
P
os
te
d
on

28
J
u
l
20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
27
25
36
9.
v
1
—

T
h
is

is
a
p
re
p
ri
n
t.

V
er
si
on

of
R
ec
or
d
av
ai
la
b
le

at
h
tt
p
s:
//
d
oi
.o
rg
/1
0.
11
09
/O

J
S
P
.2
02
1.
30
51
45
3

Fast Sequential Clustering in Riemannian Manifolds for Dynamic

and Time-Series-Annotated Multilayer Networks

Cong Ye 1, Konstantinos Slavakis 2, Johan Nakuci 2, Sarah F. Muldoon 2, and John
Medaglia 2

1State University of New York at Buffalo
2Affiliation not available

October 30, 2023

Abstract

This work exploits Riemannian manifolds to build a sequential-clustering framework able to address a wide variety of clustering

tasks in dynamic multilayer (brain) networks via the information extracted from their nodal time-series. The discussion

follows a bottom-up path, starting from feature extraction from time-series and reaching up to Riemannian manifolds (feature

spaces) to address clustering tasks such as state clustering, community detection (a.k.a. network-topology identification), and

subnetwork-sequence tracking. Kernel autoregressive-moving-average modeling and kernel (partial) correlations serve as case

studies of generating features in the Riemannian manifolds of Grassmann and positive-(semi)definite matrices, respectively.

Feature point-clouds form clusters which are viewed as submanifolds according to Riemannian multi-manifold modeling. A

novel sequential-clustering scheme of Riemannian features is also established: feature points are first sampled in a non-random

way to reveal the underlying geometric information, and, then, a fast sequential-clustering scheme is brought forth that takes

advantage of Riemannian distances and the angular information on tangent spaces. By virtue of the landmark points and the

sequential processing of the Riemannian features, the computational complexity of the framework is rendered free from the

length of the available time-series data. The effectiveness and computational efficiency of the proposed framework is validated by

extensive numerical tests against several state-of-the-art manifold-learning and brain-network-clustering schemes on synthetic

as well as real functional-magnetic-resonance-imaging (fMRI) and electro-encephalogram

(EEG) data.

1

1

Fast Sequential Clustering in Riemannian Manifolds
for Dynamic and Time-Series-Annotated Multilayer Networks

Cong Ye,1 Konstantinos Slavakis,1 Senior Member, IEEE,
Johan Nakuci,2 Sarah F. Muldoon,3 and John Medaglia,4

This work exploits Riemannian manifolds to build a sequential-
clustering framework able to address a wide variety of clustering
tasks in dynamic multilayer (brain) networks via the information
extracted from their nodal time-series. The discussion follows a
bottom-up path, starting from feature extraction from time-series
and reaching up to Riemannian manifolds (feature spaces) to
address clustering tasks such as state clustering, community de-
tection (a.k.a. network-topology identification), and subnetwork-
sequence tracking. Kernel autoregressive-moving-average mod-
eling and kernel (partial) correlations serve as case studies of
generating features in the Riemannian manifolds of Grassmann
and positive-(semi)definite matrices, respectively. Feature point-
clouds form clusters which are viewed as submanifolds according
to Riemannian multi-manifold modeling. A novel sequential-
clustering scheme of Riemannian features is also established:
feature points are first sampled in a non-random way to reveal the
underlying geometric information, and, then, a fast sequential-
clustering scheme is brought forth that takes advantage of
Riemannian distances and the angular information of tangent
spaces. By virtue of the landmark points and the sequential
processing of the Riemannian features, the computational com-
plexity of the framework is rendered free from the length of the
available time-series data. The effectiveness and computational
efficiency of the proposed framework are validated by extensive
numerical tests against several state-of-the-art manifold-learning
and brain-network-clustering schemes on synthetic as well as
real functional-magnetic-resonance-imaging (fMRI) and electro-
encephalogram (EEG) data.

Index Terms—Network, brain, time-series, dynamic, multi-
layer, clustering, sequential, Riemannian manifold.

I. INTRODUCTION

A. Problem Statement

Data analytics [1] permeate nowadays social, wireless,
power-grid, and brain networks. In the rapidly growing field
of network neuroscience, learning from data plays a critical
role in revealing the topological and functional structure of the
brain [2, 3]. Nodes in a brain network may be neurons (mi-
croscopic scale), or even regions (macroscopic scale), while
edges may represent anatomical connections such as synapses
(structural connectivity at the microscopic scale), or, statisti-
cal relationships between regional brain dynamics (functional
connectivity at the macroscopic scale). Nodes are usually

1C. Ye (contact author; e-mail: congye@buffalo.edu) and K. Slavakis are
with the Department of Electrical Engineering, University at Buffalo (UB),
The State University of New York (SUNY), NY 14260, USA.

2Johan Nakuci is with the Neuroscience Program, UB, SUNY, USA.
3S. F. Muldoon is with the Department of Mathematics and the Computa-

tional and Data-Enabled Science and Engineering Program, UB, SUNY, USA.
4J. Medaglia is with the Department of Psychology, Drexel University,

PA 19104, USA, and the Perelman School of Medicine, University of
Pennsylvania, PA 19104, USA.

Fig. 1: An example of a brain network with two layers and two states
per layer, with the time axis considered to be perpendicular to the figure.
Snapshots (observations) of the dynamic network are taken at a number
of discrete time instances t ∈ Z (Z: the set of all integer numbers). All
those collected snapshots are denoted in this figure by the schematic “brains”
stacked on top of one another. The real-valued time-series, which annotates
node ν in layer l, is denoted by (y

(l)
ν [t])t∈Z. A state corresponds to a

specific network topology or nodal connectivity pattern which stays fixed
over multiple observations or time instances; an example of a state is the
resting state of the brain [10]. A layer corresponds to a “dimension” of
connectivity; for example, a layer may represent a subject in a clinical study,
or, a frequency band in which nodal time-series are observed. In this figure,
each state comprises two “communities” (green and red), and green-colored
nodes perform a common task. Such a collaboration can be modeled via
the “subnetwork sequence” {{5, 6}, {1, 2}, {1, 2, 4, 5}, {3, 5, 6}}, where the
integers indicate the node indices that take part in the common effort across all
states and layers. Appropriate features, extracted from the time-series of those
nodes, are expected to form a cluster in the feature space. The identification
of that cluster will reveal the subnetwork sequence.

annotated with time-series, and popular noninvasive modalities
that acquire those time-series data are functional magnetic
resonance imaging (fMRI), which monitors blood oxygen-
level dependent (BOLD) data [4], and electro-encephalography
(EEG), where data are collected by electrodes placed on the
scalp of a subject. Recent generalizations move towards the
direction of multilayer (a.k.a. multiview [5] or multiplex [6])
networks [7–9], where layers are used to model several modes
or dimensions of connectivity among network nodes; e.g., a
layer may correspond to a subject in a clinical study, or, a
frequency band in which nodal time-series are observed (see
Fig. 1).

Network clustering is a rich data-analytic paradigm that
includes the following learning tasks (see Fig. 1).

Learning task 1: State clustering, where the goal is to
identify states of the brain, with “state” referring to a “global”
connectivity pattern among network nodes that stays fixed
over a time interval. Clustering states in brain networks

2

has enhanced understanding of brain disorders such as the
Alzheimer disease and autism [11], depression [12], anxiety,
epilepsy and schizophrenia [13]. It is worth stressing here
that the border between the concepts of “state” and “layer” is
blurry; viewing a state, or, observations over a time-window
as a layer, for example, often facilitates learning tasks, e.g.,
[9, 14]. Nevertheless, a subtle distinction is that a layer is
usually well defined and known to the user a-priori, e.g.,
subjects in a clinical study or frequency bands, whereas
states may not be provided beforehand and may need to
be learned from the brain-network time-series; an epileptic
seizure state, for example, may need to be separated from
non-seizure ones through EEG time-series observations [15].
The following discussion is developed having in mind those
delicate distinctions between states and layers.

Learning task 2: Community detection (a.k.a. network-
topology identification), which aims at identifying communi-
ties/subgroups of nodes within a single state/layer, with rich
applications in network neuroscience, e.g., [16–18].

Learning task 3: Subnetwork-sequence clustering, where
a “subnetwork sequence” is defined as a sequence of sub-
groups of network nodes which emerge from different
states/layers, with nodes which may change as the network
transitions from one state/layer to another, and with nodal
time-series that share and preserve common characteristics
along the whole evolution path of the sequence of subnet-
works; e.g., the green-colored subnetwork sequence of Fig. 1.
Subnetwork-sequence clustering aims at a moment-by-moment
tracking of the cognitive contents in the brain, and traces the
ability of the brain network to stimulate collaboration among
its nodes to perform a common cognitive task, e.g., [19].

Following the machine-learning paradigm [20], features will
be extracted from the nodal time-series to address the previous
network-clustering tasks. Riemannian manifolds will serve as
feature spaces, motivated by the fact that popular time-series
statistics are strongly connected with Riemannian manifolds,
e.g., correlations and low-rank subspaces can be mapped into
the manifolds of (symmetric) positive (semi)definite matri-
ces [21] and Grassmann [22] (a.k.a. Grassmannian: the set
of all linear subspaces of a fixed rank [23, 24]), respectively.
Although most of the Riemannian manifolds used in data
analytics are considered to be embedded in Euclidean spaces,
there are important cases where points of the Riemannian
manifold cannot be represented by Euclidean vectors, e.g., the
Grassmannian. Despite Nash’s embedding theorem [25, 26],
according to which Riemannian manifolds can be embedded
in Euclidean spaces under certain conditions, such embeddings
may unnecessarily increase the dimensionality of the target
feature space and weigh down any computational effort to run
sophisticated learning tasks on such features [27].

This work claims that the rich geometry of (not necessarily
embedded in Euclidean spaces) Riemannian manifolds allows
latent feature patterns to unfold to the benefit of all of
the aforementioned network-clustering tasks. With nowadays
applications facing large-scale networks and data, e.g., very
long nodal time-series, it is of crucial importance in this
data-deluge era [28] to develop a computationally efficient

clustering framework that operates sequentially on data and
features and carries through all of the network clustering tasks
in Riemannian manifolds. Although the results of this work can
be applied to any type of network, this manuscript solidifies
arguments via brain networks.

B. Prior Art

Most of the existing studies address single-layer networks,
operating in batch and not sequential mode, e.g., [10, 29–32].
Manifold-learning based schemes, not developed originally
for network-time-series analysis, e.g., [33], can be tailored to
address network-clustering tasks. To save space, a detailed re-
view of those methods is deferred to [31]. Standard manifold-
learning techniques are often used as off-the-shelf tools in
network-neuroscience studies, e.g., [34, 35]. Works that dig
deeper into the specific Riemannian geometry of positive-
(semi)definite matrices to offer solutions for neuroscience, but
do not consider the wide variety of clustering tasks that this
study addresses, can be found in [21, 36].

The majority of batch-clustering frameworks for multi-
layer networks has been built on popular learning tools
such as subspace learning [37, 38], fuzzy clustering [39],
the wavelet transform [40], tensor decompositions [41, 42],
multilayer modularity maximization [16], and graph signal
processing [43]. Batch approaches for multilayer networks
include also [9, 44, 45], with [45] being able to address both
state clustering and community detection, but not subnetwork-
sequence clustering since inter-layer information cannot be ac-
commodated. Correlation matrices and hierarchical clustering
were proposed in [14] to detect communities in multilayer
brain networks. Works [16, 38, 40] explore inter-layer depen-
dencies, but none of them considers the subnetwork-sequence
clustering task. Study [32], as a predecessor of this work,
can accommodate all of the aforementioned network clustering
tasks, and can be extended straightforwardly to the multilayer
network case, but it can only operate in a batch mode, and its
computational complexity footprint is thus burdened by the
number of available feature-points.

Sequential clustering algorithms, where feature extraction
is also performed sequentially, have been reported in [46–48].
Work [47] uses the wavelet features proposed in [40] to in-
troduce a sequential clustering framework for state clustering.
A manifold-learning based sequential clustering scheme, not
developed originally for network time-series, can be found
in [49]. Stochastic block modeling for evolutionary clustering
and tracking was proposed in [50, 51], while a clustering
algorithm, based on support vector machines and with high
computational complexity, was introduced in [52, 53]. Tensor-
factorization approaches for streaming data were introduced
in [17, 54, 55]. Nevertheless, none of the aforementioned
sequential clustering algorithms considers the multilayer-
network setting. Study [56] proposed a sequential cluster-
ing method for community detection in multilayer networks
via modularity-function optimization. Method [56] can also
perform subnetwork-sequence clustering by considering each
state as a layer, under the assumption that state changes
are reflected in a known and measurable property of nodal

3

time series data. Another sequential clustering algorithm for
multilayer networks, based on local linear embedding and
spectral clustering, was proposed in [57]. Study [57] cannot
perform subnetwork-sequence clustering since it offers no
mechanism to incorporate inter-layer dependencies. Work [58]
builds on sparse subspace clustering and follows a similar
path with [17, 57]: first, communities are detected, and then,
based on the “change points” of the communities, states
are clustered. Methods [17, 58] can accommodate inter-
layer information, and they can be modified to perform also
subnetwork-sequence clustering by considering each state as
a layer, under the constraint that all states occupy the same
time duration, which is dictated by their feature-extraction
mechanisms. Since [58] utilizes sparse subspace clustering,
it assumes that data lie into or close to a union of unknown
affine (linear) Euclidean subspaces, and thus, it accommodates
neither any Riemannian geometry, nor Riemannian features
which may not be embedded in Euclidean spaces, e.g., the
Grassmannian. Method [17] exploits tensor decompositions,
but without any consideration of any Riemannian geometry.
Among all of the cited frameworks, only [33, 49] can address
all network-clustering tasks in a Riemannian manifold, after
appropriate modifications, since [33, 49] were not developed
originally for network time-series clustering. Numerical tests
on [17, 33, 49] are reported in Sec. IV.

C. Contributions of this Manuscript

First, this work aims at filling the void in Riemannian
methods for sequential clustering able to address all possible
clustering tasks in a multilayer network: state clustering,
community detection, and subnetwork-sequence identifica-
tion/clustering. Following a bottom-up approach, features are
first extracted sequentially from raw nodal time-series and
then mapped to Riemannian manifolds [23, 24]. To help
the reader, kernel autoregressive–moving-average (kARMA)
modeling and kernel (partial) correlations are used as case
studies to define features in the Riemannian manifolds of
Grassmann and positive-(semi)definite matrices, respectively.
Kernel functions are used to capture latent non-linear depen-
dencies among the network’s time-series. For convenience, a
high-level description of the novel clustering framework is
provided in Fig. 2a.

Second, rather than turning to popular manifold-learning
techniques as off-the-shelf tools to develop the sequential-
clustering module that drives the framework of Fig. 2a, this
study builds also a novel sequential-clustering method for
Riemannian manifolds. Under the hypothesis that data are
placed close to or into a union of possibly intersecting subman-
ifolds (Riemannian multi-manifold modeling (RMMM) [59,
60]), a small number of landmark feature points are cho-
sen in a non-random way to sketch the geometry of the
possibly massive point-cloud of features. After a sketch of
the geometry has been obtained, the proposed sequential-
clustering scheme considers both Riemannian distances and
the angular information of tangent spaces [23, 24] to cluster
the remaining non-landmark feature points. By virtue of the
small number of landmark points (relative to the total number

Brain-network timeseries data

Clustering
task

Extract Riemannian
features for state clustering

St1

Use the sequential-
clustering module of

Fig. 2b to identify states

St2

Clustering results

State clustering

Extract Riemannian
features for state clustering

Comm1

Use the sequential-
clustering module of

Fig. 2b to identify states

Comm2

Per state, extract
Riemannian features

for community detection

Comm3

Per state, use the
sequential-clustering
module of Fig. 2b to
identify communities

Comm4

Community
detection

Extract Riemannian
features for state clustering

Sub1

Use the sequential-
clustering module of

Fig. 2b to identify states

Sub2

Per state, extract
Riemannian features

for subnetwork-
sequence clustering

Sub3

Cluster features from
all states via the

sequential-clustering
module of Fig. 2b

Sub4

Subnetwork-sequence
clustering

(a) The network-clustering framework

M

xi

xi′

C1
C2

Features/points {xi}i∈I in Riemannian manifold M

Select a small number of landmark
points by the Riemannian-
geometry cognizant Alg. 3

Use the eGCT algorithm [32]
to cluster the landmark points

Sequential geodesic clustering
by tangent spaces; cf. Alg. 4

Clustering results {Ck}Kk=1

(b) Fast sequential clustering in Riemannian
manifolds

Fig. 2: (a) The pipeline of the proposed network-clustering framework. (b)
The fast sequential-clustering scheme is used in submodules Comm2, Comm4,
St2, Sub2 and Sub4 of the framework in Fig. 2a.

of features) and the sequential operating mode, the compu-
tational complexity of the proposed scheme is set free from
the dependency on the total number of features, surmounting
thus the heavy computational-complexity obstacle of its batch
predecessors [31, 32] which appears especially in cases where
the length of the network nodal time-series is excessively large.
A description of the novel sequential clustering scheme is
given in Fig. 2b.

4

D. Organization of the Manuscript

The rest of the manuscript delineates the building
blocks/submodules of the framework of Fig. 2. In Sec. II, the
feature-extraction scheme is detailed, while Sec. III presents
the novel sequential clustering algorithm. Numerical tests on
synthetic and real data are reported in Sec. IV. Finally, Sec. V
concludes the discussion. Figures and tables that do not fit
in the main body of the manuscript, due to space constraints
dictated by this Journal, are provided in the supplementary
file. Those figures and tables are labeled by the “Supp” tag.

II. EXTRACTING RIEMANNIAN FEATURES
FROM NODAL TIME-SERIES

The main mathematical objects of this study are Riemannian
manifolds. Loosely speaking, manifolds can be considered as
smooth, possibly curved surfaces; see for example Fig. 3.
A detailed review on Riemannian manifolds is out of the
scope of this study; the interested reader may refer to [24].
Nevertheless, to help the reader and provide details on mod-
ules Comm1, Comm3, St1, Sub1, and Sub3 of Fig. 2a, this
section showcases the Riemannian manifolds of Grassmann
and of positive (semi)definite matrices, as well as the ways to
extract and map features from network time-series into those
manifolds.

The Grassmannian Gr(ρ,M) is defined as the collection
of all linear subspaces of RM with rank equal to ρ; usually,
ρ � M [23, p. 73], [24]. The Grassmannian Gr(ρ,M) is a
Riemannian manifold with dimension equal to ρ(M − ρ) [23,
p. 74], [24]. An element of Gr(ρ,M), denoted here by [O],
with O standing for an M × ρ orthogonal matrix O whose
columns span the linear subspace [O], cannot be represented
uniquely by a Euclidean vector: there is an uncountable num-
ber of M×ρ orthogonal matrices, i.e., orthonormal bases, with
columns spanning [O]. In other words, Gr(ρ,M) is a quotient
space [23, 24]. According to Nash’s embedding theorem [25,
26], Gr(ρ,M) can be embedded in a Euclidean space, but
of dimensionality considerably larger than ρ(M − ρ) [27].
A Riemannian manifold M is endowed with a distance
measure distM(·, ·) [24]. For the linear subspaces [O], [O′] ∈
Gr(ρ,M), the Riemannian distance between [O] and [O′] is
defined as distM([O], [O′]) := (1/2)‖OOᵀ −O′O′ᵀ‖F [61],
where ‖·‖F stands for the Frobenius norm. The cost Cdist
of computing distM(·, ·) scales in the order of O(ρ2M).
Moreover, the (manifold) logarithm map log(M)

x (·), which
maps points of the Riemannian manifold M into the tangent
space at the point x ∈ M [24] (see Fig. 4), will be used
frequently in the following discussion. A way to compute
log(M)

x (·) in the case where M is the Grassmannian, via the
singular value decomposition (SVD) with a computational cost
of order O(ρ2M), can be found in [59, 60, 62].

The set of all M ×M (symmetric) positive-(semi)definite
matrices P(S)D(M) is a Riemannian manifold of dimen-
sion M(M + 1)/2 [21, 36, 63]. This work prefers PD(M)
over PSD(M) due to the “simple” form that the (mani-
fold) logarithm map log(M)

x (·) takes in the case of M :=
PD(M) [59, 60, 63]. For matrices K,K′ ∈ M := PD(M),
their Riemannian distance is defined as distM(K,K′) :=

‖log(K) − log(K′)‖2F, where log(·) denotes the usual matrix
logarithm [64]. The computational cost of both log(M)

x (·) and
log(·) scales in the order of O(M3) [63, 64].

A. Notation

Consider a multilayer network/graph G := (N , E ,L), with
nodes N of cardinality |N |, edges E , and layers L of cardinal-
ity |L|. Node ν ∈ N in layer l ∈ L is annotated with the time-
series (y

(l)
ν [t])t∈Z, where Z denotes the set of integer numbers;

cf. Fig. 1. The physical meaning of N , L and (y
(l)
ν [t])t∈Z

depends on the underlying data-collection modalities. In fMRI,
for example, N comprises regions of interest (ROI) of the
brain which are connected either anatomically or functionally,
L may serve as a set of frequency bands in which time-series
are observed, or a group of subjects in a clinical study, and
(y

(l)
ν [t])t∈Z becomes the BOLD time-series of the averaged

signal in the νth ROI of layer l [4]; e.g., Fig. 5d.
For a subset/collection V of nodes, and an integer q ∈

Z>0, the q × 1 vector y
(l)
V [t] is used in this manuscript to

collect all signal samples from nodes V in the lth layer of
the network at time t. For example, in the case of state
clustering, where a “snapshot” of all nodes of the lth layer
of the network is needed, V takes the value of N and
y
(l)
N [t] := [y

(l)
1 [t], . . . , y

(l)
|N |[t]]

ᵀ, with q := |N | and with ᵀ
standing for vector/matrix transposition. On the other hand, in
the cases of community detection and subnetwork-sequence
identification, where features per nodal time-series need to
be extracted, V := ν, for ν ∈ N , so that for a given time-
window length τw ∈ Z>0 and with q = τw, y

(l)
ν [t] :=

[y
(l)
ν [t], . . . , y

(l)
ν [t+τw−1]]ᵀ. Under rigorous notation, V ∈ N,

where set N ⊂ 2N collects all available subsets of nodes, with
2N denoting the power set of N . For a subset of consecutive
time instances T ⊂ Z of finite cardinality |T | < +∞,
the following discussion assumes that data (y

(l)
V [t])t∈T are

available to the user, for layers l ∈ L and subsets/collections
of nodes V ∈ N.

B. Features in the Grassmannian

Motivated by the success of kernel methods in capturing
non-linearities in data [65, 66], consider now a user-defined
reproducing kernel Hilbert space (RKHS) H, with its as-
sociated reproducing kernel function κ(·, ·) and the induced
mapping function ϕ : Rq → H : y 7→ ϕ(y) := κ(y, ·) (cf.
Appx. A). There can be many choices for κ(·, ·). Combinations
of multiple kernels can also generate new kernel functions
(cf. Appx. A). For a user defined parameter Tw ∈ Z>0,
define ϕ(l)

t := [ϕ(y
(l)
V [t]), ϕ(y

(l)
V [t+ 1]), . . . , ϕ(y

(l)
V [t+ Tw −

1])]ᵀ ∈ HTw . Following the kernel-autoregressive-moving-
average (kARMA) model of [32], it is assumed that there
exist matrices C(l) ∈ RTw×ρ, A(l) ∈ Rρ×ρ, the latent
ψ

(l)
t ∈ Hρ, and υ(l)

t ∈ HTw , ω(l)
t ∈ Hρ, which model noise

and approximation errors, such that (s.t.) ∀t,
ϕ

(l)
t = C(l)ψ

(l)
t + υ

(l)
t , ψ

(l)
t = A(l)ψ

(l)
t−1 + ω

(l)
t .

5

Given also parameters m, τf, τb ∈ Z>0, define the “forward
matrix” in HmTw×τf

F (l)
V [t] :=

ϕ

(l)
t ϕ

(l)
t+1 . . . ϕ

(l)
t+τf−1

ϕ
(l)
t+1 ϕ

(l)
t+2 . . . ϕ

(l)
t+τf

...
...

. . .
...

ϕ
(l)
t+m−1 ϕ

(l)
t+m . . . ϕ

(l)
t+τf+m−2

 , (1a)

and the “backward matrix” in HτbTw×τf

B(l)
V [t] :=

ϕ

(l)
t ϕ

(l)
t+1 . . . ϕ

(l)
t+τf−1

ϕ
(l)
t−1 ϕ

(l)
t . . . ϕ

(l)
t+τf−2

...
...

. . .
...

ϕ
(l)
t−τb+1 ϕ

(l)
t−τb+2 . . . ϕ

(l)
t+τf−τb

 . (1b)

Then, according to [32], there exist matrices Π(l)[t + 1] ∈
Rρ×τbTw and E(l)

τf
[t + 1] ∈ RmTw×τbTw s.t. the following low-

rank factorization holds true: (1/τf)F (l)
V [t+ 1]⊗HB(l)

V [t]ᵀ =

O
(l)
V Π(l)[t + 1] + E(l)

τf
[t + 1], where product ⊗H is defined

in Appx. B, and O
(l)
V is the so-called observability ma-

trix: O
(l)
V :=

[
C(l)ᵀ, (C(l)A(l))ᵀ, . . . , (C(l)(A(l))m−1)ᵀ

]ᵀ ∈
RmTw×ρ. Under certain conditions, it can be shown that
(limτf→∞ E(l)

τf
[t] = 0, ∀t) [32]. Hence, the following task is

proposed to obtain an estimate of the observability matrix:(
Ô

(l)
V [t+ 1], Π̂(l)[t+ 1]

)
∈

arg min
O∈RmTw×ρ

Π∈Rρ×τbTw

∥∥∥ 1
τf
F (l)
V [t+ 1]⊗HB(l)

V [t]ᵀ −OΠ
∥∥∥2

F
. (2)

To solve (2), SVD is applied to obtain
(1/τf)F (l)

V [t + 1]⊗HB(l)
V [t]ᵀ = UΣVᵀ, where the

(mTw × mTw)-matrix U is orthogonal. Assuming
that ρ ≤ rank(F (l)

V [t + 1]⊗HB(l)
V [t]ᵀ), the

Schmidt-Mirsky-Eckart-Young theorem [67] provides the
estimate Ô

(l)
V [t+ 1] := U:,1:ρ, where U:,1:ρ is the orthogonal

matrix that collects the ρ columns of U that correspond to the
top (principal) ρ singular values in Σ. Due to the ambiguity
Ô

(l)
V [t + 1] · Π̂(l)[t + 1] = Ô

(l)
V [t + 1]P · P−1Π̂(l)[t + 1],

for any non-singular matrix P, and the observation that the
column (range) spaces of Ô

(l)
V [t + 1]P and Ô

(l)
V [t + 1]

coincide, it becomes preferable to record the column space of
Ô

(l)
V [t + 1], denoted by [Ô

(l)
V [t + 1]], rather than Ô

(l)
V [t + 1]

itself. Interestingly, for ρ := rank[Ô
(l)
V [t + 1]], the linear

subspace [Ô
(l)
V [t + 1]] becomes a point in the Grassmannian

Gr(ρ,mTw). The algorithmic procedure of extracting feature
[Ô

(l)
V [t+ 1]] is summarized in Alg. 1.

Parameters in Alg. 1 need to be chosen properly to guarantee
that feature [Ô

(l)
V [t+ 1]] captures the statistical information of

the data. Parameters Tw, m, and ρ control the dimension of
the Grassmannian. The sum of m, τf and τb should not be
greater than the length of the time-series, due to the size of
the “forward” and “backward” matrices, while a large value
of τf can help reduce the estimation error in (2).

Algorithm 1: Extracting Grassmannian features

Input : Data {(y(l)
V [t])t∈T }V∈N,l∈L.

Parameters: Positive integers Tw, m, ρ, τf and τb.
Output : Grassmannian features {xobs

i }i∈Iobs .

1 i = 0.
2 for all available layers l do
3 for all available collections of nodes V do
4 for all available time instances t do
5 Form (1/τf)F (l)

V [t+ 1]⊗HB(l)
V [t]ᵀ via (1)

and Appx. B.
6 Apply singular value decomposition:

(1/τf)F (l)
V [t+ 1]⊗HB(l)

V [t]ᵀ = UΣVᵀ.
7 i← i+ 1.
8 Feature xobs

i := [Ô
(l)
V [t+ 1]] ∈ Gr(ρ,mTw)

is the linear subspace spanned by the ρ
“principal” columns of U.

9 Gather all features {xobs
i }i∈Iobs .

C. Features in the Positive-Definite-Matrices Manifold

This section demonstrates ways to map correlations,
extracted from multi-layer network time-series
{(y(l)ν [t])t∈T }ν∈N ,l∈L, to the Riemannian manifold of
positive-(semi)definite matrices. To this end, define the
offset µ(l)

ν := (1/|T |)∑t∈T y
(l)
ν [t] and let the “centered”

time-series ỹ(l)ν [t] := y
(l)
ν [t] − µ(l)

ν . Consider, then, a sliding
window of length τw ∈ Z>0, and define the (τw × 1)-vector
ỹ
(l)
ν [t] := [ỹ

(l)
ν [t], ỹ

(l)
ν [t+ 1], . . . , ỹ

(l)
ν [t+ τw − 1]]ᵀ. Aiming at

kernel correlations, consider also a user-defined RKHS H,
with its reproducing kernel function κ(·, ·) and the induced
non-linear mapping ϕ(·) (cf. Appx. A).

1) Kernel Correlations
To address community detection and subnetwork-sequence

clustering tasks in multilayer networks, kernel correlations will
be extracted from (ỹ

(l)
ν [t])t∈T for every ν. To this end, define

ϕ
(l)
t := [ϕ(ỹ

(l)
ν [t]), ϕ(ỹ

(l)
ν [t+ 1]), . . . , ϕ(ỹ

(l)
ν [t+ Tw − 1])]ᵀ ∈

HTw to capture non-linear correlations, where the sliding time-
window parameter Tw ∈ Z>0. The kernel correlation matrix is
defined as the Tw×Tw matrix K

(l)
ν [t] := ϕ

(l)
t ⊗Hϕ(l)

t
ᵀ, whose

(ξ, ξ′)th entry is κ(ỹ
(l)
ν [t+ ξ− 1], ỹ

(l)
ν [t+ ξ′− 1]). In the case

where kernel κ(·, ·) becomes the linear one (cf. Appx. A), then
each entry κ(ỹ

(l)
ν [t+ ξ− 1], ỹ

(l)
ν [t+ ξ′− 1]) boils down to the

classical dot-vector product ỹ
(l)
ν [t+ξ−1]ᵀỹ

(l)
ν [t+ξ′−1], which

is, in turn, a scaled version of the classical sample correlation
(1/τw)

∑τw−1
τ=0 ỹν [t+ ξ−1 + τ]ỹν [t+ ξ′− 1 + τ] of lag ξ− ξ′.

Since K
(l)
ν [t] is symmetric, all of its information is included

in the Tw(Tw + 1)/2 entries located in its main diagonal and
upper triangular parts.

In contrast to the conventional approach of vectorizing those
entries to use the resultant Euclidean [Tw(Tw +1)/2]×1 vector
as a feature, this study chooses the matrix K

(l)
ν [t] itself as a

feature in the Riemannian manifold P(S)D(Tw) of positive-
(semi)definite matrices, of dimension Tw(Tw + 1)/2, to take
advantage of the rich Riemannian geometry of P(S)D(Tw).

6

Algorithm 2: Extracting kernel (partial) correlations

Input : Data {(y(l)ν [t])t∈T }ν∈N ,l∈L.
Parameters: Time-window lengths τw and Tw, ε > 0,

and kernel function κ(·, ·).
Output : Features {xkc

i }i∈Ikc and {xkpc
i′ }i′∈Ikpc .

1 i = 0; i′ = 0.
2 for all available layers l do
3 for all available time instances t do
4 for all nodes ν do
5 Let µ(l)

ν := (1/|T |)∑t∈T y
(l)
ν [t].

6 ỹ
(l)
ν [t] := y

(l)
ν [t]− µ(l)

ν .
7 ỹ

(l)
ν [t] :=

[ỹ
(l)
ν [t], ỹ

(l)
ν [t+ 1], . . . , ỹ

(l)
ν [t+ τw − 1]]ᵀ.

8 Generate the Tw × Tw kernel matrix K
(l)
ν [t]

whose (ξ, ξ′)th entry is
κ(ỹ

(l)
ν [t+ ξ − 1], ỹ

(l)
ν [t+ ξ′ − 1]).

9 if K
(l)
ν [t] is singular then

10 K
(l)
ν [t]← K

(l)
ν [t] + εITw .

11 i← i+ 1.
12 Kernel-correlation feature: xkc

i := K
(l)
ν [t].

13 Generate the |N | × |N | kernel matrix K
(l)
N [t]

with (ν, ν′)th entry κ(ỹ
(l)
ν [t], ỹ

(l)
ν′ [t]).

14 if K
(l)
N [t] is singular then

15 K
(l)
N [t]← K

(l)
N [t] + εI|N |.

16 i′ ← i′ + 1.
17 Kernel-partial-correlation feature:

xkpc
i′ := (diagK

(l)
N [t]−1)−1/2 ·K(l)

N [t]−1 ·
(diagK

(l)
N [t]−1)−1/2.

18 Gather all features {xkc
i }i∈Ikc and {xkpc

i′ }i′∈Ikpc .

The inverse correlation matrix was used as a feature in
identifying network topology in [68, 69]. The majority of
state-of-the-art methods, such as the 4D-tensor method [17],
the graph-signal-processing approach of [43], as well as [14],
use a “sliding-window” correlation matrix as the feature that
reveals network communities. However, only the present study
exploits the entailing Riemannian geometry of the (kernel)
correlation matrix to tackle community detection and even the
rarely addressed subnetwork-sequence tracking.

2) Kernel Partial Correlations
To address state clustering, a snapshot of the network needs

to be taken at every time instance t to monitor the evolving
network topology. The straightforward approach is to keep
track of the feature K

(l)
N [t], i.e., the |N | × |N | kernel matrix

whose (ν, ν′)th entry is [K
(l)
N [t]]ν,ν′ := κ(y

(l)
ν [t],y

(l)
ν′ [t]).

Nevertheless, motivated by [31], kernel partial correlations are
used here to reveal the “proximity” of the time-series of any
two nodes ν, ν′, after removing the “effect” that the time-series
of the rest of the nodes N \ {ν, ν′} have on the time-series
of ν and ν′. To this end, define for ι ∈ {ν, ν′} the resid-
ual signal r(l)ι [t] := ϕ(ỹ

(l)
ι [t]) − ∑j∈N\{ν,ν′} β

∗
ιjϕ(ỹ

(l)
j [t]),

M

xi

xi′

C1
C2

Low-density
area

Low-density
areaHigh-density

area

Fig. 3: The Riemannian multi-manifold modeling (RMMM) hypothesis: the
feature point-cloud is assumed to be placed close to or into the union of a
finite number of low-dimensional submanifolds. To facilitate the selection of
landmark points, the point-cloud is separated in high- and low-density areas.

where a specific linear combination of {ϕ(ỹ
(l)
j [t]) : j ∈

N \ {ν, ν′}} is subtracted from vectors ϕ(ỹ
(l)
ν [t]) and

ϕ(ỹ
(l)
ν′ [t]). Coefficients {β∗ιj}j∈N\{ν,ν′} are the solutions of

the following least-squares estimation task {β∗ιj}j∈N\{ν,ν′} ∈
arg minβιj‖ϕ(ỹ

(l)
ι [t]) −∑j∈N\{ν,ν′} βιjϕ(ỹ

(l)
j [t])‖2H, which

renders r(l)ι [t] orthogonal to the linear subspace spanned by
{ϕ(ỹ

(l)
j [t]) : j ∈ N \ {ν, ν′}}. For any pair of nodes (ν, ν′),

the kernel partial correlation is then defined as [31]

kPCorr(l)νν′ [t] :=
〈r(l)ν [t] | r(l)ν′ [t]〉H
‖r(l)ν [t]‖H · ‖r(l)ν′ [t]‖H

.

According to [31], if K
(l)
N [t] is non-singular, then kPCorr(l)νν′ [t]

is the (ν, ν′)th entry of the positive-definite matrix
(diagK

(l)
N [t]−1)−1/2 · K

(l)
N [t]−1 · (diagK

(l)
N [t]−1)−1/2 ∈

PD(|N |), where diagK
(l)
N [t]−1 is the diagonal matrix whose

main diagonal entries are equal to those of K
(l)
N [t]−1. Apart

from [31], partial correlations were also used in [70, 71] for
brain-network state clustering, showing advantages over stan-
dard correlations. However, unlike [31] and the present study,
[70, 71] use neither kernels nor any Riemannian geometry.

The steps that extract kernel (partial) correlations and their
corresponding Riemannian features are summarized in Alg. 2.
In the case where K

(l)
ν [t] and K

(l)
N [t] are singular, “diagonal

loading” via a small positive real number ε is used in steps 9
and 14 of Alg. 2 to render those matrices positive definite, and
simplify thus the computation of the manifold logarithm map
log(M)

x (·), as explained in the introductory part of Sec. II.

III. FAST SEQUENTIAL CLUSTERING
IN RIEMANNIAN MANIFOLDS

This section details the novel sequential scheme of Fig. 2b
which is employed in submodules Comm2, Comm4, St2, Sub2
and Sub4 of the framework in Fig. 2a. It is assumed that
the Riemannian features/points X := {xi}i∈I are available
to the user through the extraction procedures of Sec. II. In
other words, {xi}i∈I represents here any of the collections
{xobs

i }i∈Iobs (Alg. 1), {xkc
i }i∈Ikc (Alg. 2), or {xkpc

i }i∈Ikpc

(Alg. 2).

A. Selecting Landmark Points

The first step in Fig. 2b is to select a small number of
“landmark,” or, representative points Λ := {`i}i∈ILand from

7

X := {xi}i∈I , i.e., Λ ⊂ X , that provides an approximate
description (sketch) of the geometry of the possibly massive
point-cloud X .

The strategy of selecting Λ randomly, under a uniform
distribution, from X (validated in Sec. IV under the tag
“RM”), albeit computationally efficient, seems inappropriate
to capture the latent geometry of the X . Another approach,
called systematic selection (Sys) [72], samples one point from
X every a user-defined number of features, in the order
of their appearance after the extraction schemes of Sec. II.
Furthermore, a classical point-selection scheme is importance
sampling [73]. Nevertheless, importance sampling requires
prior knowledge or estimation of the underlying probability
distribution functions of the data-points, via training data,
which is not viable in this context due to the unsupervised
nature of the clustering task and the absence of training data.
Another popular scheme, which combines point sampling and
clustering, usually via k-means, is the random sample and
consensus (RANSAC) algorithm [74]. Although vastly used
to combat outliers within data, RANSAC does not utilize
any Riemannian geometric information. RANSAC is also
considered as one of the competing methods in Sec. IV.

This study focuses on the greedy and non-random maxmin
algorithm [75]. Originally developed for Euclidean spaces, the
maxmin algorithm is tailored here to fit the present context
by substituting the Euclidean distance with the Riemannian
one. The maxmin algorithm is an iterative procedure that
updates the pool of landmark points sequentially. At step s
of the maxmin algorithm, the minimum of the distances of
an arbitrarily chosen non-landmark point from the existing
landmark ones Λs is computed. Such a minimum distance is
computed for every non-landmark point. The non-landmark
point xi∗ which scores the maximum such minimum distance
is “promoted” to a new landmark point, and the landmark
points are updated as Λs+1 := Λs ∪ {xi∗}, before moving on
to step s+ 1 of the algorithm.

The maxmin algorithm [75] is modified further in Alg. 3,
and coined density-based manifold maxmin (DM-Maxmin)
algorithm, to offer a data-driven scheme that includes more
elements of the geometry of X than the original [75] does.
More specifically, DM-Maxmin samples a number NHigh of
landmark points from a “high-density” area AHigh of the
point-cloud, larger than the number NLow of landmark points
collected from the “low-density” area ALow. Whether a feature
point xi belogs to AHigh or ALow depends on the number ni of
feature points {xi′ ∈ X | distM(xi, xi′) ≤ ddense} included in
the Riemannian ball {z ∈M| distM(xi, z) ≤ ddense} centered
at xi with radius ddense, where distM(xi, xi′) stands for the
Riemannian distance between points xi and xi′ . If the number
ni of those points exceeds a user-defined threshold Ndense,
then xi ∈ AHigh; otherwise, xi ∈ ALow. After AHigh and
ALow have been determined, the aforementioned Riemannian-
distance variant of the maxmin algorithm is applied to the
points in AHigh and ALow to select NHigh and NLow landmark
points ΛHigh and ΛLow, respectively. Finally, all landmark
points are gathered in Λ := ΛLow ∪ ΛLow.

The numerical tests of Sec. IV indeed demonstrate the
ability of Alg. 3 to capture data geometries, especially in the

xi

x
(i)
k

0

T
x
(i)
k

M

Ŝ
(i)
k

Ck
M

x
(i)
ki − x

(i)
kk

θ
(i)
k

Fig. 4: The linear subspace Ŝ
(i)
k serves as an “image” of the clus-

ter/submanifold Ck in the Euclidean tangent space T
x
(i)
k

M of M at x(i)k .

The angle θ(i)k between vector x
(i)
ki − x

(i)
kk and Ŝ

(i)
k is assigned to each

non-landmark point xi; see Alg. 4.

Algorithm 3: Density-based manifold maxmin (DM-
Maxmin) algorithm
Input : Riemannian feature-points X := {xi}i∈I .
Parameters: Distance threshold ddense, minimum

number of neighbors Ndense, desired
number NHigh of landmark points from
the “high-density” area AHigh, and
desired number NLow of landmark points
from the low-density area ALow.

Output : Landmark points Λ := {`i}i∈ILand of
cardinality |Λ| = NHigh +NLow.

1 for all available points/features xi ∈ X do
2 Count the number ni of data-points {xi′ |

distM(xi, xi′) ≤ ddense} contained in a
“Riemannian ball” with center at xi and radius
ddense.

3 if ni ≥ Ndense then
4 xi ∈ AHigh.
5 else
6 xi ∈ ALow.

7 Apply the Riemannian-distance variant of the maxmin
algorithm to the high-density-area points AHigh to
select NHigh landmark points ΛHigh.

8 Apply the Riemannian-distance variant of the maxmin
algorithm to the low-density-area points ALow to
select NLow landmark points ΛLow.

9 Gather all landmark points in Λ := ΛHigh ∪ ΛLow.

“high-density” intersection areas of the possibly overlapping
clusters in the Riemannian manifold; e.g., Fig. 3.

B. Clustering Landmark Points

Having sketched the geometry of X via the landmark points
Λ of Sec. III-A, the next step in the pipeline of Fig. 2b is to
cluster Λ to obtain a rough estimate of clusters {Ck}Kk=1. This
rough estimate of {Ck}Kk=1 serves as the starting point for the
sequential clustering scheme of Alg. 4 (see step 1), which
adds the finer details in {Ck}Kk=1 by visiting sequentially all
non-landmark points X \ Λ.

The data-modeling assumption, under which X are clus-
tered, is the Riemannian multi-manifold modeling (RMMM)
hypothesis [59, 60]: feature-points X are assumed to be

8

located close to or into a union of finite number of low-
dimensional, and of possibly different dimensionality, subman-
ifolds/clusters {Ck}Kk=1 (see Fig. 3 for the case of K = 2
clusters). In contrast to conventional hypotheses, where clus-
ters (better, their convex hulls) are assumed to be “sufficiently
well separated,” e.g., K-means, clusters {Ck}Kk=1 are allowed
to intersect according to the RMMM hypothesis.

Clustering of Λ is achieved by the very recently introduced
method of extended geodesic clustering by tangent spaces
(eGCT) [32]. In a nutshell, eGCT computes the affinity matrix
of all points in Λ via information about sparse data approxima-
tions and the angular information hidden behind tangent spaces
in Riemannian manifolds. Hierarchical clustering is applied to
that affinity matrix to obtain clusters {Ck}Kk=1 without any
need to know in advance the number K of clusters. The
eGCT is a variant of GCT [31, 59, 60], where the number
K of clusters is assumed to be known beforehand, and where
spectral clustering is used instead of hierarchical clustering. It
is also worth stressing here that eGCT is a batch method, with
a computational complexity that scales quadratically in the
number of feature points [32]. This dependency renders eGCT
impractical if applied directly to X with |X | being excessively
large. Moreover, such a complexity justifies the introduction of
the landmark points Λ, where |Λ| � |X |, and the application
of eGCT to Λ. To save space, a detailed description of eGCT
is deferred to [32].

C. Sequential Geodesic Clustering by Tangent Spaces

The final submodule in the flowchart of Fig. 2b, detailed in
Alg. 4, clusters the non-landmark points X \Λ which comprise
the majority of the feature points, since, by design, |Λ| � |X |.
Alg. 4 builds on the arguments that originated GCT [59, 60]
and its variants [31, 32], but offers an efficient scheme that
visits Riemannian features sequentially, as opposed to its batch
and computationally heavy predecessors [31, 32, 59, 60].

After landmark points Λ are clustered to provide a first
estimate of the clusters {Ck}Kk=1 in step 1, the remaining non-
landmark points X \ Λ are visited sequentially in step 2 of
Alg. 4. For the non-landmark point xi under query, its closest
point x(i)k and distance d(i)k from cluster Ck are identified in
step 4. To obtain a view of the geometry of the feature point-
cloud around x

(i)
k , the KNN nearest neighbors of x(i)k from

cluster Ck are first identified in step 5, and mapped, together
with the point xi under query, into the Euclidean tangent space
T
x
(i)
k

M of M at x(i)k via the Riemannian manifold logarithm

mapping log
(M)

x
(i)
k

(·) [24, 59, 60] in step 6. Since T
x
(i)
k

M is a

Euclidean space, the mapped vectors {x(i)
kj |xj ∈ NNN(x

(i)
k)}

can be used to extract statistical information via the sample
covariance matrix

Ĉ
(i)
k := 1

KNN−1 ·
∑

xj∈NNN(x
(i)
k)

(x
(i)
kj − x̄

(i)
k)(x

(i)
kj − x̄

(i)
k)ᵀ , (3)

where the sample average is defined as
x̄
(i)
k := (1/KNN)

∑
xj∈NNN(x

(i)
k)

x
(i)
kj . The classical tool of

principal component analysis (PCA) [76] is then applied to
extract a principal eigenspace Ŝ(i)k from Ĉ

(i)
k in step 7. The

Algorithm 4: Sequential geodesic clustering by tan-
gent spaces
Input : Features X := {xi}i∈I and landmark

points Λ = {`i}i∈ILand .
Parameters: KNN ∈ Z>0.
Output : Clusters {Ck}Kk=1.

1 Apply eGCT [32] to Λ to obtain the first estimate of
clusters {Ck}Kk=1.

2 for all non-landmark points X \ Λ do
3 for all k in {1, 2, . . . ,K} do
4 Identify the closest point to xi from Ck:

x
(i)
k := arg minx∈Ck distM(x, xi). Moreover,

let d(i)k := distM(x
(i)
k , xi).

5 Define the KNN-nearest-neighbors NNN(x
(i)
k)

of x(i)k from points of Ck.
6 Map NNN(x

(i)
k) into the tangent space T

x
(i)
k

M
of the Riemannian manifold M at x(i)k via the
logarithm map: x

(i)
kj := log

x
(i)
k

(xj),

∀xj ∈ NNN(x
(i)
k). Let x

(i)
kk := log

x
(i)
k

(x
(i)
k).

Map also xi into the tangent space T
x
(i)
k

M:

x
(i)
ki := log

x
(i)
k

(xi).

7 Compute the sample covariance matrix Ĉ
(i)
k in

(3) and its eigenspace Ŝ(i)k by principal
component analysis.

8 Compute angle θ(i)k between vector x
(i)
ki − x

(i)
kk

and Ŝ(i)k .
9 Define vector g

(i)
k := [d

(i)
k , θ

(i)
k]ᵀ.

10 Identify k∗ := arg mink∈{1,...,K}‖g(i)
k ‖2.

11 Assign xi to Ck∗ , and update Ck∗ by Ck∗ ∪ {xi}.

eigenspace Ŝ(i)k is determined here by identifying the largest
gap between eigenvalues in the eigenvalue decomposition of
Ĉ

(i)
k . In other words, the linear subspace Ŝ(i)k serves as an

“image” of the submanifold Ck in T
x
(i)
k

M; see Fig. 3.

The angle θ(i)k between the vector x
(i)
ki − x

(i)
kk and Ŝ(i)k is

computed in step 8. Vector g
(i)
k := [d

(i)
k , θ

(i)
k]ᵀ is formed

for every cluster Ck, and the cluster Ck∗ , which scores the
smallest possible `2-norm ‖g(i)

k ‖2 across all clusters {Ck}Kk=1,
is updated as Ck∗ ∪ {xi} to include the point xi under query.
After cluster Ck∗ is updated, the next of the remaining non-
landmark points is examined in step 2. The previous procedure
is repeated until all non-landmark points are visited and
clustered.

D. Computational Complexity

The computational burdens in the framework of Fig. 2a
come from the submodules of feature extraction (Sec. II),
landmark-point selection (Sec. III-A), and clustering
(Secs. III-B and III-C).

In Sec. II, the computational complexity in Alg. 1 comes
from C⊗H , i.e., the cost of computing the mTw× τbTw matrix

9

F (l)
V [t + 1]⊗HB(l)

V [t]ᵀ, but mainly from CSVD, which is the
cost of the matrix’s SVD in (2) that scales in the order of
O[min(T 3

wm
2τb, T

3
wτ

2
b m)]. Recall that Tw is the user-defined

size of the time-sliding window in Sec. II-A. Overall, the com-
putational cost of Alg. 1 is O{|X |[C⊗H+T 3

wmτb min(m, τb)]}.
In Alg. 2, the complexity to extract the kernel-correlation
feature is O(|N |2), while that for a kernel-partial-correlation
feature is O(|N |3), due to the matrix-inversion operation.
Clearly, complexities O(|N |2), O(|N |3) are prohibitive in
the case of massive networks where |N | is large. Ways to
surmount this complexity obstacle are outside of the scope of
this paper and will be presented elsewhere.

In landmark-point selection (Sec. III-A), Riemannian dis-
tances among all features need to be computed. If Cdist denotes
the cost of computing distances between two Riemannian
features (see Secs. II-B and II-C1), and since |X |(|X | − 1)/2
distances need to be computed for a number |X | of features,
the overall complexity of computing distances scales in the
order of O(Cdist|X |2).

The very recently introduced batch eGCT algorithm [32] is
employed in step 1 of Alg. 4 to cluster the landmark points Λ.
Per landmark point, the complexity of eGCT accounts for the
following sub-tasks: (i) Identify the KNN nearest neighbors
of the landmark point under query, with a complexity of
O(KNN log|Λ|) which amounts to sorting the Riemannian
distances {distM(`i, `i′) | (i, i′) ∈ I2Land}, assumed to have
been computed prior to employing Alg. 4. (ii) Map those
KNN neighbors into the tangent space of the manifold at the
landmark point under query with a complexity which scales
in the order of O(KNNClog), where Clog denotes the cost of
computing the manifold logarithm mapping, provided in the
introductory part of Sec. II. The cost of computing the angle
between a vector and a principal subspace in the tangent space,
similarly to step 8 of Alg. 4, is of order O[K2

NN dimM]
due to the operations needed for the SVD of matrix (3),
and under the assumption that KNN < dimM. (iii) Solve
a sparse-coding task, of cost Csc, to detect parsimonious rela-
tions of the landmark point under query with its KNN nearest
neighbors. After the previous steps are run for all landmark
points, hierarchical clustering (Louvain method [32, 77]) is
applied to an affinity matrix, which gathers all sparse-coding
coefficients and angles, to yield clusters with a computational
complexity of order O(|Λ| log|Λ|) [32]. The Louvain method
belongs to the family of hierarchical-clustering algorithms,
which maximize a modularity loss that monitors the intra- and
inter-cluster density of links/edges. Overall, the complexity
of employing the batch eGCT becomes O[|Λ|(KNN log|Λ| +
KNNClog+K2

NN dimM+Csc)], which becomes manageable in
the premises of this framework, where by design |Λ| � |X |.

In contrast to eGCT, the novel scheme of Alg. 4 operates
sequentially on the non-landmark points X \ Λ, without
involving any sparse-coding and hierarchical-clustering sub-
tasks. Hence, its computational complexity scales in the order
of O[KNN(log|X \Λ|+Clog+KNN dimM)] per feature point,
which leads to large savings in computational times as the
following Sec. IV demonstrates.

IV. NUMERICAL TESTS

This section validates the proposed framework on syn-
thetic and real data. Tags fastGCT[kARMA], fastGCT[kC],
and fastGCT[kPC] indicate the proposed framework when-
ever features are extracted by multi-kernel ARMA modeling,
kernel correlations, and kernel partial correlations, respec-
tively. Apart from the classical K-means, other competing
frameworks are: (i) Sparse manifold clustering and embed-
ding (SMCE) [33]; (ii) interaction K-means with PCA (IK-
M-PCA) [78]; (iii) graph shift operator estimation (GOE) [43];
(iv) 4D-windowed tensor approach (4D-WTA) [17]; (v) mul-
tivariate Granger causality (MVGC) [79, 80]; (vi) wavelet–
transform based algorithm (Wavelet) [40, 47]; (vii) streaming
Isomap (S-Isomap) [49]; and (viii) RANSAC-based subspace
clustering (RANSAC) [74].

SMCE, 4DWTA, Wavelet, S-Isomap, RANSAC, and
the classical K-means will be used in state clustering,
while SMCE, IKM-PCA, 4DWTA, GOE, S-Isomap, MVGC,
RANSAC, Wavelet, and K-means will be employed in com-
munity detection. Since none of IKM-PCA, GOA, MVGC
and 4DWTA can perform subnetwork-sequence clustering
across multiple states, only the results of the proposed frame-
work, SMCE, S-Isomap, RANSAC, and Wavelet are reported.
Moreover, since the performance of fastGCT[kC] appears
to be better than fastGCT[kPC] in community detection
and subnetwork-sequence clustering, fastGCT[kC] results will
be reported only for community detection and subnetwork-
sequence clustering, while those of fastGCT[kPC] only for
state clustering. Although RANSAC can be applied to any
type of features, only results for features extracted by multi-
kernel ARMA modeling are reported, since results on kernel
(partial) correlations were not competitive with their multi-
kernel ARMA counterparts.

The assessment criteria for all competing methods are:
(i) Clustering accuracy, defined as the number of correctly
clustered data-points (ground-truth labels are known) over the
total number of points; and (ii) normalized mutual informa-
tion (NMI) [81]. In the following discussion, every reported
numerical value is the result of the uniform average of 20 inde-
pendently performed tests. The time duration of computations
(run-times) that are reported refer only to clustering operations,
while run-times for feature extraction are not included in the
subsequent tables/figures. Parameters were carefully tuned so
that each employed method achieves its best performance for
the scenario at hand. All experiments are performed via Matlab
(R2018b) on an i7-7700 CPU with 32GB RAM.

A. Synthetic fMRI Data

FMRI data were generated by the open-source Matlab
SimTB toolbox [82]. A multilayer network with 3 layers and
10 nodes, transitioning between 3 distinct network states for
every layer, is considered here. Each state corresponds to a
connectivity matrix, which is modeled as the superposition of
three matrices: (1) The ground-truth (noiseless) connectivity
matrix, where nodes sharing the same color belong to the
same cluster and collaborate to perform a common task (cf.
Fig. 5); (2) a symmetric matrix whose entries are drawn

10

(a) Layer 1

(b) Layer 2

(c) Layer 3

(d) BOLD time series of node #6, layer #2 dataset #2

Fig. 5: Synthetic data generated by the Matlab SimTB toolbox [82]. (a)-
(c) Noiseless and outlier-free connectivity matrices corresponding to three
network layers. Nodes that share the same color cooperate to perform a
common task.

independently from a zero-mean Gaussian distribution with
standard deviation σn to model noise; (3) a symmetric outlier
matrix where 36 entries are equal to µ to capture outlier
neural activity. Different states may share different outlier
matrices, controlled by µ. Aiming at extensive numerical tests,
six datasets were generated (corresponding to the columns of
Table I) by choosing six sets of parameters [including the
signal-to-noise ratio (SNR)] in the modeling of the connec-
tivity matrices and the SimTB toolbox. Table Supp1 provides
parameters of those 6 datasets: Datasets 1, 2, and 3 were
created without outliers, while datasets 4, 5 and 6 include
outlier matrices with different µs in different states. Driven
by the previous connectivity matrices, the SimTB toolbox
generates BOLD time series [4], e.g., Fig. 5d. Each state
contributes 1000 signal samples, for a total of 3×1000 = 3000
samples, to every nodal time series; an example is depicted in
Fig. 5d.

1) State Clustering
Table I demonstrates the results of state clustering. The

parameters used for eGCT[kARMA] and fastGCT[kARMA]
are: Tw = 50, m = 3, ρ = 3, τf = 300, τb = 50. The multi-
kernel function κ(·, ·) := 0.6κG;0.8(·, ·) + 0.4κL;1(·, ·) scored
the best results among several other choices. Parameters for
fastGCT[kPC] are: ε = 1, Tw = 400, τw = 50. There are 2596
features in extracted by fastGCT[kARMA] and 2551 features
extracted by fastGCT[kPC]. One hundred landmark points

are selected in fastGCT[kARMA] and fastGCT[kPC]. Table I
demonstrates the average run-times of all algorithms over all
data samples. Tables I and II show that fastGCT[kARMA]
takes only about 10% of the run-times of eGCT[kARMA]
with a slightly decreased accuracy. Fig. Supp1 depicts also
the standard deviations of the results in Tables I and II, after
independent repetitions of the test. To save space, the figures of
the standard deviations of the following tests will be omitted.

Among all methods, the batch eGCT[kARMA] scores the
highest clustering accuracy and NMI over all six datasets,
while fastGCT[kARMA] is one of the top performers among
sequential schemes, with much shorter running time than
that of eGCT[kARMA]. It can be observed by Table I that
the existence of outliers affects negatively the ability of all
methods to cluster data. The main reason is that the algorithms
tend to detect outliers and gather those in clusters different
from the nominal ones. Ways to reject outliers are outside
of the scope of this study and will be provided in a future
publication.

2) Community Detection
Table III presents results on community detection. The

numerical values in Table III stand for the average values
over the all states and layers for each one of the datasets.
Parameters of eGCT[kARMA] and fastGCT[kARMA] were
as follows: Tw = 30, τw = 20, m = 3, ρ = 2, τf = 340,
τb = 10, while the multi-kernel function is defined as κ(·, ·) :=
0.5κG;0.5(·, ·) + 0.5κL0;1(·, ·). Parameters for fastGCT[kC]
were: ε = 1, τw = 30, Tw = 400. Eighty landmark points were
selected for fastGCT[kARMA] and fastGCT[kC]. Table III
demonstrates that eGCT[kARMA] consistently outperforms
all other methods across all datasets and even for the case
where outliers contaminate the data. Table IV demonstrates
the average run-times of each algorithm, and shows that
fastGCT[kARMA] is much faster than its batch predecessors
eGCT[kARMA] with a moderate accuracy loss. Fig. Supp2
depicts also the standard deviations of the results of Tables III
and IV.

3) Subnetwork-Sequence Clustering
Table V illustrates the results of task clustering on the six

synthetic-fMRI datasets. The parameters of eGCT[kARMA],
fastGCT[kARMA] were set as follows: Tw = 50, τw = 50,
m = 3, ρ = 2, τf = 350, τb = 10. The parameters for fast-
GCT[kPC] were: ε = 1, τw = 30, Tw = 400. There are 25370
features extracted by fastGCT[kARMA] and 25710 features
extracted by fastGCT[kC]. A number of 450 landmark points
were selected for fastGCT[kARMA] and fastGCT[kC]. The
kernel functions used in eGCT[kARMA], fastGCT[kARMA]
and fastGCT[kC] are identical to those employed in Table III.
Similarly to the previous cases, eGCT[kARMA] outperforms
all other methods across all datasets and scenarios on both
clustering accuracy and NMI, and fastGCT[kARMA] exhibits
good clustering accuracies with excellent computation-time
footprints. Fig. Supp3 depicts also the standard deviations of
the results of Table V.

To summarize the results on synthetic data, the batch
eGCT[kARMA] outperforms all other methods across all
datasets in all clustering tasks, while fastGCT[kARMA] out-
performs all competing sequential methods in Tables III and

11

TABLE I: Synthetic fMRI data: State-clustering results

Methods
Without Outliers With Outliers

Clustering Accuracy NMI Clustering Accuracy NMI

D1 D2 D3 D1 D2 D3 D4 D5 D6 D4 D5 D6
B

at
ch

eGCT[kARMA] [32] 1 0.853 0.680 1 0.811 0.597 0.966 0.785 0.593 0.934 0.676 0.395
SMCE [33] 0.947 0.780 0.545 0.882 0.701 0.457 0.880 0.714 0.496 0.828 0.574 0.375

RANSAC [74] 0.929 0.745 0.563 0.859 0.636 0.483 0.907 0.708 0.502 0.846 0.570 0.316
Kmeans 0.859 0.672 0.395 0.774 0.605 0.311 0.768 0.621 0.337 0.476 0.403 0.148

Se
qu

en
tia

l fastGCT[kARMA] 1 0.815 0.656 1 0.762 0.568 0.945 0.752 0.552 0.912 0.629 0.347
fastGCT[kPC] 1 0.791 0.634 1 0.705 0.516 0.906 0.733 0.520 0.837 0.609 0.315
4DWTA [17] 1 0.826 0.642 1 0.789 0.522 0.951 0.766 0.509 0.927 0.635 0.327
Wavelet [47] 0.967 0.764 0.552 0.913 0.683 0.483 0.924 0.702 0.471 0.855 0.562 0.309

S-Isomap [49] 0.983 0.787 0.601 0.935 0.693 0.509 0.936 0.729 0.511 0.867 0.581 0.335

TABLE II: Synthetic fMRI data: State-clustering run-time

Methods Runtime (sec)

B
at

ch

eGCT[kARMA] [32] 1421
SMCE [33] 1186

RANSAC [74] 102.51
Kmeans 8.43

Se
qu

en
tia

l fastGCT[kARMA] 130.41
fastGCT[kPC] 157.36
4DWTA [17] 1477
Wavelet [47] 95.71

S-Isomap [49] 206.49

V. In datasets 1–3 and in the absence of outliers (µ = 0), the
accuracies and NMI of all methods are influenced mainly by
the presence of noise. As expected, the accuracies and NMI
decrease as the standard deviation σn of noise increases. The
comparison between the results of datasets 1 and 4 indicates
that if σn remains the same, but the outlier neural activity µ
intensifies, the accuracies and NMI of all methods decrease.
Similar results can be observed by the comparison between
datasets 2 and 5, as well as 3 and 6.

B. Validating Landmark-Selection Schemes

This section illustrates the advantage of DM-Maxmin al-
gorithm (Alg. 3) over the following landmark-point selection
methods: (1) Random selection (RM); (2) Systematic selec-
tion (Sys) [72]; and (3) Manifold-Maxmin (M-Maxmin) [75],
where the Riemannian distance is used in the place of the
Euclidean one. To present a challenging task to all these
methods, Dataset 5, which includes noise and outliers, is
considered for fastGCT[kARMA].

The clustering results for all the aforementioned landmark-
selection methods are shown in Tables VII, VIII, IX, and
Fig. 6. Although Sys performs well with few landmark points,
the accuracy of DM-Maxmin increases faster than other meth-
ods as the number of landmark points increases. Besides,
comparison between DM-Maxmin and Maxmin shows that the
density-based DM-Maxmin is a necessary ingredient for the
proposed fastGCT framework.

C. Real EEG Data

The open-source EEG data [15] were used. EEGs were
selected from an archive of neonatal EEG recordings, re-
quested from the clinical team due to suspicion of seizures. All

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Number of landmark points

A
cc
u
ra
cy

DM-Maxmin
M-Maxmin

Sys
RM

(a) State clustering

10 25 40 65 80
0

0.2

0.4

0.6

0.8

1

Number of landmark points

A
cc
u
ra
cy

DM-Maxmin
M-Maxmin

Sys
RM

(b) Community detection

50 150 250 350 450
0

0.2

0.4

0.6

0.8

1

Number of landmark points

A
cc
u
ra
cy

DM-Maxmin
M-Maxmin

Sys
RM

(c) Subnetwork-sequence clustering

Fig. 6: Clustering accuracies of different landmark selection methods for all
the network-clustering tasks. (a) State clustering; (b) Community detection;
(c) Subnetwork-sequence clustering.

recordings were performed at the Helsinki University Hospital,
Finland. Each EEG recording lasted approximately one hour;
median recording duration was 74 mins. The EEG signals
were recorded with an EEG amplifier (sampling frequency
of 256Hz) and EEG caps (sintered Ag/AgCl electrodes) with
19 electrodes positioned, including a recording reference at
midline. The data were annotated for seizure and non-seizure

12

TABLE III: Synthetic fMRI data: Community-detection results

Methods
Without Outliers With Outliers

Clustering accuracy NMI Clustering accuracy NMI

D1 D2 D3 D1 D2 D3 D4 D5 D6 D4 D5 D6
B

at
ch

eGCT[kARMA] [32] 1 0.974 0.956 1 0.931 0.882 0.983 0.939 0.833 0.940 0.836 0.755
SMCE [33] 0.981 0.916 0.825 0.900 0.842 0.719 0.932 0.826 0.755 0.801 0.663 0.577

MVGC [79, 80] 0.979 0.903 0.807 0.877 0.810 0.684 0.885 0.773 0.721 0.705 0.591 0.503
GOE [43] 1 0.894 0.786 1 0.818 0.695 0.913 0.752 0.696 0.819 0.610 0.427

RANSAC [74] 0.962 0.885 0.774 0.907 0.809 0.675 0.924 0.815 0.709 0.804 0.683 0.521
Kmeans 0.895 0.814 0.690 0.802 0.721 0.525 0.836 0.621 0.567 0.645 0.409 0.327

Se
qu

en
tia

l

fastGCT[kARMA] 1 0.960 0.917 1 0.887 0.825 0.971 0.913 0.804 0.928 0.802 0.714
fastGCT[kC] 1 0.945 0.861 1 0.850 0.765 0.941 0.883 0.774 0.890 0.724 0.682
4DWTA [17] 1 0.938 0.887 1 0.848 0.742 0.946 0.891 0.780 0.875 0.724 0.665
Wavelet [40] 0.954 0.870 0.762 0.893 0.805 0.645 0.915 0.762 0.693 0.793 0.647 0.572

S-Isomap [49] 0.991 0.924 0.861 0.973 0.815 0.703 0.921 0.843 0.727 0.779 0.701 0.539
IKM-PCA [78] 0.941 0.910 0.789 0.886 0.829 0.681 0.898 0.769 0.705 0.742 0.635 0.494

TABLE IV: Synthetic fMRI data: Community-detection runtime

Methods Runtimes (sec)

B
at

ch

eGCT[kARMA] [32] 1835
SMCE [33] 3976

MVGC [79, 80] 2087
GOE [43] 46.46

RANSAC [74] 173.38
Kmeans 11.38

Se
qu

en
tia

l

fastGCT[kARMA] 217.76
fastGCT[kC] 249.22
4DWTA [17] 1361
Wavelet [40] 120.65

S-Isomap [49] 387.79
IKM-PCA [78] 60.35

states by experts. Each neonate defines a layer in the present
context of multilayer networks: Ten neonates are considered,
so that the number of layers is 10. Each layer presents a 40sec
segment, so that the length of time series is 40 ·256 = 10, 240.
The network has 18 nodes, i.e., |N | := 18.

Methods eGCT[kARMA], fastGCT[kARMA], Fast[kPC],
Wavelet, S-Isomap, SMCE, RANSAC, and K-means were
validated. 4DWTA did not perform well on this dataset, and
its results are not reported. Parameters of eGCT[kARMA]
and fastGCT[kARMA] are defined as: Tw = 800, m = 3,
ρ = 2, τf = 5200, τb = 100. The kernel function is defined as
κ(·, ·) := 0.5κG;0.37(·, ·) + 0.5κL;0.85(·, ·). Parameters of fast-
GCT[kPC] are: ε = 0.8, τw = 100, Tw = 6000. The number
of landmark points in fastGCT[kARMA] and fastGCT[kPC]
is set equal to 200. Due to the sliding-window implementation
in the proposed framework, there are cases where the sliding
window captures samples from both seizure and non-seizure
state. The features extracted from those cases are labeled
as cluster #3. The seizure and non-seizure state clustering
accuracies and run-times are demonstrated in Table X and XI.
Fig. Supp4 depicts also the standard deviations of the results
of Table X.

D. Real fMRI Data

The community-detection capability of the proposed frame-
work is tested on multilayer networks formed by the fMRI
data of 99 subjects, taken from the S1200 data-set of the
Human Connectome Project (HCP) [84]. Rather than pro-

viding definite answers to open neuroscience problems, the
following discussion aims at revealing only a small part of
the complexity of cognitive systems, and at highlighting the
rich potential of the proposed framework to serve as a data-
analytic toolbox for neuroscience research.

Per subject, features are extracted from the temporal activity
of 116 brain (structural) regions, defined via the automated
anatomical labeling (AAL) atlas [85]. Those 116 regions are
considered as the nodes of the brain network; see Fig. 7a.
The communities of the network are defined by the 7-network
parcellation scheme of the Schaefer-100 atlas, which was
based on the resting-state fMRI data of 1, 489 healthy sub-
jects [86]. Here, nine communities are considered and listed
in the second row of Table XII. The definition of node labels,
i.e., assignment of a node into a community, was based on
the proximity, via the Euclidean distance, of the centroid of
an AAL region (node) from the corresponding community in
the Schaefer-100 atlas. This label assignment is color coded
and shown in Figs. 7a and 7b.

It is worth stressing here that the ground-truth node labels
are unknown. The earlier defined labels may not correspond
to the actual ones, since brain regions (nodes) may be actually
associated with different communities; indeed, recent studies
suggest that subcortical and cerebellum are associated also
with other communities [87–89]. Also, it has been observed
that the same brain region (node) across different people is
not necessarily associated with the same community: recent
studies suggest that a region, which is part of a community in
a group atlas, becomes part of another community in an atlas
tailored to a specific subject, e.g., [90].

With regards to time-series pre-processing and cleansing,
the data of each voxel are normalized by firstly subtracting
the temporal mean, then applying linear regression on the data
and regressing out global signal [91]. The temporal activity of
a node was computed by averaging the signal over all voxels
within the region (node). Only the part of cleansed volume data
in single run with left-to-right phase encoding direction was
employed. Specifically, motion outliers were used to estimate
framewise displacement (FD) [92], and volumes with FD >
0.2mm were removed from further analysis.

Each of the 99 subjects of the HCP data-set is considered
as a layer of the multilayer network. Nodes (brain regions)

13

TABLE V: Synthetic fMRI data: Subnetwork-sequence clustering results

Methods
Without Outliers With Outliers

Clustering accuracy NMI Clustering accuracy NMI

D1 D2 D3 D1 D2 D3 D4 D5 D6 D4 D5 D6

B
at

ch eGCT[kARMA] [32] 1 0.890 0.787 1 0.826 0.703 0.941 0.819 0.647 0.881 0.671 0.513
SMCE [33] 0.916 0.704 0.600 0.794 0.585 0.417 0.829 0.607 0.467 0.646 0.355 0.273

RANSAC [74] 0.920 0.729 0.611 0.809 0.603 0.423 0.871 0.675 0.535 0.726 0.459 0.340

Se
qu

en
tia

l fastGCT[kARMA] 0.971 0.825 0.702 0.904 0.740 0.609 0.921 0.745 0.628 0.837 0.615 0.462
fastGCT[kC] 0.953 0.794 0.681 0.862 0.667 0.553 0.884 0.718 0.592 0.774 0.562 0.413

Wavelet [40, 47] 0.923 0.712 0.569 0.812 0.593 0.360 0.802 0.574 0.421 0.619 0.308 0.197
S-Isomap [49] 0.928 0.735 0.651 0.821 0.619 0.497 0.852 0.656 0.523 0.715 0.427 0.301

TABLE VI: Synthetic fMRI data: subnetwork-sequence tracking runtime

Methods Runtime (sec)

B
at

ch eGCT[kARMA] [32] 16 219
SMCE [33] 35 875

RANSAC [74] 1723

Se
qu

en
tia

l fastGCT[kARMA] 2142
fastGCT[kC] 2477
Wavelet [40] 1378

S-Isomap [49] 3605

TABLE VII: Synthetic fMRI Data: Landmark selection methods in state
clustering

Methods Number of landmark points

10 20 30 40 50

DM-Maxmin 0.371 0.493 0.635 0.703 0.752
M-Maxmin 0.365 0.473 0.539 0.571 0.608

Sys 0.390 0.517 0.552 0.610 0.645
RM 0.307 0.369 0.425 0.449 0.468

in all layers are clustered in communities by the competing
clustering schemes. Per community (see Table XII), the ratio
of the total number of correctly clustered nodes in all layers
over the product of the number of layers with the cardinality
of the community is recorded. The averages of those ratios
across 10 independently performed tests are coined “fitting
rates” and are listed in Table XII. Fig. Supp5 depicts also
the standard deviation of those results. Since the number of
sought communities is known a-priori, the GCT algorithm
proposed in [17] with kernel ARMA features can be also
used here, where instead of the hierarchical Louvain method
in eGCT, spectral clustering is applied. The highest score per
community is marked with bold-faced fonts. The parameters of
fastGCT[kARMA] were tuned to obtain 9 communities: Tw :=
100, m := 3, ρ := 3, τf := 550, τb := 10. The kernel function
was defined as κ(·, ·) := 0.7κG;0.5(·, ·) + 0.3κL;0.1(·, ·).
The parameters of fastGCT[kC] were also tuned to obtain 9
clusters: Tw := 200, τw := 180, ε := 1. The kernel function
of fastGCT[kC] was defined as κ(·, ·) := 0.35κG;0.8(·, ·) +
0.25κG;0.5(·, ·) + 0.4κL;0.5(·, ·). The number of landmark
points in fastGCT[kARMA] and fastGCT[kC] is set equal to
660. The low values of fitting rates, recorded by all clustering
methods for several communities in Table XII, together with
the observation that the ground-truth node labels are unknown,

TABLE VIII: Synthetic fMRI Data: Landmark selection methods in commu-
nity detection

Methods Number of landmark points

10 25 40 65 80

DM-Maxmin 0.382 0.638 0.722 0.853 0.939
M-Maxmin 0.379 0.603 0.681 0.766 0.819

Sys 0.395 0.546 0.592 0.647 0.725
RM 0.265 0.321 0.375 0.459 0.480

TABLE IX: Synthetic fMRI Data: Landmark selection methods in
subnetwork-sequence clustering

Methods Number of landmark points

50 150 250 350 450

DM-Maxmin 0.461 0.607 0.702 0.765 0.819
M-Maxmin 0.409 0.543 0.625 0.664 0.698

Sys 0.387 0.487 0.552 0.614 0.656
RM 0.232 0.306 0.342 0.377 0.390

indicate that the aforementioned node-label assignment might
not be the adequate one for this data-set, and that there may be
another way of parcellating the brain-network nodes of these
99 subjects in communities. Clearly, these results illustrate
the complexity of brain-network problems and the variability
in how cognitive systems are organized. Nevertheless, both
GCT[kARMA] and fastGCT[kARMA] appear to score the
highest fitting rates across all competing methods within their
respective groups. The color-coded results of GCT[kARMA]
and fastGCT[kARMA] are depicted in Figs. 7c and 7e, respec-
tively, where only the mis-clustered nodes are shown. A deeper
and more extensive discussion on this specific task is beyond
the scope of this Journal, and will be reported in publication
venues which are more tailored to neuroscience and cognitive-
systems research.

V. CONCLUSIONS

This paper introduced a computationally efficient frame-
work to address all possible clustering tasks, i.e., state clus-
tering, community detection, and subnetwork-sequence iden-
tification, in dynamic multilayer networks where nodes are
annotated with real-valued time-series. A full learning path
was offered, which starts from low-level feature extraction
and reaches up to network clustering. Features in Riemannian

14

TABLE X: Real EEG data: State-clustering results

Methods Clustering accuracy NMI
B

at
ch

eGCT[kARMA] [32] 1 1
SMCE [33] 0.965 0.910

RANSAC [74] 0.932 0.873
Kmeans 0.845 0.725

Se
qu

en
tia

l fastGCT[kARMA] 1 1
fastGCT[kPC] 1 1
Wavelet [40] 0.925 0.856

S-Isomap [49] 0.986 0.951

TABLE XI: Real EEG data: State-clustering run-time

Methods Runtime (sec)

B
at

ch

eGCT[kARMA] [32] 42 954
SMCE [33] 38 690

RANSAC [74] 3395
Kmeans 183

Se
qu

en
tia

l fastGCT[kARMA] 4748
fastGCT[kPC] 5064
Wavelet [47] 3144

S-Isomap [49] 6388

manifolds were considered, anticipating the emergence of
latent data patterns, which may not be easily observed in clas-
sical Euclidean feature spaces. The manuscript provided also
non-trivial feature-extraction examples: Kernel autoregressive-
moving-average modeling and kernel (partial) correlations are
used to generate features in the Riemannian manifolds of
Grassmann and positive-(semi)definite matrices, respectively,
where kernels were used to capture non-linear correlations
among nodal time-series. Clusters were viewed as submani-
folds via the recently introduced Riemannian multi-manifold
modeling, and a fast sequential clustering scheme was es-
tablished that takes advantage of both Riemannian distances
and the angular information within tangent spaces of the
manifolds. The case of brain networks was considered to
solidify arguments. Extensive numerical tests on synthetic and
real fMRI/EEG data were used to demonstrate that the pro-
posed framework outperforms several state-of-the-art sequen-
tial manifold-learning and brain-network-clustering schemes,
while staying competitive against much computationally heav-
ier batch methods. Current research effort includes the perfor-
mance analysis of the sequential clustering scheme, as well as
the development of new Riemannian-manifold techniques to
reject network-wide outliers. The Matlab software code that
supports the proposed sequential-clustering framework will be
made available online, via GitHub, as soon as the manuscript
receives publication permissions.

VI. ACKNOWLEDGEMENTS

The brain network data [84] were provided by the Hu-
man Connectome Project, MGH-USC Consortium (Principal
Investigators: Bruce R. Rosen, Arthur W. Toga and Van
Wedeen; U01MH093765) funded by the NIH Blueprint Initia-
tive for Neuroscience Research grant; the National Institutes
of Health grant P41EB015896; and the Instrumentation Grants
S10RR023043, 1S10RR023401, 1S10RR019307.

(a) “Ground-truth” (b) Node labels

(c) GCT[kARMA] (d) Fitting rates

(e) fastGCT[kARMA] (f) Fitting rates

Fig. 7: Brain network with 116 nodes (AAL atlas) [85]. The nodes are
parcellated in nine communities according to the Schaefer-100 atlas [86]:
(a) color-coded node labels (cf. Sec. IV-D); (b) “ground-truth” communities
of cognitive system with AAL atlas; (c) subnetwork-sequence clustering
results of GCT[kARMA] in layer #50 (only the nodes that were not correctly
clustered are plotted; for example, the cyan node in the top right of Fig. 7c was
assigned to be in the Limbic community, whereas it should have been assigned
to the Control community); (d) fitting rates of GCT[kARMA]; (e) subnetwork-
sequence clustering results of fastGCT[kARMA] in layer #50 (only the nodes
that were not correctly clustered; for example, the green node in the top left
of Fig. 7e was assigned to be in the Dorsal Attention community, whereas
it should have been assigned to the Limbic community); (f) fitting rates of
fastGCT[kARMA]; (cf. Table XII).

APPENDIX A
REPRODUCING KERNEL HILBERT SPACES

A reproducing kernel Hilbert space H, equipped with inner
product 〈· | ·〉H, is a functional space where each point g ∈ H
is a function g : Rq → R : y 7→ g(y), for some
q ∈ Z>0, s.t. the mapping g 7→ g(y) is continuous, for
any choice of y [65, 66, 93]. There exists a kernel function

15

TABLE XII: Real fMRI data: Community detection

Methods

Fitting rates

C
er

eb
el

lu
m

C
on

tr
ol

D
ef

au
lt

M
od

e

D
or

sa
l

A
tte

nt
io

n

L
im

bi
c

V
en

tr
al

A
tte

nt
io

n

So
m

at
om

ot
or

Su
bc

or
tic

al

V
is

ua
l

B
at

ch

GCT[kARMA] [32] 0.388 0.567 0.761 0.415 0.403 0.732 0.572 0.379 0.695
eGCT[kARMA] [32] 0.383 0.540 0.757 0.439 0.397 0.720 0.565 0.367 0.681

SMCE [33] 0.319 0.582 0.647 0.367 0.330 0.695 0.528 0.418 0.647
MVGC [79, 80] 0.445 0.471 0.638 0.408 0.295 0.650 0.536 0.394 0.624

GOE [43] 0.371 0.450 0.626 0.461 0.435 0.621 0.479 0.345 0.592
RANSAC [83] 0.355 0.387 0.596 0.412 0.429 0.627 0.581 0.275 0.533

Kmeans 0.247 0.329 0.518 0.332 0.226 0.575 0.392 0.287 0.461

Se
qu

en
tia

l

fastGCT[kARMA] 0.374 0.525 0.739 0.408 0.386 0.706 0.544 0.321 0.675
fastGCT[kC] 0.342 0.493 0.712 0.415 0.374 0.686 0.529 0.347 0.639
4DWTA [17] 0.439 0.541 0.659 0.423 0.417 0.652 0.577 0.304 0.593

Wavelet [40, 47] 0.326 0.414 0.683 0.447 0.274 0.679 0.473 0.349 0.625
S-Isomap [49] 0.487 0.508 0.618 0.367 0.391 0.640 0.615 0.296 0.514
IKM-PCA [78] 0.361 0.392 0.621 0.424 0.360 0.638 0.542 0.316 0.507

κ(·, ·) : Rq × Rq → R, unique to H, s.t. ϕ(y) := κ(y, ·) ∈ H
and g(y) = 〈g | ϕ(y)〉H, for any g ∈ H and any y ∈
Rq [66, 93]. The latter property is the reason for calling
kernel κ reproducing, and yields the celebrated “kernel trick”:
κ(y1,y2) = 〈κ(y1, ·) | κ(y2, ·)〉H = 〈ϕ(y1) | ϕ(y2)〉H, for
any y1,y2 ∈ Rq .

Popular examples of reproducing kernels are: (i) The linear
κlin(y1,y2) := yᵀ

1y2, where space H is nothing but Rq;
(ii) the Gaussian κG;σ(y1,y2) := exp[−‖y1 − y2‖2/(2σ2)],
where σ ∈ R>0 and ‖·‖ is the standard Euclidean norm. In
this case, H is infinite dimensional [66]; (iii) the polynomial
κpoly;r(y1,y2) := (yᵀ

1y2 + 1)r, for some parameter r ∈ Z>0.
There are several ways of generating reproducing kernels
via certain operations on well-known kernel functions such
as convex combinations, products, etc. [65]. For example,
given a set of parameters {σj}Jj=1, with J ∈ Z>0, used to
cover an interval where the “ideal” σ∗ is known to belong
to, and the Gaussian kernels {κG;σj (·, ·)}Jj=1, a reproducing
kernel function can be then defined as the convex combination
κ(·, ·) :=

∑J
j=1 γjκG;σj (·, ·), where {γj}Jj=1 are convex

weights, i.e., non-negative real numbers s.t.
∑J
j=1 γj = 1 [65].

APPENDIX B
THE PRODUCT ⊗H

Define Hp, for some p ∈ Z>0, as the space whose points
take the following form: g := [g1, . . . , gp]

ᵀ ∈ Hp s.t. gj ∈ H,
∀j ∈ 1, p, where 1, p is a compact notation for {1, . . . , p}.
For p′ ∈ Z>0 and given a matrix A := [aij] ∈ Rp′×p, the
product Ag ∈ Hp′ stands for the vector-valued function whose
ith entry is

∑p
j=1 aijgj . Similarly, define Hp1×p2 , for some

p1, p2 ∈ Z>0, as the space comprising all

G :=

 g11 · · · g1p2
...

. . .
...

gp11 · · · gp1p2

 ∈ Hp1×p2 ,

s.t. gij ∈ H, ∀i ∈ 1, p1, ∀j ∈ 1, p2. Moreover, given G ∈
Hp1×p and G′ ∈ Hp×p2 , define the “product” G⊗H G′ as the
p1 × p2 matrix:

G⊗H G′ :=

∑p
l=1〈g1l | g′l1〉H · · · ∑p

l=1〈g1l | g′lp2〉H
...

. . .
...∑p

l=1〈gp1l | g′l1〉H · · · ∑p
l=1〈gp1l | g′lp2〉H

 .
In the case where gil := ϕ(yil) = κ(yil, ·) and g′lj :=
ϕ(y′lj) = κ(y′lj , ·), for some yil,y

′
lj , as in (2), then the kernel

trick suggests that the previous product simplifies to

G⊗H G′ =

∑p
l=1 κ(y1l,y

′
l1) · · · ∑p

l=1 κ(y1l,y
′
lp2

)
...

. . .
...∑p

l=1 κ(yp1l,y
′
l1) · · · ∑p

l=1 κ(yp1l,y
′
lp2

)

 .

16

REFERENCES

[1] E. D. Kolaczyk, Statistical Analysis of Network Data: Methods and
Models. New York: Springer, 2009.

[2] D. S. Bassett and O. Sporns, “Network neuroscience,” Nature Neuro-
science, vol. 20, no. 3, p. 353, 2017.

[3] E. Bullmore and O. Sporns, “Complex brain networks: Graph theo-
retical analysis of structural and functional systems,” Nature Reviews
Neuroscience, vol. 10, no. 3, pp. 186–198, Feb. 2009.

[4] S. Ogawa, T.-M. Lee, A. R. Kay, and D. W. Tank, “Brain magnetic
resonance imaging with contrast dependent on blood oxygenation,”
Proc. National Academy of Sciences, vol. 87, no. 24, pp. 9868–9872,
1990.

[5] C. Zhang et al., “Generalized latent multi-view subspace clustering,”
IEEE Trans. Pattern Analysis Machine Intelligence, vol. 42, no. 1,
pp. 86–99, 2018.

[6] A. Vörös and T. A. Snijders, “Cluster analysis of multiplex networks:
Defining composite network measures,” Social Networks, vol. 49,
pp. 93–112, 2017.

[7] M. Kivelä et al., “Multilayer networks,” J. Complex Networks, vol. 2,
no. 3, pp. 203–271, 2014.

[8] R. F. Betzel and D. S. Bassett, “Multi-scale brain networks,” NeuroIm-
age, vol. 160, pp. 73–83, 2017.

[9] P.-Y. Chen and A. O. Hero, “Multilayer spectral graph clustering via
convex layer aggregation: Theory and algorithms,” IEEE Trans. Signal
and Information Processing over Networks, vol. 3, no. 3, pp. 553–567,
2017.

[10] A. Liu, X. Chen, X. Dan, M. J. McKeown, and Z. J. Wang, “A
combined static and dynamic model for resting-state brain connectivity
networks,” IEEE J. Selected Topics in Signal Process., vol. 10, no. 7,
pp. 1172–1181, 2016.

[11] C. J. Stam et al., “Graph theoretical analysis of magnetoen-
cephalographic functional connectivity in Alzheimer’s disease,” Brain,
vol. 132, no. 1, pp. 213–224, 2009.

[12] M. D. Greicius et al., “Resting-state functional connectivity in major
depression: Abnormally increased contributions from subgenual cin-
gulate cortex and thalamus,” Biological Psychiatry, vol. 62, no. 5,
pp. 429–437, 2007.

[13] S. J. Broyd et al., “Default-mode brain dysfunction in mental disorders:
A systematic review,” Neuroscience & Biobehavioral Reviews, vol. 33,
no. 3, pp. 279–296, 2009.

[14] G. Gifford et al., “Resting state fMRI based multilayer network
configuration in patients with schizophrenia,” NeuroImage: Clinical,
p. 102 169, 2020.

[15] N. Stevenson, K. Tapani, L. Lauronen, and S. Vanhatalo, “A dataset
of neonatal EEG recordings with seizure annotations,” Scientific Data,
vol. 6, p. 190 039, 2019.

[16] R. F. Betzel et al., “The community structure of functional brain
networks exhibits scale-specific patterns of inter-and intra-subject
variability,” NeuroImage, vol. 202, p. 115 990, 2019.

[17] E. Al-Sharoa, M. Al-Khassaweneh, and S. Aviyente, “Tensor based
temporal and multi-layer community detection for studying brain
dynamics during resting state fMRI,” IEEE Trans. Biomedical Engi-
neering, vol. 66, no. 3, pp. 695–709, 2019.

[18] M. Vaiana, E. M. Goldberg, and S. F. Muldoon, “Optimizing state
change detection in functional temporal networks through dynamic
community detection,” J. Complex Networks, Dec. 2018.

[19] L. Bréchet et al., “Capturing the spatiotemporal dynamics of self-
generated, task-initiated thoughts with EEG and fMRI,” NeuroImage,
vol. 194, pp. 82–92, 2019.

[20] S. Theodoridis, Machine Learning: A Bayesian and Optimization
Perspective, 2nd ed. Academic Press, 2020.

[21] P. T. Fletcher and S. Joshi, “Riemannian geometry for the statistical
analysis of diffusion tensor data,” Signal Processing, vol. 87, no. 2,
pp. 250–262, 2007.

[22] P. Turaga, A. Veeraraghavan, A. Srivastava, and R. Chellappa, “Sta-
tistical computations on Grassmann and Stiefel manifolds for image
and video-based recognition,” IEEE Trans. Pattern Analysis Machine
Intell., vol. 33, no. 11, pp. 2273–2286, 2011.

[23] L. W. Tu, An Introduction to Manifolds. Springer, 2008.
[24] J. W. Robbin and D. A. Salamon, Introduction to Differential Geom-

etry. 2019. [Online]. Available: https://people.math.ethz.ch/~salamon/
PREPRINTS/diffgeo.pdf.

[25] J. Nash, “The imbedding problem for Riemannian manifolds,” Annals
of Mathematics, pp. 20–63, 1956.

[26] Q. Han and J. X. Hong, Isometric Embedding of Riemannian Manifolds
in Euclidean Spaces, v. 13. American Mathematical Society, 2006.

[27] A. Machado and I. Salavessa, “Grassmannian manifolds as subsets of
Euclidean spaces,” Res. Notes in Math, vol. 131, pp. 85–102, 1985.

[28] K. Slavakis, G. B. Giannakis, and G. Mateos, “Modeling and opti-
mization for big data analytics: (Statistical) learning tools for our era
of data deluge,” IEEE Signal Processing Magazine, vol. 31, no. 5,
pp. 18–31, Sep. 2014.

[29] R. Zarei, J. He, S. Siuly, and Y. Zhang, “A PCA aided cross-
covariance scheme for discriminative feature extraction from EEG
signals,” Computer Methods and Programs in Biomedicine, vol. 146,
pp. 47–57, 2017.

[30] N. Mammone, C. Ieracitano, H. Adeli, A. Bramanti, and F. C.
Morabito, “Permutation Jaccard distance-based hierarchical clustering
to estimate EEG network density modifications in MCI subjects,”
IEEE Trans. Neural Networks and Learning Systems, vol. 29, no. 10,
pp. 5122–5135, 2018.

[31] K. Slavakis et al., “Clustering brain-network time series by Rieman-
nian geometry,” IEEE Trans. Signal and Information Processing over
Networks, vol. 4, no. 3, pp. 519–533, 2018.

[32] C. Ye et al., “Network clustering via kernel-ARMA modeling and the
Grassmannian: The brain-network case,” arXiv:2002.09943, 2020.

[33] E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm,
theory, and applications,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 35, no. 11, pp. 2765–2781, 2013.

[34] K. V. Haak, A. F. Marquand, and C. F. Beckmann, “Connectopic
mapping with resting-state fMRI,” NeuroImage, vol. 170, pp. 83–94,
2018.

[35] H. Shen, L. Wang, Y. Liu, and D. Hu, “Discriminative analysis of
resting-state functional connectivity patterns of schizophrenia using
low dimensional embedding of fMRI,” NeuroImage, vol. 49, no. 4,
pp. 3110–3121, 2010.

[36] H. J. Kim et al., “Canonical correlation analysis on SPD(n) manifolds,”
in Riemannian Computing in Computer Vision, Springer, 2016, pp. 69–
100.

[37] G. Duan, W. Hu, and Z. Zhang, “A novel multilayer data clustering
framework based on feature selection and modified k-means algo-
rithm,” Int J. Signal Process. Image Process. Pattern Recognit., vol. 9,
no. 4, pp. 81–90, 2016.

[38] M. Abdolali, N. Gillis, and M. Rahmati, “Scalable and robust
sparse subspace clustering using randomized clustering and multilayer
graphs,” Signal Processing, vol. 163, pp. 166–180, 2019.

[39] Z. Jiao, X. Ming, Y. Cao, C. Cheng, and S.-H. Wang, “Module
partitioning for multilayer brain functional network using weighted
clustering ensemble,” J. Ambient Intelligence and Humanized Com-
puting, pp. 1–11, 2019.

[40] A. Medda et al., “Wavelet-based clustering of resting state MRI data
in the rat,” Magnetic Resonance Imaging, vol. 34, no. 1, pp. 35–43,
2016.

[41] D. Wang, H. Wang, and X. Zou, “Identifying key nodes in multilayer
networks based on tensor decomposition,” Chaos, vol. 27, no. 6,
p. 063 108, 2017.

[42] D. Xie, W. Xia, Q. Wang, Q. Gao, and S. Xiao, “Multi-view clustering
by joint manifold learning and tensor nuclear norm,” Neurocomputing,
vol. 380, pp. 105–114, 2020.

[43] S. Segarra, A. G. Marques, G. Mateos, and A. Ribeiro, “Network
topology inference from spectral templates,” IEEE Trans. Signal and
Information Processing over Networks, vol. 3, no. 3, pp. 467–483,
2017.

[44] F. Liu, D. Choi, L. Xie, and K. Roeder, “Global spectral clustering
in dynamic networks,” Proc. National Academy of Sciences, vol. 115,
no. 5, pp. 927–932, 2018.

[45] D. R. DeFord and S. D. Pauls, “Spectral clustering methods for multi-
plex networks,” Physica A: Statistical Mechanics and its Applications,
vol. 533, p. 121 949, 2019.

[46] A. Abuarqoub et al., “Dynamic clustering and management of mobile
wireless sensor networks,” Computer Networks, vol. 117, pp. 62–75,
2017.

[47] A. Dal Col et al., “Wavelet-based visual analysis of dynamic net-
works,” IEEE Trans. Visualization and Computer Graphics, vol. 24,
no. 8, pp. 2456–2469, 2018.

[48] S.-Y. Huang and H. Chen, “Exploring the online underground mar-
ketplaces through topic-based social network and clustering,” in Proc.
IEEE Conference on Intelligence and Security Informatics (ISI), IEEE,
2016, pp. 145–150.

[49] S. Mahapatra and V. Chandola, “S-Isomap++: Multi manifold learning
from streaming data,” in IEEE International Conference on Big Data,
IEEE, 2017, pp. 716–725.

17

[50] T. Yang, Y. Chi, S. Zhu, Y. Gong, and R. Jin, “Detecting commu-
nities and their evolutions in dynamic social networks—a Bayesian
approach,” Machine Learning, vol. 82, no. 2, pp. 157–189, 2011.

[51] K. S. Xu and A. O. Hero, “Dynamic stochastic blockmodels for
time-evolving social networks,” IEEE J. Selected Topics in Signal
Processing, vol. 8, no. 4, pp. 552–562, 2014.

[52] C.-D. Wang, J.-H. Lai, D. Huang, and W.-S. Zheng, “SVStream: A sup-
port vector-based algorithm for clustering data streams,” IEEE Trans.
Knowledge and Data Engineering, vol. 25, no. 6, pp. 1410–1424, 2011.

[53] D. Huang, C.-D. Wang, and J.-H. Lai, “Locally weighted ensemble
clustering,” IEEE Trans. Cybernetics, vol. 48, no. 5, pp. 1460–1473,
2017.

[54] L. Gauvin, A. Panisson, and C. Cattuto, “Detecting the community
structure and activity patterns of temporal networks: A non-negative
tensor factorization approach,” PloS One, vol. 9, no. 1, 2014.

[55] K. Tu, B. Ribeiro, A. Swami, and D. Towsley, “Temporal clustering
in dynamic networks with tensor decomposition,” arXiv:1605.08074,
2016.

[56] M. Vaiana, E. M. Goldberg, and S. F. Muldoon, “Optimizing state
change detection in functional temporal networks through dynamic
community detection,” J. Complex Networks, vol. 7, no. 4, pp. 529–
553, 2019.

[57] Y. Yang, L. Wang, Y. Lei, Y. Zhu, and H. Shen, “Manifold learning
of dynamic functional connectivity reliably identifies functionally
consistent coupling patterns in human brains,” Brain Sciences, vol. 9,
no. 11, p. 309, 2019.

[58] J. Guo, W. Yin, Y. Sun, and Y. Hu, “Multi-view subspace clustering
with block diagonal representation,” IEEE Access, vol. 7, pp. 84 829–
84 838, 2019.

[59] X. Wang, K. Slavakis, and G. Lerman, “Multi-manifold modeling in
non-Euclidean spaces,” in Proc. AISTATS, San Diego: California: USA,
May 2015.

[60] ——, “Riemannian multi-manifold modeling,” arXiv:1410.0095, 2014.
[61] J. Hamm and D. D. Lee, “Grassmann discriminant analysis: A unifying

view on subspace-based learning,” in Proc. International Conference
on Machine Learning, 2008, pp. 376–383.

[62] K. Gallivan, A. Srivastava, X. Liu, and P. V. Dooren, “Efficient
algorithms for inferences on Grassmann manifolds,” in Proc. SSP,
2003, pp. 315–318.

[63] O. Tuzel, F. Porikli, and P. Meer, “Human detection via classification
on Riemannian manifolds,” in IEEE Conf. Computer Vision & Pattern
Recognition, 2007, pp. 1–8.

[64] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, “Geometric means in
a novel vector space structure on symmetric positive-definite matrices,”
SIAM J. Matrix Analysis and Applications, vol. 29, no. 1, pp. 328–347,
2007.

[65] B. Scholkopf and A. J. Smola, Learning with Kernels. MIT Press,
2001.

[66] K. Slavakis, P. Bouboulis, and S. Theodoridis, “Online learning in
reproducing kernel Hilbert spaces,” in Academic Press Library in
Signal Processing: Signal Processing Theory and Machine Learning,
vol. 1, 2014, pp. 883–987.

[67] A. Ben-Israel and T. N. Greville, Generalized Inverses: Theory and
Applications. Springer Science & Business Media, 2003, vol. 15.

[68] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covariance
estimation with the graphical LASSO,” Biostatistics, vol. 9, no. 3,
pp. 432–441, 2008.

[69] C.-J. Hsieh, I. S. Dhillon, P. K. Ravikumar, and M. A. Sustik,
“Sparse inverse covariance matrix estimation using quadratic approxi-
mation,” in Advances in Neural Information Processing Systems, 2011,
pp. 2330–2338.

[70] N. Masuda, M. Sakaki, T. Ezaki, and T. Watanabe, “Clustering
coefficients for correlation networks,” Frontiers in Neuroinformatics,
vol. 12, p. 7, 2018.

[71] K. Dadi et al., “Benchmarking functional connectome-based predictive
models for resting-state fMRI,” NeuroImage, vol. 192, pp. 115–134,
2019.

[72] W. M. Cates, “Systematic selection and implementation of graphical
user interface metaphors,” Computers & Education, vol. 38, no. 4,
pp. 385–397, 2002.

[73] J.-F. Richard and W. Zhang, “Efficient high-dimensional importance
sampling,” J. Econometrics, vol. 141, no. 2, pp. 1385–1411, 2007.

[74] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395,
Jun. 1981.

[75] V. De Silva and J. B. Tenenbaum, “Sparse multidimensional scaling
using landmark points,” Technical report, Stanford University, Tech.
Rep., 2004.

[76] I. T. Jolliffe, Principal Component Analysis, ser. Springer Series in
Statistics. New York: Springer-Verlag, 2002.

[77] T. Aynaud and J.-L. Guillaume, “Static community detection algo-
rithms for evolving networks,” in Proc. IEEE WiOpt, 2010, pp. 513–
519.

[78] K. Vijay and K. Selvakumar, “Brain fMRI clustering using interaction
K-means algorithm with PCA,” in Proc. IEEE ICCSP, 2015, pp. 909–
913.

[79] L. Barnett and A. K. Seth, “The MVGC multivariate Granger causality
toolbox: A new approach to Granger-causal inference,” J. Neuroscience
Methods, vol. 223, pp. 50–68, 2014.

[80] A. Duggento et al., “Multivariate Granger causality unveils directed
parietal to prefrontal cortex connectivity during task-free MRI,” Sci-
entific Reports, vol. 8, no. 1, p. 5571, 2018.

[81] H. Schütze, C. D. Manning, and P. Raghavan, Introduction to Infor-
mation Retrieval. Cambridge University Press, 2008, vol. 39.

[82] E. A. Allen et al., “Tracking whole-brain connectivity dynamics in the
resting state,” Cerebral Cortex, vol. 24, no. 3, pp. 663–676, 2014.

[83] E. Arias-Castro and J. Wang, “RANSAC algorithms for subspace
recovery and subspace clustering,” arXiv:1711.11220, 2017.

[84] M. F. Glasser et al., “The minimal preprocessing pipelines for the
human connectome project,” NeuroImage, vol. 80, pp. 105–124, 2013.

[85] N. Tzourio-Mazoyer et al., “Automated anatomical labeling of activa-
tions in SPM using a macroscopic anatomical parcellation of the MNI
MRI single-subject brain,” NeuroImage, vol. 15, no. 1, pp. 273–289,
2002.

[86] A. Schaefer et al., “Local-global parcellation of the human cerebral
cortex from intrinsic functional connectivity MRI,” Cerebral Cortex,
vol. 28, no. 9, pp. 3095–3114, 2018.

[87] E. Y. Choi, B. T. Yeo, and R. L. Buckner, “The organization of
the human striatum estimated by intrinsic functional connectivity,” J.
Neurophysiology, vol. 108, no. 2, pp. 2242–2263, 2012.

[88] D. J. Greene et al., “Integrative and network-specific connectivity
of the basal ganglia and thalamus defined in individuals,” Neuron,
vol. 105, no. 4, 742–758.e6, 2020, ISSN: 0896-6273.

[89] S. Marek et al., “Spatial and temporal organization of the individual
human cerebellum,” Neuron, vol. 100, no. 4, 977–993.e7, 2018.

[90] D. Wang et al., “Parcellating cortical functional networks in individu-
als,” Nature Neuroscience, vol. 18, pp. 1853–1860, 2015.

[91] P. M. Macey, K. E. Macey, R. Kumar, and R. M. Harper, “A method
for removal of global effects from fMRI time series,” NeuroImage,
vol. 22, no. 1, pp. 360–366, 2004.

[92] M. Jenkinson, P. Bannister, M. Brady, and S. Smith, “Improved
optimization for the robust and accurate linear registration and motion
correction of brain images,” NeuroImage, vol. 17, no. 2, pp. 825–841,
2002.

[93] N. Aronszajn, “Theory of reproducing kernels,” Trans. American
Mathematical Society, vol. 68, no. 3, pp. 337–404, 1950.

1

SUPPLEMENTARY DOCUMENT

This supplementary document includes figures and tables
that do not fit in the main body of the manuscript, due to space
constraints dictated by this Journal. The following figures and
tables are labeled by the “Supp” tag.

0

0.5

1

eG
C
T
[k
A
R
M
A
]

fa
st
G
C
T
[k
A
R
M
A
]

fa
st
G
C
T
[k
P
C
]

4
D
W

T
A

w
a
v
el
et

S
-I
so
m
a
p

S
M
C
E

R
A
N
S
A
C

K
m
ea

n
s

A
cc
u
ra
cy

D1
D2
D3

(a) Datasets 1, 2, 3

0

0.5

1

eG
C
T
[k
A
R
M
A
]

fa
st
G
C
T
[k
A
R
M
A
]

fa
st
G
C
T
[k
P
C
]

4
D
W

T
A

w
a
v
el
et

S
-I
so
m
a
p

S
M
C
E

R
A
N
S
A
C

K
m
ea

n
s

A
cc
u
ra
cy

D4
D5
D6

(b) Datasets 4, 5, 6

0

101

102

103

104

eG
C
T
[k
A
R
M
A
]

fa
st
G
C
T
[k
A
R
M
A
]

fa
st
G
C
T
[k
P
C
]

4
D
W

T
A

w
a
v
el
et

S
-I
so
m
a
p

S
M
C
E

R
A
N
S
A
C

K
m
ea

n
sR

u
n
-t
im

e
(S
ec
)

(c) Time consumption

Fig. Supp1: State clustering results of synthetic fMRI datasets. (a) Data
without an independent event; (b) Data with an independent event. (c) Average
time consumption of proposed and competing algorithms.

0

0.5

1

eG
C
T
[k
A
R
M
A
]

fa
st
G
C
T
[k
A
R
M
A
]

fa
st
G
C
T
[k
C
]

4
D
W

T
A

w
a
v
el
et

S
-I
so
m
a
p

S
M
C
E

M
V
G
C

G
O
E

IK
M
-P

C
A

R
A
N
S
A
C

K
m
ea

n
s

A
cc
u
ra
cy

D1
D2
D3

(a) Datasets 1, 2, 3

0

0.5

1

eG
C
T
[k
A
R
M
A
]

fa
st
G
C
T
[k
A
R
M
A
]

fa
st
G
C
T
[k
C
]

4
D
W

T
A

w
a
v
el
et

S
-I
so
m
a
p

S
M
C
E

M
V
G
C

G
O
E

IK
M
-P

C
A

R
A
N
S
A
C

K
m
ea

n
s

A
cc
u
ra
cy

D4
D5
D6

(b) Datasets 4, 5, 6

0

101

102

103

104

eG
C
T
[k
A
R
M
A
]

fa
st
G
C
T
[k
A
R
M
A
]

fa
st
G
C
T
[k
C
]

4
D
W

T
A

w
a
v
el
et

S
-I
so
m
a
p S
M
C
E

M
V
G
C

G
O
E

IK
M
-P

C
A

R
A
N
S
A
C

K
m
ea

n
sR
u
n
-t
im

e
(S
ec
)

(c) Time consumption

Fig. Supp2: Community detection results of synthetic fMRI datasets. (a) Data
without independent event; (b) Data with independent event. (c) Average time
consumption of proposed and competing algorithms.

2

TABLE Supp1: Parameters (µ, σn) used to generate synthetic BOLD time series

Dataset State 1 State 2 State 3 State 4
1 (0,−10dB) (0,−10dB) (0,−10dB) (0,−10dB)
2 (0,−8dB) (0,−8dB) (0,−8dB) (0,−8dB)
3 (0,−6dB) (0,−6dB) (0,−6dB) (0,−6dB)
4 (0.2,−10dB) (0.3,−10dB) (0.4,−10dB) (0.5,−10dB)
5 (0.2,−8dB) (0.3,−8dB) (0.4,−8dB) (0.5,−8dB)
6 (0.2,−6dB) (0.3,−6dB) (0.4,−6dB) (0.5,−6dB)

0

0.5

1

eG
C
T
[k
A
R
M
A
]

fa
st
G
C
T
[k
A
R
M
A
]

fa
st
G
C
T
[k
C
]

S
-I
so
m
a
p

S
M
C
E

R
A
N
S
A
C

w
a
v
el
etA
cc
u
ra
cy

D1
D2
D3

(a) Datasets 1, 2, 3

0

0.5

1

eG
C
T
[k
A
R
M
A
]

fa
st
G
C
T
[k
A
R
M
A
]

fa
st
G
C
T
[k
C
]

S
-I
so
m
a
p

S
M
C
E

R
A
N
S
A
C

w
a
v
el
etA
cc
u
ra
cy

D4
D5
D6

(b) Datasets 4, 5, 6

101

102

103

104

105

eG
C
T
[k
A
R
M
A
]

fa
st
G
C
T
[k
A
R
M
A
]

fa
st
G
C
T
[k
C
]

S
-I
so
m
a
p

S
M
C
E

R
A
N
S
A
C

w
a
v
el
et

R
u
n
-t
im

e
(S
ec
)

(c) Time consumption

Fig. Supp3: Subnetwork-sequence clustering results of synthetic fMRI
datasets. (a) Data without independent event; (b) Data with independent event.
(c) Average time consumption of proposed and competing algorithms.

0.5

0.75

1

eG
C
T
[k
A
R
M
A
]

fa
st
G
C
T
[k
A
R
M
A
]

fa
st
G
C
T
[k
P
C
]

w
a
v
el
et

S
-I
so
m
a
p

S
M
C
E

R
A
N
S
A
C

K
m
ea

n
s

A
cc
u
ra
cy

(a) Accuracy

101

102

103

104

105

eG
C
T
[k
A
R
M
A
]

fa
st
G
C
T
[k
A
R
M
A
]

fa
st
G
C
T
[k
P
C
]

w
a
v
el
et

S
-I
so
m
a
p

S
M
C
E

R
A
N
S
A
C

K
m
ea

n
sR
u
n
-t
im

e
(S
ec
)

(b) Run-times

Fig. Supp4: State clustering results of real EEG dataset. (a) Average clustering
accuracy. (b) Average time consumption.

3

0

0.25

0.5

0.75

1
C
er
b
el

C
o
n
t D

ef
a
u
lt

D
o
rs
A
tt
n

L
im

b
ic

S
a
lV

en
tA

tt
n

S
o
m
M
o
t

S
u
b
C
o
rt

V
isF
it
ti
n
g
ra
te

GCT[kARMA]

eGCT[kARMA]
SMCE
MVGC

(a) Batch.I

0

0.25

0.5

0.75

1

C
er
b
el

C
o
n
t D

ef
a
u
lt

D
o
rs
A
tt
n

L
im

b
ic

S
a
lV

en
tA

tt
n

S
o
m
M
o
t

S
u
b
C
o
rt

V
isF
it
ti
n
g
ra
te

GOE
RANSAC
Kmeans

(b) Batch.II

0

0.25

0.5

0.75

1

C
er
b
el

C
o
n
t D

ef
a
u
lt

D
o
rs
A
tt
n

L
im

b
ic

S
a
lV

en
tA

tt
n

S
o
m
M
o
t

S
u
b
C
o
rt

V
isF
it
ti
n
g
ra
te

fastGCT[kARMA]

fastGCT[kC]
S-Isomap

(c) Sequential.I

0

0.25

0.5

0.75

1

C
er
b
el

C
o
n
t D

ef
a
u
lt

D
o
rs
A
tt
n

L
im

b
ic

S
a
lV

en
tA

tt
n

S
o
m
M
o
t

S
u
b
C
o
rt

V
isF
it
ti
n
g
ra
te

wavelet
4DWTA
IKM-PCA

(d) Sequential.II

Fig. Supp5: Community detection results for the real fMRI dataset. (a) GCT,
EGCT, SMCE and MVGC. (b) GOE, RANSAC and Kmeans. (c) FastGCT
and S-Isomap. (d) Wavelet, 4DWTA and IKM-PCA.

