x as well.
Figure 8 shows the results for both corridors as contour plots. The x-axis displays time in seconds, and the
y-axis space in meters. The color bar represents the density ranging from bright yellow for low densities,
to dark blue for high ones. These densities were obtained with the proposed nVT model. We also show
the trajectories extracted from SUMO as black and white curves, on top of the contour plots. The black
curves depict trajectories originating on corridor C1, while the white ones correspond to those originating on
C2. The effects of signal phases at the intersection at x=250m are clearly identified. The dark blue areas
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correspond to the jam density and thus represent the evolution of queues upstream of the inter-corridor
connection on both corridors. The discharge flows colored in green can also be clearly observed in the figure.
More important are the evident transfer flows between both corridors. This is illustrated by two facts. First,
densities k > 0 exist downstream of I1 also during red phases. Second, the discharge flows are split at I1, as
depicted by the different densities upstream and downstream of I1 for each corridor even during the green
phase. This is highlighted by the change in colors. The trajectories from SUMO represent a perfect match
to the predicted traffic states by our nVT model. They show that our framework successfully incorporates
source terms for the case when congestion does not propagate to the inter-corridor connection.
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Figure 8: Free-flow scenario: Time-space diagrams for corridor C1 (top) and corridor C2 (bottom) with a
traffic signal at I1 (x = 250m). The colors represent the density which was obtained with the nVT model.
The curves indicate trajectories obtained with the microscopic traffic simulator, and their color indicates the
origin (i.e black trajectories originate in C1 and white ones originate in C2).

4.1.2 Propagation of spillbacks

In the second step, we discuss a more general case where congestion appears downstream of the inter-corridor
connection. Our proposed framework should propagate spillbacks along and across corridors. That is, the
back of the queue has to spillover to at least one of the corridors, depending on the signal phase.
Figure 9 shows the simulation results. The axis and colors of the figure are the same as those of Figure 8.
The black curves depict trajectories originating on corridor C3, while the white ones correspond to those
originating on C4. The graph clearly shows the effects of the additional signals at x=400m which behave as
active bottlenecks. The congestion starting on corridor C3 propagates to I2, where it affects both corridors
upstream of I2. This can be seen by the queues which grow on both corridors with each cycle. Again, the
traffic states predicted by our nVT model fit the trajectories recorded from SUMO, illustrating that our
framework is able to successfully propagate congestion across inter-corridor connections.

4.2 Numerical error

In order to solve a given KWT problem with the nVT model, we have to define a multi-dimensional variational
graph G. The choice of the time-step size ∆t in G is crucial for the computational cost. The original VT has
the advantage of being exact in determining the Moskowitz function, independently of the grid size. The
only existing error is the so-called ‘sampling error’ (Daganzo and Menendez, 2005) that originates from an
inaccurate sampling of data along the boundary.
The incorporation of discrete source terms at inter-corridor connections does not alter the fact that the
framework is based on VT. It also inherits the exact numerical calculation of the Moskowitz function, as well
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Figure 9: Congested scenario: Time-space diagrams for corridor C3 (top) and corridor C4 (bottom) with a
traffic signal at I2 (x = 250m). The colors represent the density which was obtained with the nVT model.
The curves indicate trajectories obtained with the microscopic traffic simulator, and their color indicates the
origin (i.e black trajectories originate in C3 and white ones originate in C4).

as any potential sampling errors associated to VT. Our framework is able to consider inflows and outflows as
long as the corresponding terms are mapped in the variational graph. This is not different to existing VT
solutions, where bottlenecks are only considered when they are incorporated in G. Thus, nothing changes
compared to the current VT techniques with regard to numerical errors. In order to illustrate this, we
evaluate the congested scenario from the previous subsection for the time-steps ∆t = {0.1, 1, 5}s. Note that
the same analysis could be conducted for any other scenario. We plot N at I2 across t for both corridors.

0 100 200 300 400 500
Time [s]

0

20

40

60

80

100

C
u

m
u

la
ti

ve
co

u
n
t

N
[v

eh
]

∆t = 0.1 s

∆t = 1 s

∆t = 5 s

a) Moskowitz functions at I2 on corridor C3.
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b) Moskowitz functions at I2 on corridor C4.

Figure 10: Impact of the time-step ∆t on the results.

The y-axis displays the Moskowitz function N , the x-axis shows the time t in seconds. We plot the curves
resulting from the different times-steps as solid, dashed and dotted lines. However, comparing the numerical
values of all Moskowitz functions N∆t=0.1, N∆t=1, and N∆t=5 reveals that there is no difference between any
of them. The figure illustrates this by showing the exact same shape with a perfect overlap of all curves.
In other words, the Moskowitz function N(x, t) is found independently of the time-step ∆t, as long as all
bottlenecks and source terms are mapped in G. This confirms that our framework does not add any additional
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error to the original VT framework and thus is exact in determining N given a triangular FD and no sampling
error at the boundary.

5 Application of nVT to a realistic network

The previous section shows a very good fit of the trajectories from SUMO and the traffic states resulting
from our proposed nVT model. This section further applies our method on a larger network and compares
the predicted traffic states to the ones from a corresponding SUMO scenario. For our case study, we create a
network based on the well-known Sioux Falls example1. The solution of the KWT is the Moskowitz function
N(x, t). It allows us to derive all sorts of indicators, such as average flows, densities, and speeds, but also
travel times and delays. Thus, we present our results as Moskowitz functions in this case study. We compare
the results derived from our VT framework to those obtained with SUMO. First, we measure the average
flows per cycle according to both methods. This is a suitable aggregation for minimizing the stochastic
aspects of SUMO. Second, we show the Moskowitz functions for three locations in the network for the
purpose of illustration. Third, we analyze the computational effort of both methods, as the associated cost
for macroscopic models is usually low and thus advantageous for numerous applications.

5.1 Case study design

The nature of our framework and of the microscopic simulation are fundamentally different. The former is
macroscopic, and traffic can be deterministically assigned based on origin flows and turning ratios. Moreover,
intersections are modelled as points in space. The latter includes a car-following model, as well as routing
aspects next to origin flow and turning ratio definitions. In particular, SUMO allows specifying turning
ratios at intersections which are then considered in an internal routing algorithm for each vehicle. However,
deviations from the set turning ratios still occur. Also, intersections include radii with certain lengths, and
are thus not modelled as points in space. Having these differences between the two models in mind, we apply
several simplifications, described in the following, to be able to conduct a reasonable comparison.
Figure 11 presents the network for which the case study is performed. For the sake of simplicity, we only
consider intersections with 4 or fewer legs, and thus reduce the original Sioux Falls network slightly. In total,
the network consists of 43 links and 23 intersections. Each link is unidirectional and has only one lane. Note
that our model is not limited to unidirectional networks. However, the implementation of bi-directional
links increases the complexity of the case study, and therefore the influence of stochastic aspects of SUMO,
e.g. turning ratios, would become more significant. Hence, we avoid bi-directional links to increase the
comparability of the results from nVT and SUMO. All intersections are signalized with a cycle time of 90 s,
and a green and red phase of 45 s. All offsets are set to zero. The direction of travel is indicated by the
arrows in the figure.
In order to apply our nVT model, origin nodes and inflows, as well as turning ratios at inter-corridor
connections are required. We define the origin nodes, highlighted with arrows in Figure 11. We evaluate the
case study for five different demand scenarios with volume-to-capacity ratios of V OC ∈ {0.2, 0.4, 0.6, 0.8, 1.0}
where the capacity again refers to that of intersections. Additionally, we define turning ratios for five
intersections, i.e. five inter-corridor connections. This number is chosen to further reduce the complexity
of the problem as it limits the impact of vehicle routing in SUMO; thereby increasing the comparability of
both methods. Turning ratios are set to α = 0.5 for all five inter-corridor connections. The inter-corridor
connections are highlighted as dashed squares in Figure 11. Note that by defining origin nodes and turning
ratios, no destination nodes need to be set explicitly. The simulation period is one hour. We choose a
time-step of ∆t = 0.1 s, and an FD with the same parameters as described in the previous section.
Furthermore, as described in step 1 in section 3.1, we decompose the network into corridors based on the
horizontal and vertical orientation of links. In total we define 12 corridors. We describe them by noting the
included intersections in order of the travel direction in Table 1. Recall that the method of decomposition
does not affect the final result of nVT.

1derived from: https://github.com/bstabler/TransportationNetworks
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Figure 11: Sioux Falls network for the case study.

Table 1: Network decomposition.
Corridor C ∈ C Intersections I ∈ I
C1 {I1, I2, I3, I4}
C2 {I5, I6, I7, I8, I9}
C3 {I10, I11, I12, I13, I14, I15}
C4 {I16, I17, I18, I19, I20, I21}
C5 {I22, I23, I21}
C6 {I1, I16}
C7 {I2, I5, I10, I17}
C8 {I11, I18, I22}
C9 {I3, I6, I12, I19, I23}
C10 {I7, I13, I20}
C11 {I8, I14, I21}
C12 {I4, I9, I15, I21}

5.2 Results and discussion

5.2.1 Moskowitz functions

To evaluate the results of our nVT model, we extract the Moskowitz function at the upstream end of each link
and compare it to the Moskowitz function derived from the SUMO output. Subsequently, we measure the
average flow per cycle and calculate the differences between the results from nVT and SUMO. This results in
a total of 43 (one per link) values for each demand scenario. Figure 12 shows the box-and-whisker diagrams
for these differences related to each demand scenario.
On the left (Figure 12a) we show the absolute difference, and on the right (Figure 12b) the relative difference.
The latter corresponds to the absolute difference divided by the average number of discharging vehicles per
cycle according to SUMO. The absolute and relative errors are displayed on the y-axis, whereas the x-axis
corresponds to the volume-to-capacity ratio V OC. Generally, we observe very low errors. The relative error
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Figure 12: Differences of cycle-based counts between nVT and SUMO for all demand scenarios.

for low demands is marginally higher, simply because of the low flows per cycle. Also, we can see that the
median of the absolute error slightly increases with higher demands. This is clear, as a higher number of
vehicles leads to more stochasticity and routing complexity in SUMO. This is also reflected by the growing
inter-quartile range with growing demands. Most error observations are below 3% for all demand scenarios.
For a V OC = 1, this corresponds to an average difference of 0.5 vehicles counted per cycle in nVT and SUMO
across all intersections. Given numerical errors, the above mentioned stochasticity, and the different nature
of the microscopic and macroscopic modelling approaches, we adjudge this error as small.
In addition to these box-and-whisker diagrams, we present two Moskowitz functions in Figure 13 for illustration
purposes. We display the Moskowitz functions N from our nVT approach as solid black lines, and SUMO
as dashed grey lines for the intersection I3 (Figure 13a), and the inter-corridor connection I18 (Figure 13b).
Additionally, we plot the relative difference of both cumulative curves as dotted grey lines.

0 500 1000 1500 2000 2500 3000 3500

Time [s]

0

200

400

600

800

C
u

m
u

la
ti

ve
co

u
n

t
N

[v
eh

]

nVT

SUMO

∆N

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

∆
N

[%
]

a) Moskowitz functions at intersection I3.
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b) Moskowitz functions at inter-corridor connection I18.

Figure 13: Moskowitz functions at an intersection and an inter-corridor connections from nVT and SUMO.

The left y-axis shows the Moskowitz functions N in vehicles downstream of the intersections, while the right
y-axis shows the relative difference ∆N in per cent. The x-axis displays the simulation time in seconds.
Figure 13a corresponds to an intersection, where there are no turning flows, i.e. α = 0. One can observe the
characteristic step-wise increase due to the different signal phases. The relative difference is very high in the
beginning, but soon converges to a value close to 0 %. The high values for low t are due to the fact that the
difference is related to the N from SUMO, and these values are very low at the beginning of the simulation.
Moreover, stochastic influences appear to be large for small simulation duration. However, after a reasonable
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simulation period (i.e. warm-up period), the results from SUMO and nVT match each other very well. Figure
13b is an example for an inter-corridor connection. Due to the turning ratios α = 0.5, a constant flow occurs.
Again, both curves match each other very well for longer simulation periods, although a minor difference
of 1.5 % remains after the simulation is finished. Note that this is the link with the largest difference in
the whole network. Some of the reasons for these differences are mentioned in the paragraphs above. An
in-depth sensitivity analysis (Ge et al., 2014) could be used to further explore these differences paying especial
attention to the relation between the different inputs and the outputs of the SUMO simulations, but that’s
considered out of scope for this paper.

5.2.2 Computational effort

One great advantage of our method is the computational efficiency. This results from the macroscopic nature
of the model. We show a comparison of the computational effort of both methods for the presented Sioux
Falls case study in Table 2. The methods were evaluated on a computer with an Intel(R) Core(TM) i7-4600U
CPU with 2.10 GHz and 8 GB RAM.

Table 2: Computational effort comparison of SUMO and nVT
V OC Computation time [s]

SUMO nVT (∆t=0.1 s) nVT (∆t=1 s) nVT (∆t=5 s)
0.2 10.1

70.5 3.5 0.6
0.4 17.2
0.6 28.2
0.8 35.0
1.0 60.5

The demand scenarios are specified in the left-most column as a function of the V OC. We see that the
computational cost in seconds for SUMO scales with the increasing demand. Since each vehicle is simulated
separately it is logical that an increasing number of vehicles leads to an increasing computational effort. In
contrast, this is not the case for nVT since the computational cost scales with the multi-dimensional variational
graph G. The computational cost does not scale with demand, i.e. the actual number of vehicles simulated,
but only with the number of points in G. The results in the table show the effect of an increased time-step
∆t, which leads to a reduced number of points in G, and therefore to a drastic decrease of computational
effort required. While ∆t = 0.1 s leads to a high cost, the choice of ∆t = 5 s results in a computational
cost of two orders of magnitude lower than the highest one of SUMO. At the same time, no numerical error
is introduced by the larger time-step as indicated in Section 4.2. The appropriate choice of the time-step
makes our proposed nVT model suitable for real-time applications or as part of a model-based optimization
framework.
Overall, this case study clearly shows the applicability of our nVT model at the network level. The results
match those of a microscopic simulation for several demand scenarios very well. Moreover, the nVT framework
can evaluate network-wide traffic dynamics at a low computational cost. We conclude that our nVT model
represents a first step towards a fully VT-based KWT simulation applicable to large-scale networks.

6 Conclusion

This paper proposes an extension of the classical VT introduced by Daganzo (2005a) for the application at
the network level. For this purpose, a network is decomposed into a set of non-overlapping corridors which
include all edges. Subsequently, we propose a mathematical framework to incorporate real-valued source
terms which are discrete in time and space into VT. This is necessary as flow conservation on corridors
might not apply anymore. Our nVT model accounts for the corresponding discontinuities in the Moskowitz
function and is able to propagate free-flow and congested traffic states across intersections and throughout the
entire network. We successfully verify our framework for a simple network with the microscopic simulation
SUMO. Additionally, we show that our extension inherits the numerical exact calculation of the Moskowitz
function for triangular FDs from the original VT. Finally, we apply our framework to a case study for the
Sioux Falls network. We again compare the results to the solution derived from SUMO. The traffic states
predicted by our method clearly show a good fit to the ones from SUMO. Moreover, our results indicate the
low computational cost which can be achieved with our VT extension.
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We conclude that we successfully extended VT for networks with real discrete source terms at intersections.
For given origin flows and turning ratios, network-wide traffic conditions can be predicted according to KWT.
This includes heterogeneous complex types of KWT problems, as time-space dependent FD and moving
bottlenecks. The literature review showed the wide range of applications of VT, some of which may profit from
the possibility to apply VT at the network level as well. For example, it opens the door to a network-wide
evaluation of multi-modal traffic management strategies like the design and operation of intermittent bus
lanes. Such a design can be formulated as a model-based optimization where nVT can effectively be applied
as traffic simulation due to its low computational cost.
While our framework constitutes a clear contribution, many additions are relevant for future work. As we
focused merely on signalized intersections, the implementation of merges seems to be the next logical step. One
possibility could be the implementation of Daganzo’s merging model into our model. This would additionally
allow the modelling of partially conflicting traffic streams at intersections. Moreover, our framework is limited
to fixed turning ratios. While this still allows varying transfer flows, stochastic turning ratios could also be
considered in the future in order to enhance the model.
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