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Abstract

In this paper, for minimizing the cost from the ocean generator power production by optimizing the operation and maintenance

(O&M) policy over an infinite time horizon, while considering the uncertainty of the renewable sources and components failure

behaviors, we develop a self-healing framework for ocean energy systems. It consists of three major modules: data manipulation,

health assessment, and decision-making. Specifically, a graph-theoretic approach is first proposed for ocean generator health

monitoring utilizing multivariate time-series data, then, reinforcement learning (RL) based technique exploits the health states

of the system that provides decision support for optimal O&M management.
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INTRODUCTION 
 Research efforts have been focused on harvest-
ing electricity from renewable ocean energy in a 
commercially and technologically acceptable man-
ner [1]. Since the harsh and remote working envi-
ronment, one of the major issues in cost-effectively 
integrating renewable ocean energy into power 
grids is the prognostic and health management 
(PHM) of multiple offshore/inshore devices, which 
drives the need for facilitating Systems-Level 
Thinking in PHM system [2]. This requires develop-
ing reliable self-prognostic and self-decision-mak-
ing techniques which could account for both the 
complexity of the asset and the uncertainties on its 
operational conditions, failure modes, degradation 
behaviors, external environment, etc. 
      In this paper, for minimizing the cost from the 
ocean generator power production by optimizing 
the operation and maintenance (O&M) policy over 
an infinite time horizon, while considering the un-
certainty of the renewable sources and compo-
nents failure behaviors, we develop a self-healing 
framework for ocean energy systems, shown in Fig-
ure 1. It consists of three major modules: data ma-
nipulation, health assessment and decision-mak-
ing. Specifically, a graph theoretic approach is first 
proposed for ocean generator health monitoring 
utilizing multivariate time-series data, then, rein-
forcement learning (RL) based technique exploits 
the health states of system that provides decision 
support for optimal O&M management.  
 
SELF-HEALING PHM SYSTEM 
      A self-healing PHM system automatically inte-
grates the results from the well-designed sensor 
net all the way through to the decision-making 

module that provides support for optimal use of 
O&M resources. The core of this strategy is based 
on: 1) accurately forecasting the onset of imminent 
health conditions or failures of critical components 
and 2) efficiently spotting the root cause of failures 
once effects have been detected. From this perspec-
tive, if health conditions/failures predictions can 
be made, the allocation of preventive or corrective 
actions can be scheduled in an optimal fashion. 
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FIGURE 1. SELF-HEALING PHM SYSTEM. 

DATA MANIPULATION & HEALTH ASSESSMENT 
 The aim of data manipulation is to represent a 
multivariate time series system measurement 𝒳 as 
a lower-dimensional weighted and undirected net-
work graph that contain sufficient degrada-
tion/failure signatures in order to increase the effi-
ciency and reliability of health assessment. This ap-
proach involves the following steps:  

1. Consider a segmented signal 𝑥𝑖 = [𝑥𝑖
1  ⋯ 𝑥𝑖

ℎ]
𝑇

, 

corresponding to known status 𝑠𝑖 , 𝑖 = 1, ⋯ , 𝑛 

with each window 𝑥𝑖
𝑗
 a 𝑘 × 𝑑 matrix. 

2. Transform the signal 𝑥𝑖  into a weighted and 
undirected network graph 𝐺(𝑥𝑖) ≡ (𝒱, ℰ, 𝒲) . 
The nodes 𝒱 are the rows and columns of the 

symmetric similarity matrix 𝑆𝑘×𝑘 = [𝜔𝑝𝑞] , 

where the pairwise 𝜔𝑝𝑞  is computed by Ma-

hala Nobis kernel Ω for each window:  𝜔𝑝𝑞 =

𝛺(𝑥𝑝, 𝑥𝑞)∀𝑝 , 𝑞 ∈ (1,2, ⋯ 𝑘)  and the correlation 

between each pair of nodes is indexed by 
edges, i.e., connection status ℰ and weights 𝒲. 
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FIGURE 2. DATA MANIPULATION & HEALTH ASSESS-
MENT USING GRAPH THEORETIC METHOD. 

3. Extract the spectral graph Laplacian matrix 
ℒ𝑥𝑖

(𝜆∗, 𝑣)  from 𝑥𝑖  once it transformed into a 

graph G(𝑥𝑖). The transformation from signal 𝑥𝑖  
corresponds to status 𝑠𝑗  to the spectral graph 

is: G(𝑥𝑖) = [ℒ𝑥𝑖
1  ⋯ ℒ𝑥𝑖

ℎ]
𝑇

which employed to cap-

ture the inherent dynamics of the signal. 
4. Select an orthogonal subset of the graph Lapla-

cian Eigenvectors as a basis set corresponding 
to health state 𝑠𝑖 . Each  𝑥𝑖  is decomposed by tak-
ing an inner product 𝑥𝑖

𝑇𝑣𝑖  akin to a Fourier 
transform into a set of coefficients 𝑐𝑖 . Repeat 
this procedure for all status 𝑠𝑖 , 𝑖 = 1,2, ⋯ , 𝑛,  a 
dictionary of 𝑐𝑖  can be formed as: 

ℂℎ×𝑛 = [

𝑥𝑖
1𝑇

𝑉𝑠1
= 𝑐1,𝑠1

𝑇 ⋯ 𝑥𝑖
1𝑇

𝑉𝑠𝑛
= 𝑐1,𝑠𝑛

𝑇

⋮ ⋱ ⋮

𝑥𝑖
ℎ𝑇

𝑉𝑠1
= 𝑐ℎ,𝑠1

𝑇 ⋯ 𝑥𝑖
ℎ𝑇

𝑉𝑠𝑛
= 𝑐ℎ,𝑠𝑛

𝑇

] (1) 

5. Given an unknown signal segment 𝑦𝑘×𝑑, obtain 
the candidate set by an inner product 𝑦𝑇𝑉𝑠𝑖

, 

that is ℂ̂ = [�̂�𝑠1
𝑇 ⋯ �̂�𝑠𝑛

𝑇 ]. Then compare each 

�̂�𝑠𝑖
𝑇  with associated coefficients 𝑐𝑠𝑖

𝑇  (having the 

same label 𝑠𝑖) in the dictionary ℂ. The label as-
signed to y is the one with the minimum 
squared errors e, i.e. 𝑠𝑖 = argmin𝑠𝑖

𝑒𝑠𝑖
. 

 
REINFORCEMENT DECISION-MAKING 
 Developing a reinforcement learning based de-
cision-making module requires defining the envi-
ronment and its stochastic behavior, the actions 
that the agent can take in every state of the envi-
ronment and their corresponding effects and re-
ward generated [3]. 
Environment state: Consider a system consists of 
elements 𝐶 = {1, … , 𝑁}, physically or functionally 
interconnected. The degrading elements 𝑑 ∈ 𝐷 ⊆
𝐶 are affected by independent degradation mecha-
nisms, obeying a Markov process that models the 
stochastic transitions from current state 𝑠𝑖

𝑑(𝑡)  to 

the next state 𝑠𝑖
𝑑(𝑡 + 1) , where 𝑠𝑖

𝑑(𝑡) ∈ {1, ⋯ , n} , 
∀𝑡, 𝑑 ∈ 𝐷, 𝑖 = 1, ⋯ , 𝑛. These degradation states are 
estimated by the health assessment modules. At 
each time t, the system state vector reads as 𝑆𝑡 =

[s1(𝑡), s2(𝑡), ⋯ , s𝑑(𝑡)]. Assume that the stochastic be-
havior of the environment is completely defined by 

transition probability matrices of each element 
𝑑 = 1, ⋯ , |𝐷| and to each action a ∈ 𝒜, that is, 

𝓅𝑑
𝑎 = [

𝑝1,1 ⋯ 𝑝1,s𝑑

⋮ ⋱ ⋮
𝑝 s𝑑,1 ⋯ 𝑝 s𝑑,s𝑑

] , ∑ 𝑝𝑖,𝑗

s𝑑

𝑗=1
= 1 (2) 

where 𝑝𝑖,𝑗  represents the probability 𝓅𝑑
𝑎(𝑠𝑗|𝑎, 𝑠𝑖) 

of having a transition of element d from state 𝑖 to 
state j, conditional to the action a. 
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FIGURE 3. THE MARKOV DECISION PROCESS OF 
OCEAN TURBINE WITH ASSOCIATED STATES. 

Actions: Action 𝑎𝑔 can be performed on the system 

element g ∈ G ⊆ C. The action vectors a at time t is 

𝑎𝑡 = [𝑎𝑔1
(𝑡), ⋯ , 𝑎𝑔𝐺

(𝑡)] ∈ 𝒜 . The action set 𝒜  in-

cludes both operational actions (OM), preventive 
maintenance (PM) and corrective maintenance 
(CM) actions. CM is to fix an out-of-service faulty 
condition to an in-service healthy condition and PM 
is to improve the condition of an in-service but de-
graded element.  Additional constraints can be de-
fined, considering that some actions are disallow in 
particular states,  e.g., CM is the only allowed for 
failed elements. Both PM and CM are assumed to 
restore the healthy state for each degraded ele-
ment (Figure 3). 
Reinforcement learning: The goal of the agent for 
strategy optimization is to obtain the optimal ac-
tion-value function, which is the maximum sum of 
rewards 𝑟𝑡  discounted by 𝛾  at each time step t, 
achievable by a behavior policy 𝜋 = 𝑃(𝑎|𝑠), after 
making an observation s and taking an action a: 

𝑄∗(𝑆, 𝑎) = 𝑚𝑎𝑥𝜋𝐸[𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + ⋯ |𝑠𝑡

= 𝑠, 𝑎𝑡 = 𝑎, 𝜋] 
(3) 

and the algorithm for training Deep Q Network 
could be referred to [3] and shown in Algorithm 1. 
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FIGURE 4. THE SIMPLIFIED OCEAN GENERATION SYS-
TEM WITH TWO TURBINES SUPPLYING A LOAD. 

CASE STUDY 
 The proposed self-healing framework is ap-
plied to a scaled-down ocean power system (Figure 
4). The system consists of 2 controllable genera-
tors, 1 energy source providing electricity, 1 con-
nected load depending on random conditions and 



 

4 transmission cable. The generators, cable 4 and 5, 
are under degradation and equipped with PHM ca-
pabilities to inform the decision-maker on their 
states. We consider 4 degradation states for gener-
ators, 𝑠𝑑=1,2 = {1, 2, 3, 4} , shown in Figure 3. For 
the load/energy resource, we consider 3 states of 
rising power demand/production. For cables, 3 de-
grading states are defined. We assume that both 
generators have identical transition probability 
matrices (similar to [4]), and the cables degrada-
tion are described by the same Markov process. 
Hence, 𝑆𝑡 = [𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6]  and the state 
space is made up of 1296 points. We defined 5 ac-
tions (3 OM, 1PM, 1CM) that can be applied to gen-
erators while keeping the system’s structural and 
functional integrity. The action vector reads 𝑎 =
[𝑎1, 𝑎2] 𝑎1,2 = {1, … ,5} . This gives rises to 32400 

state-action pairs. Each action has a specific transi-
tion probability matrix, describing the generator 
degradation conditioned by its operative state or 
maintenance action. The case-specific reward is 
made up of 3 contributions: the cost of demanded 
power from ocean generators, the cost of produc-
ing electricity by ocean generators and the cost of 
the performed actions, and is formulated as: 

𝑅𝑡 = ∑[𝑃𝑑 − 𝑃𝑟]𝑐𝑒𝑙

2

𝑖=1

− ∑ 𝑃𝑔
𝑖  𝑐𝑔

2

𝑖=1

− ∑ 𝑐𝑎−𝑐
𝑖

2

𝑖=1

 (4) 

where 𝑐𝑒𝑙  is the unit price of ocean generator pro-
duced power, 𝑃𝑔  is the power produced by ocean 

generator with unit cost 𝑐𝑔, and 𝑐𝑎−𝑐 is the cost of 

actions. 
-------------------------------------------------------------------------------- 
Algorithm 1: Deep Q-learning 
Initialize memory D to capacity N, action-value function Q with 
random weights 𝜃, Initialize target action-value function �̂� 
with weights  𝜃− = 𝜃 
For episode =1, …, M do 

Initialize sequence 𝑠1 = {𝑥𝑖} and preprocessed sequence 
∅1 = ∅(𝑠1) 
For t=1, …, T do 

With probability 𝜀 select random action 𝑎𝑡, other-
wise 𝑎𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(∅(𝑠𝑡), 𝑎; 𝜃); 
Execute 𝑎𝑡, observe reward 𝑟𝑡  and 𝑥𝑡+1; 
Set 𝑠𝑡+1 = 𝑠𝑡, 𝑎𝑡, 𝑥𝑡+1 and ∅𝑡+1 = ∅(𝑠𝑡+1); 
Store (∅𝑡, 𝑎𝑡 , 𝑟𝑡 , ∅𝑡+1) in D; 
Sample random batch of (∅𝑗 , 𝑎𝑗 , 𝑟𝑗 , ∅𝑗+1) 

𝑦𝑗 = {
𝑟𝑗           𝑖𝑓 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑠 𝑎𝑡 𝑗 + 1

𝑟𝑗 + 𝛾𝑚𝑎𝑥𝑎′�̂�(∅𝑗+1, 𝑎′; 𝜃−)   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Perform a gradient descent step on (𝑦𝑗 −

𝑄(∅𝑗 , 𝑎𝑗 ; 𝜃))2 with respect to 𝜃; 

Every C step reset �̂� = 𝑄 
 End for 
End for 
-------------------------------------------------------------------------------- 

RESULTS 
The ocean generator’s condition identification 

results with high accuracy (Table 1) verified that 
the proposed graph theoretic method is a reliable 
health assessment method. The RL results are sum-
marized in Figure 5, by visualizing the distribution 
of 𝑄𝜋∗(𝑆, 𝑎) over the states for all the combination 

of action 𝑎 = [𝑎1, 𝑎2] . According to the empirical 
CDF, we can identify three clusters: the states set (1 
curve) for which both generators are under CM, the 
states set (8 curves) for which only one of the gen-
erators is under CM and the states set (16 curves) 
includes only PM and operational actions. CM is a 
costly action and leads to negative expectation of 
reward, whereas PM and operational action leads 
to higher positive expectation of reward.  

Both 
Generators 
Corrective 

Maintenance

One of the 
Generators 
Corrective 

Maintenance
No Corrective 

Maintenance

 
FIGURE 5. THE STATE-ACTION VALUE VISUALIZA-
TION USING ECDFS WITH 3 CLUSTERS.  

TABLE 1. HEALTH ASSESSMENT RESULT. 

F-
score=0.961 

Predicted Condition Types 
FNR 

Healthy State1 State2 Fail 

A
ct

u
a

l Healthy 94 4 2 0 0.06 
State1 2 98 0 0 0.02 

State2 4 2 94 0 0.06 
Fail 0 0 0 100 0.00 

FPR 0.06 0.05 0.02 0.00 Acc=0.965 

 
CONCLUSIONS 
 The framework is experimented on a scaled-
down ocean generator powering a load case, show-
ing that the proposed method can effectively iden-
tify the system’s operational condition and pro-
duce efficient solutions to O&M management. 
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