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Subhash Kak 
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Abstract. This paper investigates the consequences of the information-theoretic result 
that representations of numbers in base-e are most efficient. Since theories on complex 
system behavior in both natural and physical systems assume that Nature is optimal, as 
is done, for example, in the principle of least action, natural representations must be to 
the base e. Another way to interpret this fact is to take e as the information dimension 
of the data space. Some implications of this noninteger dimensionality are investigated. 
The approximate equivalent to such a space is the Menger sponge in which the 
recursion is taken to be random.  

Keywords: dimensionality, fractals, noninteger spaces, informational logic 

1. Introduction  

Attempts to reconcile epistemic and ontic interpretations can help discover the implicit 
assumptions of theory [1].  Although information privileges the epistemic view, its 
inherent tension with the ontological view is ignored by a focus on probabilities [2] or 
on measurement [3]. Viewing information in the distribution of objects to different 
scales as in the large-scale structure of the universe [4-5] or in theories on the 
relationship of gravitation to quantum mechanics [6-7] from the perspective of the 
dimensionality of space may present new insights.  
 
This paper is an attempt at bridging the epistemic and the ontic views by an explicit 
consideration of the nature of space by examining it with respect to information at a 
fundamental level. We do so by accepting that an idea like that of the principle of least 
action that endows Nature with “optimal” behavior also applies to information 
obtained through observation.   
 
In the most abstract setting, the intuition of space may be viewed as emerging from a 
general mapping of observed data that is recognized through our cognitive structures 
as the familiar three dimensions.  Since the most basic mapping is the representation 
of numbers for which the most efficient base is e [9], optimal mapping requires that 
space have the same dimension. We provide a constructive quantum mechanical proof 
of this assertion. The noninteger dimension of e=2.718... means that planar structures 
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have substantial probability, and this may be viewed as a consequence of an intrinsic 
dynamics related to space. 
 

2. Information dimension                          

One can think of information dimension of an object M as the amount of information 
necessary to specify the position of a point belonging to M, which is related to the 
representation of information to an appropriate base. A solid is three-dimensional 
because one needs three coordinates to specify any point inside. 
 
Proposition 1. The amount of information required to specify a point in a space 
represents the information dimension of that space. 
 
Not all physical shapes require integer dimensions.  To see this, consider measuring a 
shape by a cube and then use smaller cubes with the scaling factor of 𝜀𝜀, so that if N such 
smaller cubes are to be used, then we can write [10,11]:  

 
𝑁𝑁 = 𝜀𝜀−𝐷𝐷        (1) 

 
The dimensionality associated with the shape will then be: 
 

𝐷𝐷 = lim
𝜀𝜀→∞

(− log𝑁𝑁
log𝜀𝜀

)       (2) 

 
Now we ask the question of the dimensionality of a general space. If space were d-
dimensional, we could label the dimensions as 1, 2, 3, … d.  The probability of the use 
of each of the d dimensions may be taken to be the same and equal to 1/𝑑𝑑, and the 
information associated with each dimension is log𝑑𝑑. 
 
Clearly, the location information will be greater if the dimensionality is higher. But the 
increase in information must be squared off against the extra burden entailed by the 
use of the larger set of dimensions.  For two-dimensional space, the information value 
of each dimension is ln 2 = 0.693 nats (=1 bit); for three-dimensional space, it is 1.099 
nats (=1.585 bits); and for ten-dimensional space, it is 2.303 nats (=3.322 bits).   
 
The efficiency of the representation of information per dimension is: 
 

                                𝐸𝐸(𝑑𝑑) = ln𝑑𝑑
𝑑𝑑

                                                                  (3) 
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Its maximum value is obtained by taking the derivative of 𝐸𝐸(𝑑𝑑) and equating that to 
zero, which yields 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑒𝑒 = 2.71828. . ..  In other words: 
 
Theorem 1. The optimal number of information dimensions associated with space is e. 
 
Table 1 gives the value of E(d) in bits for d ranging from 2 to 10, together with the 
additional value for the optimum d=e (Figure 1). 

         
 Table 1. Efficiency of space of dimensions ranging from 2 to 10 

d 2 e 3 4 5 8 10 
E(d) bits 0.500 0.531 0.528 0.500 0.465 0.375 0.331 

  
The efficiency for e dimensions is 0.531 bits whereas for d=3 it is 0.528 bits. The next 
best value coming at the bases 2 and 4 (where it is 0.500 bits). The three-dimensional 
space is off from the e-dimensional optimal space by about 0.003, or about 0.6 percent. 
One may propose that since our cognitions are based on counting, we associate the 
nearest integer space of 3 dimensions to space. 
 

    
Figure 1. Efficiency of dimensions, 2 through 10 

 
Proposition 2. The information dimension of a physical space is its physical 
dimensionality. 
 
To visualize the e-dimensional space, one may consider it as shape or an abstract 
conception that is structured into different projections for small scale and large-scale 
phenomena. Its relation to the three-dimensional space is most clear at intermediate 
scales like the ones we encounter in everyday life. The terrestrial observer will see the 
large-scale as well as small-scale structures as a continuation of the nature of space at 
the terrestrial level.  
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Axiomatic foundations of non-integer spaces have been given by Wilson [12] and 
Stillinger [13]. In addition to the usual axioms that apply to Euclidean spaces, Stillinger 
needed to add two more axioms: one related to topology and another to integration 
measure. He further proposed that the realness of a fractional space less than 3 could 
be checked by experiments of sphere-packing but he acknowledged that to carry out 
such an experiment will not be an easy matter due to extreme constraints on accuracy. 
 
Theorem 2. A unit cube in an e-dimensional space has 𝑒𝑒𝑒𝑒~15.154 … sub-cubes each of 
side 1/e.  
 
Proof. A unit 2-cube in a 2-dimensional space is a square and the total number of sub-
cubes of side ½ is 22 = 4, and a unit 3-cube in a 3-dimensional space has sub-cubes of 

side 1
3
 that equal 33 = 27; generalizing, we get the result. 

 
The e-dimensional space is smaller than the 3-dimensional space. How it maps into the 

larger 3-dimensional space, consider how many sub-cubes of e-dimensions 1
𝑒𝑒
 can be 

fitted in a 3-dimensional unit cube. 
 

Theorem 3. The number of sub-cubes of side 1
𝑒𝑒
 that go into a 3-dimensional unit cube is 

20.085… 
 

Proof. The volume of sub-cubes of side 1
𝑒𝑒
  in a 3-dimensional space is 𝑒𝑒−3. Therefore, 

the number of such sub-cubes that will go into a volume of 1 is 𝑒𝑒3 = 20.085 … 
 
Seen from the perspective of ordinary 3-dimensional space, the number of sub-cubes 
after n iterative operations is 𝑒𝑒3𝑛𝑛. Therefore, applying formula (2), we get the value of 
the dimension to be  
 

 𝐷𝐷 = lim
𝜀𝜀→∞

(− log𝑒𝑒3𝑛𝑛

log3−𝑛𝑛
) = 𝑒𝑒.     (4) 

 
The other implication of this recursive structure is that we are speaking of fractal or 
scale-invariant systems, examples of which are the Mandelbrot set and the Pythagoras 
tree (Figure 2), and many natural structures such as the tree fern tree or the snail shell. 
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  Figure 2. Mandelbrot set (left), and Pythagoras tree (right) 
 
 

3. An approximation to the e-dimensional space  

Now consider a deterministic model to help with the visualization of an e-dimensional 
space. We need a scaling transformation by which 𝑒𝑒3~20  e-dimensional sub-cubes are 
seen as a subset of the 27 three-dimensional sub-cubes. This is done iteratively. 
 
Taking a cue from quantum mechanics, we may speak of a creation operator that maps 
space into structure. Specifically, the 𝑒𝑒3~20  sub-cubes of the e-space may be mapped 
by an appropriate iterative transformation in the 3-space. In other words, we need a 
mapping that takes us from the smaller sub-set of 20 sub-cubes to the larger 3-space of 
27 sub-cubes.  
 
Since a cube has six sides, this may be done by any mapping where one dark sub-cube 
is removed randomly from each of the six sides together with the one at the center. 
Although it is done uniformly in Figure 3, there is no reason why it cannot be done 
randomly. The seven extra sub-cubes represent the effect of the creation operator. 
 

 
Figure 3. A mapping of 20 e-space sub-cubes into the unit cube 

Let 𝑁𝑁𝑛𝑛 be the number of dark boxes, 𝐿𝐿𝑛𝑛 the length of a side of a light sub-cube, 
and 𝑉𝑉𝑛𝑛 the fractional volume of the dark cubes after the nth iteration, then 

𝑁𝑁𝑛𝑛 = 20𝑛𝑛         (5) 
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𝐿𝐿𝑛𝑛 = �1
3
�
𝑛𝑛

= 3−𝑛𝑛        (6) 

𝑉𝑉𝑛𝑛 = �20
27
�
𝑛𝑛

        (7) 

The dimension of such an iterative system will be: 
 

𝐷𝐷 = lim
𝜀𝜀→∞

(− log𝑁𝑁𝑛𝑛
log𝐿𝐿𝑛𝑛

)       (8) 

= ln 20
ln3

= 2.7268 …       (9) 

 
which is quite close to e = 2.71828…  
 
The difference between the values of D and e is only 0.3% and, therefore, it is a good 
deterministic model to visualize the e-dimensional space. The difference of 0.3% was 
due to the fact that we used the integer value of 20 rather than the exact value of 𝑒𝑒3 =
20.085 … 
 

4. Iterative construction 

Since the three-dimensional system is almost as efficient as the e-dimensional one, one 
would like to begin with an appropriate one-dimensional set and then generalize that 
to three dimensions.  
 
It is surprising that the random mapping described above may be derived by the use of 
the one-dimensional Cantor set [14], of two kinds of elements that we label dark and 
light (Figure 4) One starts with a line segment of unit length that is dark, converts the 
middle third to light, then converts the middle thirds from the remaining two dark 
segments to light, and so on. 
 
Formally, the Cantor set at the nth iteration, ∁𝑛𝑛, is: 
 

∁𝑛𝑛= ∁𝑛𝑛−1
3
∪ �2

3
+ ∁𝑛𝑛−1

3
�, for 𝑛𝑛 ≥ 1, and ∁0= [0,1]    (10) 

 

 
 
Figure 4. The Cantor set through several iterations 
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Generalizing this to two dimensions. each cell may be transformed according to the rule 
of the Sierpiński carpet [15] of Figure 5 in which the light areas remain unchanged and 
each dark area is mapped into itself excepting that the middle sub-square (out of nine) 
is changed from dark to light: 
 

0 → �
0 0 0
0 0 0
0 0 0

� ; 1 → �
1 1 1
1 0 1
1 1 1

�       (11) 

                                                   

 Figure 5. Iterative mapping of the Sierpiński carpet 

Equivalently, one might use a random mapping where the 0 of the mapping for 1 is 
placed randomly in the matrix in the right-hand side. An example of this is given in 
Figure 6 where it was placed in the middle left corner in the first iteration and 
variously in the second iteration, and so on. 

 

                

          Figure 6. The two-dimensional iterative random mapping 

The three-dimensional generalization of the Cantor set is the Menger sponge [16] 
whose first iteration was shown in Figure 2 with the second and third iterations shown 
in Figure 7: 
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Figure 7. The evolution of the Menger sponge: (a) second iteration; (b) third 
iteration  

Consider a model universe in which the dark cubes at each iteration creates 7 sub-cubes 
of light cubes. One may replace the mapping used in Figure 2 by modified forms. For 
example: (a) the light sub-cubes are not equal in size to the ones that remain dark (in 
other words, have a slower rate of conversion of dark to light), and (b) the 
transformation is done sequentially rather than at the same time for all regions. Doing 
so sequentially associates the process with a time variable. A steady-state model in 
which light and dark regions transform into each other at different rates may also be 
considered.  
 

At the first iteration, the light density is 7
27

, or approximately 0.26. In the second 

iteration, it will be 7
27

+ 20
27

× 7
27

 which is approximately 0.45 and so on as shown in Figure 

8. 
 

 
Figure 8. The increase in the density of light in the model universe 

 
There need to be further investigations of stochastic versions of the model universe so 
that one can consider additional empirical aspects.  

5. Measurements and dimensions 

0
0.2
0.4
0.6
0.8

1

0 2 4 6 8 10

Light Accumulation

                       (a)                                        (b) 
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Consider a system being interrogated by the observer by means of an interaction. This 
interrogation will be visualized by means of the transfer of a state or node of the experimenter 
into the system.  
 
Let variety, V, represent the novelty associated with each value of the data in terms of its 
diversity. We can associate variety not only each data point but associate it also with the original 
system as well as the aggregate system that includes the measurement node. One can compute 
V by looking at the novelty of combinations associated with the new information residing in the 
data vectors.  
 
An intuitively satisfactory way to define dimensionality is to compute the infimum of the variety 
that can be associated with all the object (or node)-states within the system. The dimension, D, 
of the data is the minimum possible value of V. 
 
Let the classical system, C, consist of n objects (or nodes in a network) and the observer, that is 
the measurement device, consist of m objects (or nodes). The information associated with the 
system will be maximized when the objects are associated with the equal probability.  
 
The entropy for the system is its Shannon entropy: 
 

𝐻𝐻(𝐶𝐶) = ln𝑛𝑛       (12) 
 

The entropy of the C+M, that is the classical system together with the measurement apparatus 
is  
 

𝐻𝐻(𝐶𝐶 +𝑀𝑀) = ln(𝑛𝑛 + 𝑚𝑚)          (13) 
 
The information obtained by the observer upon measurement is 

 
𝐻𝐻(𝐶𝐶 +𝑀𝑀) −𝐻𝐻(𝐶𝐶) = ln(𝑛𝑛 + 𝑚𝑚) − ln𝑛𝑛    

 

= − ln 𝑛𝑛+𝑜𝑜
𝑛𝑛

       (14) 

 
Since information is the logarithm of the total possibilities, the variety associated with each data 
point is: 
 

𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑑𝑑𝑒𝑒𝑜𝑜𝑒𝑒 𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑜𝑜 = (𝑛𝑛+𝑜𝑜
𝑛𝑛

)        (15) 

 
Since there are n data points, 
 

𝑉𝑉𝑑𝑑𝑒𝑒𝑜𝑜𝑒𝑒 = �𝑛𝑛+𝑜𝑜
𝑛𝑛
�
𝑛𝑛

          (16) 
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An intuitively satisfactory way to define dimensionality is to compute the infimum of the variety, 
V, that can be associated with all the object (or node)-states within the system. 
 
Definition. The dimension, D, of the data is the minimum possible value of V. 
 
The dimension of all linear data will be one and that of data associated with a plane will be two. 
This idea of dimension derived from information considerations can be viewed as being 
consistent with its intuitive meaning [9].  
 
The true variety of the data is obtained when 𝑛𝑛 → ∞: 
 

𝑉𝑉 =  lim
𝑛𝑛→∞

�1 + 1
𝑛𝑛
�
𝑛𝑛

= 𝑒𝑒𝑜𝑜.        (17) 

 
Considering n=1, m=1 the space has a dimension of 2, for it is associated with the pair of states 
associated with the system and the observer. With n=2, D=2.25, that indicate correlations 
between the two objects and the one observer. Beyond this the value builds up to 2.718 as 
shown in Figure 9. 
 

 
Figure 9. Dimensionality versus number of system states 

 
𝐷𝐷 =  min

𝑜𝑜
{𝑒𝑒𝑜𝑜} = 𝑒𝑒𝑜𝑜       (18) 

 
 
This result is identical to that obtained on probabilistic grounds for number representation 
systems where it was shown that number representation to the base e is optimal [9]. That 
previous paper did not present the physical intuition behind this non-integer dimension, and 
now we have addressed that issue. 
 
The information obtained by the measurement apparatus will increase exponentially with the 
capacity of the apparatus. 
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6. Minimum dimensionality of quantum data 

In the quantum case we must first specify the way the measurement is performed. The 
measurement is an interaction between the measured system S and the measuring apparatus 
M.  
 
Before the interaction, M is prepared in a ready-to-measure state |𝑝𝑝0⟩ , eigenvector of the 
pointer observable P of M, and the state of S is a superposition of the eigenstates |𝑎𝑎𝑜𝑜⟩ of an 
observable A of S. The interaction introduces a correlation between the eigenstates |𝑎𝑎𝑜𝑜⟩ of A 
and the eigenstates |𝑝𝑝𝑜𝑜⟩  of P: 
 

|Ψ0⟩ = ∑ 𝛼𝛼𝑜𝑜𝑜𝑜 |𝑎𝑎𝑜𝑜⟩⨂|𝑝𝑝0⟩ → |Ψ1⟩ = ∑ 𝛼𝛼𝑜𝑜𝑜𝑜 |𝑎𝑎𝑜𝑜⟩⨂|𝑝𝑝𝑜𝑜⟩    (19) 
 
In the orthodox Copenhagen Interpretation, the pure state |Ψ⟩ is assumed to “collapse” to one 
of the components of the superposition, say |𝑎𝑎𝑘𝑘⟩⨂|𝑝𝑝𝑘𝑘⟩, with probability |𝛼𝛼𝑘𝑘  |2. 
 
The state of the composite system after measurement is represented by the mixture ρc: 
 

𝜌𝜌𝑒𝑒 = ∑ |𝛼𝛼𝑜𝑜|2𝑜𝑜  |𝑎𝑎𝑜𝑜⟩⨂|𝑝𝑝𝑜𝑜⟩ ⟨𝑎𝑎𝑜𝑜|⨂⟨𝑝𝑝𝑜𝑜|    (20) 
 
where the probabilities |𝛼𝛼𝑜𝑜 |2 represent expectations associated with different eigenstates. 
 
Let the system S consist of n states and the measuring apparatus M, which defines the observer, 
consist of m states. The composite system S+M has n+m states. 
 
The entropy associated with the system S is [17]:  
 

𝑆𝑆(𝜌𝜌) = −𝑡𝑡𝑡𝑡(𝜌𝜌 ln𝜌𝜌)          (21) 
 
The maximum value of this is ln𝑛𝑛 when all eigenstates are equally probable. 
 
The maximum entropy of the system S before the measurement is ln𝑛𝑛, and of the composite 
system S+M after the measurement is ln(𝑛𝑛 + 𝑚𝑚).  
 
The measurement is associated with a change in entropy of S that equals: 
 

ln(𝑛𝑛 +𝑚𝑚) − ln𝑛𝑛 = ln (𝑛𝑛+𝑜𝑜)
𝑛𝑛

     (22) 

 
The proof thereafter is identical to one for the classical case shown above. 
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The least amount of information, D, required to specify a point in a space (or states of the 
system) is the information dimension of that space.  It measures the span associated with the 
data. It is quite clear that the minimum value of R is obtained when k=1. 
 
Statistical view of D 
In contrast to the implicit assumption that object and observer are apart in the classical case, in 
the quantum case when n=1, the space has a dimension of 2, for it is associated with the pair 
of states associated with the system and the observer. With n=2, D=2.25, that indicate 
correlations between the two objects and the one observer. Beyond this the value builds up to 
2.718 as shown in Figure 9.   
 
Since information is a statistical measure, this may be interpreted to mean that on an average 
one requires D pieces of information. A dimension of D=2.718 is closer to a three-dimensional 
system than a plane as shown in Figure 10. Let the probability of structures that are 2-
dimensional be p. Solving for p, we obtain that it is 0.282. 

                       
Figure 10. The dimensional probabilities for D=e 

 
Roughly speaking this means that on an average 28% of the structures will be effectively planar. 
If one were to imagine such a system with a random initial distribution of objects, after sufficient 
of time, it would achieve a distribution where about 28% of the objects will be in planar 
arrangement. 
 
But this is only possible if a dynamic can be associated with the contents of the space. This 
dynamic will make objects come closer together with time. In other words, a noninteger space 
is associated with an attraction field, and this means that the properties of integer and 
noninteger spaces are very different. 
 
Since the surface area is related to 𝑡𝑡2, the attraction force will be inversely proportional to the 
square of the separation. In the general case, the space associated with the data cannot be two-
dimensional. If the space were 2-dimensional with 1 < 𝐷𝐷 < 2, the proportionality with respect 
to 1/r would lead to infinite attraction at each point because the harmonic series 
 

1 + 1
2

+ 1
3

+ 1
4

+⋯ =  ∑ 1
𝑜𝑜

∞
𝑜𝑜=1      (23) 

 
is divergent. 
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Figure 11. The distribution of matter in the universe [22] 
 
We add that fractal dimensions have been observed in the large-scale structure of the 
universe [18-21]. Figure 11 presents an image of the distribution of matter in the 
universe generated by a simulation run modeling led by researchers at the U.S. 
Department of Energy’s Argonne National Laboratory showing clearly its self-similar or 
fractal characteristics [22]. 
 

7. Conclusions 

We examined implications of the information-theoretic result that optimal 
representation requires that the corresponding data space have an information 
dimension of e. This corresponds to just over 20 sub-cubes of side 1/e in the three-
dimensional unit cube. We provided a constructive classical and quantum mechanical 
proof of this assertion. We proposed an approximation to this space in terms of a 
random recursive Menger sponge, whose fractal nature may be seen across different 
scales.  
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