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Abstract

Solving the Visual Question Answering (VQA) task is a step towards achieving human-like reasoning capability of the machines.

This paper proposes an approach to learn multimodal feature representation with adversarial training. The purpose of the

adversarial training allows the model to learn from standard fusion methods in an unsupervised manner. The discriminator

model is equipped with a siamese combinatin of two standard fusion method namely multimodal compact bilinear pooling

and multimodal tucker fusion. Output multimodal feature representation from generator is a resultant of graph convolutional

operation. The resultant multimodal representation of the adversarial training allows the proposed model to infer the correct

answers from open-ended natural language questions from the VQA 2.0 dataset. An overall accuracy of 69.86\% demonstrates

the accuracy of the proposed model.
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ABSTRACT

Solving the Visual Question Answering (VQA) task is a step
towards achieving human-like reasoning capability of the ma-
chines. This paper proposes an approach to learn multimodal
feature representation with adversarial training. The purpose
of the adversarial training allows the model to learn from stan-
dard fusion methods in an unsupervised manner. The discrim-
inator model is equipped with a siamese combinatin of two
standard fusion method namely multimodal compact bilinear
pooling and multimodal tucker fusion. Output multimodal
feature representation from generator is a resultant of graph
convolutional operation. The resultant multimodal represen-
tation of the adversarial training allows the proposed model to
infer the correct answers from open-ended natural language
questions from the VQA 2.0 dataset. An overall accuracy of
69.86% demonstrates the accuracy of the proposed model.

Index Terms— Visual Question Answering (VQA), Ad-
versarial Learning, Multimodal Representation Learning,
Scene Understanding.

1. INTRODUCTION

The ability to understand both the natural language sentences
and visual data (image/video), and to further perform rea-
soning or decision making based on that is a good metric to
measure machine’s capability of human-like understanding of
multimodal data. Machine learning models are trained on an-
notated image-question pairs to generate natural language an-
swer for unseen image-question pairs. This paper attempts to
learn a better multimodal representation with the use of Gen-
erative adversarial network[1] to bolster the performance of
the VQA model.

Current approaches to solve the VQA task relies on first
obtaining an encoding of the question sentence using re-
current architectures, e.g. recurrent neural network (RNN),
long short-term memory[2] (LSTM) or gated recurrent unit
(GRU). Also, covolutional neural network is used either to
down-sample the feature size of the whole image or de-
tected bounding boxes (by region proposal network, e.g.
R-CNN[3]). Different variety of attention-mechanism and

model structures of increasing complexity have been pro-
posed to train the models on deep feature encodings of the
textual and visual modality. A graph learning mechanism
is used in[4], where semantic connection among detected
bounding boxes are learned through graph convolution, which
are conditioned on the question sentence encoding. Also, a
relation-aware graph network is proposed[5] where different
variety of relations among detected bounding box objects of
the image are learned through a proposed relation encoder.
However, we argue that the question sentence itself is the
first and foremost component to define the context of reason-
ing for the VQA task. We believe that learning the context
specific mulimodal representation is the key which drives
the overall inference of the VQA model. All the existing ap-
proaches encode the question sentence as a whole and use that
encoded representation in different model architectures. Ex-
isting approaches do not employ any mechanism to improve
the obtained multimodal representation in an unsupervised
manner.

GAN[1] models exhibit success in synthesizing new data
from existing data distribution. The adversarial training ap-
proach is used in this paper to obtain an optimal multimodal
feature representation where context specific multimodal fea-
tures is generated and updated for the image and open-ended
natural language question pair. The proposed approach in this
paper allows the VQA model to further improve the multi-
modal feature representation through an adversarial training
to bolster the performance of the VQA model. Figure 2 shows
the overall architecture of the proposed model, where the im-
age and question is forwarded through the generator to gener-
ate the fine grained multimodal feature representation throgh
grapn convolutional LSTM. Later, the discriminator provides
feedback whether the multimodal feature representation ob-
tained through the generator is optimal or not. The discrim-
inator network is a siamese combination of two standard fu-
sion method, which allows the discriminator to provide more
robust feedback on the performance of the generator network.
The adversarial learning approach allows the model to update
both the generator and the discriminator model over the time,
which results in a better generator model to produce an opti-
mal multimodal feature representation to predict the final an-
swer word.



Fig. 1. An optimal representation of the multimodal feature is obtained with the use of GAN. Multmodal compact bilinear
pooling and multimodal tucker fusion are used as the standard fusion method, where the generator loss tries to produce an
optimal multimodal feature which is close to the multimodal feature representation of provided by the discriminator network.
Proposed unsupervised learning of multimodal feature bolsters the performance of the VQA model.

The generator network of the proposed model uses graph
convolution operation which is conditioned on the extracted
phrase of the question sentence. Also, relationship among
the detected object in the images are considered prior to the
graph convolution operation. The output of the graph con-
volution conditioned on each of the phrase is passed through
the LSTM, and finally the multimodal representation is found
for the whole question sentence. The purpose of the dis-
criminator network is examine the closeness of the derived
multimodal feature representation with the original image
and question features. A siamese combination of Multimodal
compact bilinear pooling(MCBP)[6] and multimodal tucker
fusion(MTF)[7] are used as the standard fusion method in
the discriminator network. The adversarial loss penalize the
generator in a mini-max game where the generator is forced
to create better multimodal representation.

Our main contribution is the development of a VQA
model which learns an optimal multimodal feature rep-
resentation in an unsupervised manner. Competitive per-
formance of the proposed method demonstrates the effective-
ness of the proposed method. The proposed method uses ob-
ject level feature to perform graph convolution operation, and
the resultant intermediate feature representation is further im-
proved with the help of adversarial minimax optimization.

2. RELATED WORK

Context specific multimodal representation learning is the
main challenge for the VQA task. VQA problem was first
studied by Mlinowski et al.[8] which combines semantic
parsing and image segmentation. Geman et al.[9] Uses an
automatic query generator which was trained on annotated
images. Earlier approaches are limited on the form of ques-
tions that can be answered. Deep neural network architecture
combined of CNN[10] and recurrent neural network (RNN)
has become popular to learn the mapping from images to
sentences. Usual approach is to use only image features
with CNN but [11] uses multiple sources e.g. image content,
generated image captions and mined external knowledge to
feed to an RNN for VQA. Quality of information available in
the KB is a vital fact for using knowledge bases with VQA.
Hand crafted knowledge bases are too specific and on the
other hand if constructed from Wikipedia or similar sources
it becomes patchy and inconsistent. Wu. et. el.[11] proposes
building a pre-build large-scale KB from which information
can be extracted using a standard RDF query language.

Xiong et. el.[12] uses an input fusion layer to map the
image patches with the dimensionality of the question vector.
Both the attention and memory mechanism are incorporated
in this deep neural network architecture. This approach is
tested on three dataset namely, babI- 10k, DAQUAR-ALL vi-



sual dataset and Microsoft COCO dataset. Question answer-
ing is achieved with a multi-class classifier which is trained
by using both the dense question embedding and image fea-
tures. First questions are encoded with LSTMs and then ques-
tion vectors are combined with image vectors by element wise
multiplication. Most frequent answers are considered as pos-
sible outputs. This large scale open-ended VQA dataset is
based on MS COCO [8]. CNN+BOW method is used as a
baseline for this dataset which encodes image with CNN fea-
tures and questions with BOW representation. Later a soft-
max neural network classifier is trained with a single hidden
layer of 50 units and an output space being the 500 most fre-
quent answers in the training set.

For image based question answering[13] proposes combi-
nation of internal representation of the content of image with
information extracted from a general knowledge base. Deeper
understanding of the scene is achieved by merging of textual
information of the knowledge base and the textual represen-
tation of the semantic content of the images from Toronto
COCO-QA[14] and MS COCO-VQA. More enriched knowl-
edge bases will facilitate a robust visual question answering
system.

Combination of LSTM for the query with a CNN for the
image is proposed for VQA system in[15] for the DAQUAR
dataset[16]. [15] prefers single word as the answer. A sin-
gle recurrent network is used to perform both encoding and
decoding. Attention based encoder-decoder model is used for
VQA in[17]. [17] uses one or multiple image regions to deter-
mine answer for the visual question answering models. They
demonstrated how spatial mechanism works to read a picture
over the DAQUAR[18] and VQA[19] dataset. Question is
used to compute an attention over the input image. Later an-
swer is computed based on the question and the attended im-
age features.

Syntactic supervision is found in the form of depen-
dency trees for question answering in[20]. Models in[20]
are inspired by neural modules and evaluates knowledgebase
reasoning and visual question answering. Vision models
in[20] uses reinforcement learning technique to backpropa-
gate through a sampling mechanism for the visual question
answering 19task. [20] produces attention maps to answer
object reference questions through parsing the question sen-
tence.

Also, recent approaches incorporates graph convolution[5][4]
operation with the attention mechanism in a aim to capture
the interactions among objects in the visual scene. Also, an
attempt to find relation among among objects through pair-
wise relational reasoning is explored in[21]. However, none
of the existing approaches focus on dividing the question
sentence intor meaningful chunks i.e. phrases to better under-
stand the context of the reasoning. This paper advocates the
fact that the question sentence is the main agent of driving the
context of reasoning for the VQA task. The proposed method
in this paper divides the question sentence into phrase-based

conceptual unit to further perform reasoning of the VQA
task, whic reflects the usefulness of the divide-and-conquer
style approach to solve the VQA task. Moreover, the phrase-
conditioned graph convolution is further strengthened by the
incorporation of relational features with the convolutional
features of the nodes of the grpah convolution operation.

3. MULTIMODAL FEATURE GENERATION BY
GRAPH CONVOLUTIONAL LSTM

Many types of feature fusion techniques have been proposed,
e.g. multimodal compact bilinear pooling[6], multimodal
tucker fusion[7] etc. These feature fusion methods demon-
strate promising performance in the supervised learning setup
for the ImageQA models. However, how to learn from these
standard fusion methods in an unsupervised manner for the
VQA task is still a less explored area. An unsupervised
approach to learning from multiple standard fusion tech-
niques is proposed in this chapter. A generative adversarial
network-based training is proposed where the generator net-
work generates question sentence phrase conditioned features
through graph convolutional LSTM. Also, the discriminator
network is a Siamese[22] network of standard multimodal
fusion techniques, which compares the generator network’s
output with the siamese combination of standard fusion meth-
ods to minimize an adversarial loss.

An encoding of the question sentence is obtained by using
recurrent architectures, e.g. recurrent neural network (RNN),
long short-term memory (LSTM)[2] or gru. In the traditional
approach obtaining the question, sentence embedding is con-
sidered as the first step to solve the VQA task. Also, the con-
volutional neural network is used either to down-sample the
feature size of the whole image or detected bounding boxes
(by region proposal network, e.g. R-CNN[3]). Different vari-
ety of attention-mechanism and model structures of increas-
ing complexity have been proposed to train the models on
deep feature encoding of the textual and visual modality. A
graph learning mechanism is proposed in[4]. In the graph
learning mechanism, the semantic connection among detected
bounding boxes is learned through graph convolution, which
is conditioned on the question sentence encoding. Also, a
relation-aware graph network is proposed[5], where a variety
of different relations among detected bounding box objects
of the image are learned through a proposed relation encoder.
However, we argue that the question sentence itself is the first
and foremost component to define the context of reasoning for
the VQA task. We believe that learning the context-specific
multimodal representation is the key that drives the overall
inference of the VQA model. All the existing approaches en-
code the question sentence as a whole and use that encoded
representation in different model architectures. Existing ap-
proaches do not employ any mechanism to improve the ob-
tained multimodal representation in an unsupervised manner.

GAN[1] models exhibit success in synthesizing new data



Fig. 2. An optimal representation of the multimodal feature is obtained with the use of adversarial training. Multimodal compact
bilinear pooling and multimodal tucker fusion are used as the standard fusion method, where the generator loss tries to produce
an optimal multimodal feature, which is close to the multimodal feature representation provided by the discriminator network.
Proposed unsupervised learning of multimodal feature bolsters the performance of the VQA model.

from the existing data distribution. The adversarial training
approach is used in this chapter to obtain an optimal mul-
timodal feature representation where context-specific multi-
modal features are generated and updated for the image and
open-ended natural language question pair. The proposed ap-
proach in this chapter allows the VQA model to further im-
prove the multimodal feature representation through adver-
sarial training to bolster the performance of the VQA model.
Figure 2 shows the overall architecture of the proposed model,
where the image and question are forwarded through the gen-
erator to generate the fine-grained multimodal feature repre-
sentation through graph convolutional LSTM. Later, the dis-
criminator provides feedback on whether the multimodal fea-
ture representation obtained through the generator is optimal
or not. The discriminator network is a Siamese combination
of two standard fusion methods, which allows the discrimina-
tor to provide more robust feedback on the performance of the
generator network. The adversarial learning approach allows
the model to update both the generator and the discriminator
model over time, which results in a better generator model to
produce an optimal multimodal feature representation to pre-
dict the final answer word.

The generator network of the proposed model uses graph
convolution operation, which is conditioned on the extracted
phrase of the question sentence. Also, the relationship be-
tween the detected object in the images is considered before

the graph convolution operation. The output of the graph con-
volution conditioned on each of the phrases is passed through
the LSTM, and finally, the multimodal representation is found
for the whole question sentence. The purpose of the discrimi-
nator network is to examine the closeness of the derived mul-
timodal feature representation with the original image and
question features. A Siamese combination of mcbp[6] and
mtf[7] is used as the standard fusion method in the discrim-
inator network. The adversarial loss penalizes the generator
in a mini-max game where the generator is forced to create
better multimodal representation.

The proposed model is equipped with a generator and dis-
criminator network, which are glued together to jointly op-
timize the adversarial loss and answer prediction loss. The
generator network uses graph convolutional LSTM to gen-
erate context-specific multimodal feature representation. The
discriminator network compares the generator output with the
output of a Siamese combination of two standard fusion meth-
ods. The generator network is described in this section. The
discriminator network for adversarial training is described in
the next section.

The generator serves the purpose of generating context-
specific multimodal feature representation. The open-ended
natural language question is the main catalyst to define and
influence the overall reasoning process of the VQA task.
Thus, the generator network considers the question sentence



Fig. 3. In the generator network, each of the question phrases is considered individually instead of the whole question sentence
encoding. Based on each phrase the graph convolution operation is performed on image features. Detected bounding boxes of
images are considered as nodes in the graph convolution. Convoluted graph convolution features conditioned on each of the
phrases are then passed through LSTM. The final answer prediction is performed when all the phrases are addressed for the
graph convolution operation.

in a phrase-by-phrase manner to derive context-specific visual
feature representation through graph convolution operation.
The graph convolution operation also considers the object-
level relations and their feature representation to obtain a
better multimodal feature representation. The following sub-
sections describe the phrase parsing and phrase conditioned
graph convolution operation, which results in the multimodal
feature representation output of the generator network.

The first contribution of the proposed method is to divide
the natural language sentence into meaningful chunks to bol-
ster the human-like reasoning capability of the model through
graph convolutional LSTM. If any natural language sentence
is distilled down, then phrases are the most meaningful con-
ceptual unit available. These chunks give a hint of step-by-
step evolution of the understanding for the whole question
sentence. Thus, the VQA models must understand and corre-
late the understanding of the visual data (images) conditioned
on the phrases to achieve better reasoning capability of the
model. As visible in Figure 3, each of the phrases chunks
c1 to cP is used to condition the relation-aware graph con-
volution operation, where nodes of the graph convolution are
equipped with relational features associated with every de-
tected bounding box of the image. Graph convolution opera-
tion conditioned on each of the frames results in the outputs
H1 to HP . The LSTM memory is updated with the output of
graph convolution operations started from the conditioning of
the very first phrase c1 till the encounter of the last phrase cP .

Q = [c1, c2, ......, cp], p = 1, 2, ..., P (1)

Standard NLTK[23] parser is used during implementation
to extract meaningful chunks i.e. the phrases of the question
sentence. Equation 1 lists the different chunks, which are be-
ing extracted from the question sentence Q. There is P num-
ber of phrases based on the length of the open-ended ques-
tions. Each subscript of the element c refers to the sequence
number of phrases extracted from the question sentence Q.
According to the sequence of extraction, each of the phrase
chunks is used to condition the subsequent steps of relation-
aware graph convolution operations and LSTM state updates.

3.1. Relation aware and Phrase Conditioned Graph Con-
volution

The second contribution of the proposed method uses rela-
tion aware visual feature representation of each bounding box
as nodes in the subsequent graph convolution operation. On
the contrary, the proposed graph convolution operation de-
scribed in[4] directly uses the average of CNN features of
each bounding box as the node to build the adjacency ma-
trix for the subsequent graph convolution operation. Before
the construction of the adjacency matrix, a relation aware fea-
ture representation for each of the bounding boxes is obtained
by following the principle to capture relations among objects
as proposed in[24]. Pairwise relation is computed for each of
the detected bounding boxes as shown in Equation 12. The
final feature representation vn for each of the bounding is
obtained by concatenating the relation features v∗n with the
original representation of vn as shown in Equation 3. Then



again, extracted phrase cp is concatenated with vn as shown in
Equation 4, which is then used to build the adjacency matrix
for the subsequent graph convolution operation. To elaborate
further, let us consider feature representation v1 for bounding
box 1 among the N number of detected bounding boxes of
the respective image. The next step is to create a set of all
possible pairs with other detected bounding boxes of the im-
age, which results in a sequence starting from (v1, v2, c

p) then
(v1, v3, c

p) , and then up to (v1, vN , c
p). It is to be noted that

the relation aware graph convolution operation is performed
for each of the extracted phrases of the question sentence, and
the output of each step is propagated through LSTM towards
the final answer word prediction.

v∗n =
∑
i,j

gθ(vn, vz, c
p)

where, n = 1, 2, ..., N

z = 1, 2, ..., N

and p = 1, 2, ..., P

(2)

vn = vn||v∗n (3)

The graph convolution operation follows a similar princi-
ple as described in[4]. The main contribution of the model
described in[4] is to learn an adjacency matrix for an undi-
rected graph where edges of the respective graph are condi-
tioned on the question sentence as a whole. Each of the de-
tected bounding boxes is considered as a vertex of the graph
structure. Then the average of the convolutional feature of
each bounding is concatenated with the question embedding.
Unlike the approach of using the encoding of the whole ques-
tion sentence, the proposed methodology of this chapter uses
each conceptual unit i.e. the phrases separately to build mul-
tiple adjacency matrices. Also, nodes of the graph are made
relation-aware with the inclusion of relational features.

We aim to build an undirected graph structure for each
conceptual unit i.e. the phrase chunks and to further extract
feature representation through graph convolution for each of
the phrase chunks. Thus, for each of the phrases, there will be
an adjacency matrix building operation for each of the undi-
rected graphs, Gp, where p = 1, 2, ..., P . To learn the adja-
cency matrix of each phrase i.e. to build an undirected graph
Gp = {V p, Ep, Ap}, the respective averaging of convolu-
tion operation of each bounding box area and the concatena-
tion with word embedded encoding of each phrase results in
P number of undirected graphs and respective graph edges,
where P is the number of extracted phrases from the question
sentence Q.

Again, for each of the undirected graphs, their adjacency
matrix Ap ∈ RN×N , where N denotes the number of de-
tected bounding boxes, i.e. |v| = N . For each graph of
the Gp, the number of detected bounding boxes is consid-
ered as the number of vertices to build the respective adja-
cency matrix Ap. In each of the adjacency matrix Ap, the

respective relation-aware visual features, vn (obtained by the
Equation 3) of bounding boxes, are concatenated with the re-
spective chunk embedding, cp. The operation in Equation 4
allows each adjacency matrix to hold and map the similari-
ties between feature vectors along with the relevance of the
visual features to specific conceptual units i.e. the phrase
chunks. Each edge (i, j, Api,j ∈ Ep) of the graph Gp is con-
ditioned on the phrase chunks cp as obtained by the condi-
tioning operation in Equation 4. The conditioning operation
in Equation 4 is similar to the method proposed in[4]. How-
ever, the difference we are proposing is to follow a divide-
and-conquer-based approach, where we divided the question
sentence into meaningful chunks to further achieve the capa-
bility of human-like reasoning. Also, the feature represen-
tation of each of the nodes in the undirected graph contains
relational features information. The graph convolution out-
put for each of the phrase chunks is further passed through
an LSTM, which is described in Section 3.2 to consolidate
the output of each phrase chunk based graph convolution to
the final answer word. In Equation 4, F p : Rd

p
v+d

p
q → Rd

p
e

is a non-linear operation, which makes the concatenation op-
eration suitable for differentiation in the neural network op-
eration. Also, F p consists of two 2 dense layers of size 512.
Again, dpv , dpq and dpe are the dimensions of the image, ques-
tion and the joint embedding vector for each of the respec-
tive phrase chunk p = 1, 2, ..., P . The matrix Ep ∈ RN×dpe
holds the embedding epn, which results in the formation of
adjacency matrix Ap = Ep(Ep)T respective to each of the
phrase chunk p. Similar to the approach of[4], the question
specific graph structure is obtained by adopting the ranking
strategy N(i) = topm(api ), where m largest values of the
ith row of the adjacency matrix Ap is returned. To perform
graph convolution operation a patch operator is defined as
fk(i) =

∑
j∈N(i) wk(u(i, j))vjαij , where, k = 1, 2, ...,K.

The terms, wk and αij refer to the set of learnable weights,
which are finally put together in the matrix Gk ∈ R

dh
k ×dv ,

where h is the chosen dimensions of the output of graph con-
volution. Equation 5 refers to the concatenation operation
over K kernels, which results in the output hi of the graph
convolution operation at vertex i. A max-pooling operation
across convolved features H ∈ RN×dh results in the output,
Hp (of the phrase conditioned graph), which is further passed
through LSTM.

epn = F p([vn||cp]) p = 1, 2, ..., P

and, n = 1, 2, ..., N
(4)

hi =‖Kk=1 Gkfk(i) (5)

3.2. Graph Convolutional LSTM

Phrase-conditioned and relation-aware graph convolution
give the proposed model a better ability to understand the



context in a divide and conquer manner. A graph recurrent
network[25] has been used for other tasks such as traffic data
prediction. In the proposed method of this chapter, the graph
convolutional LSTM is uniquely applied for the VQA task.
However, it is essential to attend to all different conceptual
units, and also to maintain the relevancy gradually over time.
An LSTM cell is used to maintain and hold the contextual
relevance and connection of the graph convolution operation
for each of the phrase chunks. In this manner, the output of
graph convolution conditioned on the first phrase chunk is
passed through the LSTM to the next detected phrase chunk
conditioned graph convolution operation. The process of the
LSTM state update is continued until all the phrases are con-
sidered for the graph convolution operation. The output of
the very last LSTM hidden state representation is used as the
vector to predict the final answer word.

ft = σ(wfH
p
t + ufh

p
t−1 + bf )

it = σ(wiH
p
t ) + uih

p
t−1 + bi)

ot = σ(woH
p
t + uoh

p
t−1 + bo)

c̃t = tanh(wcH
p
t + uch

p
t−1 + bc)

ct = ft � ct−1 + it � c̃t
ht = ot � tanh(ct)

(6)

Ther terms ft, it and ot respectively refers to the forget
gate, input gate and output gate of the LSTM operation. The
output of the graph convolution Hp

t is used as the input to
the LSTM cell, where, the superscript p = 1, 2, ..., P refers
to the respective phrase of the question sentence. Again,
w, u and b terms refer to respective weight and bias values
associated with the graph convolution input and the hidden
state of the LSTM. Sigmoid activation is used to maintain
the non-linearity for the operation in the forget, input and
output gates. Also, hyperbolic tangent activation is used for
the cell state update. Figure 3 shows the hidden state (h1 to
hP ) propagation of the graph convolution operation through
the LSTM state update, which are conditioned respectively
on the phrases c1 to cP .

4. MULTIMODAL FEATURE DISCRIMINATOR FOR
VQA

The discriminator network consists of two standard fusion
methods, namely MCBP and MTF. Figure 4 shows the
Siamese combination of these two standard fusion methods.
Image and question embedding are passed through each of
the fusion methods. The outputs of each of the fusion meth-
ods are passed through LSTMs, which are then combined
based on similarity. The combined representation is again
passed through an LSTM. The resultant LSTM output of
the discriminator network is used to measure the multimodal
feature representation of the generator network.

M1 =MCBP (I,Q)

M2 =MTF (I,Q)
(7)

s = exp(−||M1,M2||)
d = exp(−||s, hp||)

(8)

Discriminator network compares the multimodal feature
representation produced by the generator network with the
feature representation provided by the MCBP operation. The
MCBP is used as the standard method for feature fusion and
considered as the ground truth feature representation in the
proposed method. In Equation 7, theM1 andM2 respectively
refer to the output of the MCBP and the MTF fusion methods.
The output of the MCBP and MTF fusion methods are com-
pared in Equation 8, which results in the output of s. Later, s
is again compared with the output of the generator network,
which is then classified as either relevant or not with Siamese
representation of feature fusion.

5. ANSWER PREDICTION THROUGH
ADVERSARIAL TRAINING

The output of the LSTM hidden state is considered as a fi-
nal resultant vector to be compared for a multi-class classi-
fication setup. In the experimental setting, each of the most
frequent answers is considered as an individual class for the
VQA problem. Binary cross-entropy loss is used in the ex-
periment, which is similar to[4], and the function is given in
Equation 7. The term y in the equation refers to the output
of the LSTM hidden state, i.e. y = ht. Also, t is the soft
target score for each of the answer class. Equation 9 and 10
represent the loss function of the adversarial training of the
proposed model.

L(G,D) = LGAN (G,D) + LQA(G) (9)

LGAN = min
G

max
D

log(dLSTM(M1,M2))

+log(1− gLSTM(h))
(10)

L(t, y) =
∑
i

ti log(1/(1 + exp(−yi))

+(1− ti) log(exp(−yi)/(1 + exp(−yi))
(11)

6. EXPERIMENTAL RESULTS

Classification accuracy is considered as the evaluation metric
during the experimentation. Also, inter-human variability is
considered as shown in Equation 8.



Fig. 4. A Siamese combination of two standard fusion methods in the discriminator network. Image and questions are respec-
tively considered with the MCBP and MTF fusion method. The output of fusion methods is passed through LSTM and the
similarity between these fused representations are measured, which results in the final combined representation, which is then
used to compare the closeness of the generated multimodal feature representation.

Fig. 5. Qualitative output of the proposed method. Final answer prediction is performed based on the optimal multimodal
representation which is obtained through adversarial training. The activated region in the images refer to some node activation
in the graph convolution operation of the generator network.



Methods Y/N Number Other Overall
ReasonNet[26] 73.86 41.98 57.39 64.61
Bottom-Up[27] 82.20 43.90 56.26 65.67
Counting Module[28] 83.56 51.39 59.11 68.41
Graph Conv.[4] 82.91 47.13 56.22 66.18
Murel[21] 68.41
Proposed Method 85.07 56.14 59.32 69.86

Table 1. Comparison of accuracy on different answer types of the VQA 2.0 dataset. The bold row in the table shows the
performance of the proposed method.

6.1. Evaluatoin Metric

The open-ended question may have different right answers.
Thus, considering a single answer as the fixed class may
lead the classifier to consider a variant of the right answer
as wrong. To overcome this problem, the authors in[29]
propose to consider 10 answers for every single question in
the VQA2.0 dataset. A predicted answer is only considered
correct if at least 3 of the 10 available answer matche with the
predicted answer as shown in Equation 12. This metric allows
the trained models to overcome the limitation of classification
based approaches.

6.2. Experimental settings

The experiment is carried on the VQA 2.0 dataset. This
dataset contains open-ended questions associated with 10
answers annotated by human users. A total of 1,105,904
questions are paired with 204,721 images from the Microsoft
COCO dataset. Then, 40% of the questions are used for train-
ing, with 40% and 20% used respectively for the testing and
validation.

In the generator network, bottom-up features are used
where each image is represented as a set of 36 localized re-
gions resulting in convolutional feature vectors of dimension
2048. Again, following the strategy of[4] the bounding box
corners are normalized to remain in the interval of [0, 1] and
the features vector size results in the dimension of 2052.
Again, the textual question sentence is encoded with a dy-
namic GRU with a hidden state size of 1024. The pre-trained
GLoVe embedding is used to extract a 300 dimensional em-
bedded representation of each of the question sentence to-
kens. In all the dense and convolutional layers the ReLU is
used to ensure the non-linearity of the model. The loss func-
tion is optimized for 35 epochs with Adam optimizer with a
learning rate of 0.0001. Also, 2 spatial graph convolutional
layers of dimension 2048 and 1024 are used for the graph
convolution. Following a similar approach to[4], the neigh-
bourhood size and the number of kernels are respectively
chosen as 16 and 8 for the experimentation. Again, two-layer
LSTM is used in the discriminator network where each layer
consists of 2048 hidden units.

Methods Overall Accu-
racy

MCBP only 64.61
MTF only 65.67

Table 2. Accuracy of the two ablation instances on the vali-
dation split of the VQA 2.0 dataset.

6.3. Experimental Output

Accuracy (as shown in Equation 8) is used as the evalua-
tion metric for the proposed model. Accuracy is compared
within the ’Test-standard’ split of the dataset, and the pro-
posed model is trained on the ’TrainVal’ split of the VQA 2.0
dataset. Table 1 shows the accuracy of different answer types
of the VQA 2.0 dataset. It is evident that the proposed model
exhibits competitive performance and is pointing in a new di-
rection to improve the interpret-ability of the VQA models,
by considering the question sentence in a divide and conquer
manner with the relational features equipped graph convolu-
tional LSTM operation. Two ablation instances are consid-
ered as part of the ablation study for the proposed model. One
instance considers only the MCBP fusion in the discriminator
network, and the other instance considers only the MTF fu-
sion method in the discriminator network. Table 2 shows the
performance for these two ablation instances.

Accuracy(answer) = min(1,
no. ofannotated answer

3
)

(12)
Figure 5 shows the qualitative output of the proposed

model. As seen, original images are passed through the pro-
posed relation-aware and phrase conditioned graph convolu-
tion, and the output images exhibit the most dominant nodes
(highlighted) of the relation-aware and phrase-conditioned
graph convolution operation. It is visible that the network
focuses on the most important regions, which influence the
overall feature representation based on the context of the test
question sentence.



7. CONCLUSION AND FUTURE WORKS

The proposed phrase-conditioned and relation-aware graph
convolutional LSTM method considers the main question
sentence for the VQA task in a more interpretable manner
with the extraction of phrase/coceptual chunk. Also, nodes
of the graph convolution operation includes relation informa-
tion among objects, which results in better formation of the
adjacency matrix for the subsequent graph convolution op-
eration. Future endeavour will include multimodal attention
mechanism to further improve the accuracy of the proposed
approach.
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