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Abstract

This paper presents an electromagnetic inversion algorithm for the design of cascaded metasurfaces that enables the design

process to begin from more practical output field specifications such as a desired power pattern or far-field performance cri-

teria. Thus, this method combines the greater field transformation support of multiple metasurfaces with the flexibility of

the electromagnetic inverse source framework. To this end, two optimization problems are formed: one associated with the

interior space between two metasurfaces, and the other for the exterior space. The cost functionals corresponding to each of

these two optimization problems are minimized using the nonlinear conjugate gradient algorithm with analytic expressions for

the gradient operators. A total variation regularizer is incorporated into the optimization procedure to favour smooth field

variations from one unit cell to the next. The numerical implementation of the developed design procedure is presented in

detail along with several two-dimensional (2D) simulated examples to demonstrate the capabilities of the method.
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Trevor Brown, Student Member, IEEE and Puyan Mojabi, Member, IEEE

Abstract—This paper presents an electromagnetic inversion
algorithm for the design of cascaded metasurfaces that enables
the design process to begin from more practical output field
specifications such as a desired power pattern or far-field
performance criteria. Thus, this method combines the greater
field transformation support of multiple metasurfaces with the
flexibility of the electromagnetic inverse source framework. To
this end, two optimization problems are formed: one associated
with the interior space between two metasurfaces, and the other
for the exterior space. The cost functionals corresponding to
each of these two optimization problems are minimized using the
nonlinear conjugate gradient algorithm with analytic expressions
for the gradient operators. A total variation regularizer is
incorporated into the optimization procedure to favour smooth
field variations from one unit cell to the next. The numerical
implementation of the developed design procedure is presented
in detail along with several two-dimensional (2D) simulated
examples to demonstrate the capabilities of the method.

Index Terms—Electromagnetic metasurfaces, inverse prob-
lems, inverse source problems, optimization, antenna pattern
synthesis.

I. INTRODUCTION

METASURFACES offer a level of systematic control
over electromagnetic fields not typically possible with

conventional materials [1]–[6]. These thin metamaterials of
subwavelength thickness can be designed to support arbitrary
field discontinuities, leading to applications such as radiation
pattern control [7], polarization control [8], [9], impedance
matching [10], cloaking [11], and others. Fabrication of these
metasurfaces is often much simpler than bulk metamaterials,
typically using established printed circuit board (PCB) tech-
niques and materials.

Metasurface design can be decomposed into two distinct
steps: macroscopic and mircoscopic [12]. The first step,
macroscopic design, is to determine a homogenized repre-
sentation of the metasurface that is able to effectively model
the desired field transformation. Several representations are
common in the literature, including effective surface suscep-
tibilities [13], surface impedances/admittances [2], or surface
polarizabilities [5]; herein, we adopt the use of surface suscep-
tibilities. The second step, microscopic design, is to determine
physical unit cell structures that exhibit the behaviour of
the metasurface model. For example, in [14] and [15], three

T. Brown and P. Mojabi are with the Department of Electrical and
Computer Engineering, University of Manitoba, Winnipeg, MB, Canada (e-
mail: umbrow47@myumanitoba.ca).

metallic dogbone layers have been used on two dielectric sub-
strates connected by a bondply layer to implement the desired
metasurface model. Microscopic design, although important,
is not considered in the work presented here.

Several macroscopic metasurface design methods can be
found in recent literature [12], [13]; however, most methods
require knowledge of both the incident and the desired trans-
mitted field on the metasurface itself. While the incident field
is either known analytically or easily measured, an analytical
representation of the transmitted field is typically only possible
in ideal cases involving plane waves or other simple fields.
We recently presented a macroscopic design method that
allows for more practical design criteria, such as far-field
(FF) performance criteria (e.g., main beam direction, half-
power beamwidth (HPBW), null locations, etc.) [16], [17].
Since this method is based on solving an electromagnetic
inverse source problem, we have referred to this approach
as an electromagnetic inversion algorithm for metasurface
design. Subsequently, in [18], we modified this inversion
method by augmenting its associated cost functional to enforce
local power conservation (LPC) [19], [20] which ensures
the resulting metasurfaces can be implemented using passive,
lossless, and reciprocal elements.

While practically necessary, the drawback of enforcing
LPC is that the supported field transformations are restricted.
One possible solution is to utilize multiple metasurfaces in
succession, as described in [7], [21]–[24]. In this scenario,
the field transformations at each metasurface still satisfy LPC,
but the transmitted field from the last metasurface no longer
has to have the same power distribution as the field incident
on the first metasurface. This extra freedom can support a
greater variety of output fields by allowing for a redistribution
of the incident field power onto the final (output) metasurface.
Considering the cascaded metasurfaces as a single structure,
total power is still conserved from incident to output fields but
the power is redistributed locally.

The design methods presented in [7], [21]–[24] utilize
metasurface pairs to perform field transformations that would
not be possible with a single metasurface. Similar to the
macroscopic design methods mentioned above, these methods
require explicit knowledge of the transmitted field on the
output metasurface. Therefore, the aim of this paper is to adapt
the electromagnetic inversion metasurface design method to
the design of cascaded metasurfaces (in our case, two meta-
surfaces) to allow for more general output field specifications.
For example, the design objective can be to meet a specific
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power pattern (phaseless) or to meet performance criteria such
as the HPBW and null locations.

To this end, we cast the design problem as two optimization
problems. The first optimization problem aims to infer the
required tangential fields on the output surface of the second
metasurface so as to meet the field specifications. As will
be seen, these inferred tangential fields need to satisfy total
power conservation (TPC) with respect to the incident power
impinging on the first metasurface. The second optimization
problem is concerned with finding the tangential fields in
the interior space between the two metasurfaces. As will be
discussed, these fields need to satisfy LPC for each individual
metasurface to ensure that they can be fabricated using passive
and lossless elements. It is worth noting that while in [18] we
used a stochastic method (particle swarm) to enforce LPC in
the inversion process, in this work we use gradient-based op-
timization for improved convergence. Furthermore, we intro-
duce regularization into the optimization process based on the
L2-norm total variation (TV) regularizer commonly used for
the inverse problem associated with microwave imaging [25],
[26]. This regularizer has a smoothing effect on the achievable
solution which translates into less field variations from one
unit cell of the metasurface to the neighbouring unit cell. This
results in several benefits which will be discussed in the paper.

We begin with a description of the problem statement fol-
lowed by a high-level overview of the proposed methodology.
We then explain the numerical implementation of each step of
the method in detail. (The derivation of the required gradient
operators are provided in the appendices.) This is followed by
a series of full-wave simulated examples in both 2D transverse
magnetic and transverse electric cases. Lastly, we identify the
existing limitations of the proposed method and present our
conclusions.

II. PROBLEM STATEMENT

We consider the design of a pair of metasurfaces, denoted
respectively as Σ1 and Σ2 as shown in Figure 1. In this paper
we restrict our discussion to that of planar, parallel meta-
surfaces separated by a distance d, but the theory presented
is consistent with more complicated geometries. A known
electromagnetic source produces an incident field ~Ψinc where
~Ψ ∈

{
~E, ~H

}
that impinges on the input metasurface, Σ1. The

interaction of this incident field with the pair of metasurfaces
will create a reflected field ~Ψref (which may be zero) emanating
from Σ1 and a transmitted field ~Ψtr emanating from the output
metasurface, Σ2.

It is important to note that this design method does not
require prior knowledge of ~Ψtr as is common in alternative
methods, but rather a set of user-defined field specifications,
denoted as f on some region of interest S. As noted in [17], the
field specifications could be provided in any of the following
forms:

• complex fields (amplitude and phase information) in
either the near-field (NF) or far-field (FF) region,

Fig. 1. Overview of the cascaded metasurface design problem. The two
metasurfaces are denoted as Σ1 and Σ2 and separated by a distance of d.
The inputs to the design method are the incident field ~Ψinc created by the
source which impinges on the first metasurface, and the field specifications
f defined on the region of interest S. The fields ~E−

t1 and ~H−
t1 denote the

tangential components of the electric and magnetic field on the input side
of Σ1 (‘−’ superscript), while ~E+

t1 and ~H+
t1 represent the tangential fields

on the output side of Σ1 (‘+’ superscript). The tangential fields on Σ2 are
defined analogously but with a ‘2’ subscript instead of a ‘1’. The transmitted
and reflected fields produced by the interaction are depicted as ~Ψtr and ~Ψref,
respectively.

• phaseless fields (amplitude-only) in either the NF or FF
region1, or

• FF performance criteria such as main beam directions,
half-power beamwidth (HPBW), and null locations.2

Each metasurface is characterized by a set of surface
susceptibility distributions that relate the induced electric and
magnetic polarization densities to the average electric and
magnetic fields on the metasurface [27], [28]. The goal of
the design procedure is then to find susceptibility profiles
for each metasurface such that, when illuminated with the
given incident field, produce a transmitted field ~Ψtr that
closely satisfies the field specifications. Attention must also
paid to ensure that the resulting susceptibility profiles can be
implemented in a passive, lossless, and reciprocal way.

III. METHODOLOGY

This section provides a high-level overview of the procedure
employed to design the cascaded metasurface pair. (More de-
tails on the implementation of the procedure will be presented
in Section IV.) The goal of this procedure is to define the
tangential electric and magnetic fields on either side of both

1If the desired phaseless fields are specified in the FF zone, they will be
equivalent to a desired power pattern. To emphasize that the desired phase
data have not been provided to the algorithm, |f |2 is used in the remaining
of this paper to represent the amplitude-only specification for such cases. (|.|
denotes the amplitude operator.)

2These performance criteria are first converted to a desired power pattern
and are then incorporated in the inversion algorithm.
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Fig. 2. First step of the cascaded metasurface design procedure. An inverse
source problem is solved to find equivalent electric and magnetic currents ~J2
and ~M2 on Σ+

2 that (i) produce fields on S satisfying the field specifications
f , and (ii) produce null fields (Love’s condition) on inward offset of Σ2. Since
Love’s equivalence condition is enforced, the tangential output fields ~E+

t2 and
~H+
t2 can be directly computed from ~J2 and ~M2.

metasurfaces, from which the susceptibility profiles can be
calculated [13]. That is, we need to determine
• tangential output fields, i.e., ~E+

t2 and ~H+
t2 on x = 0+,

• tangential input fields, i.e., ~E−t1 and ~H−t1 on x = −d−,
and

• tangential interior fields, i.e., ~E+
t1 and ~H+

t1 on x = −d+,
and ~E−t2 and ~H−t2 on x = 0−.

Noting Figure 1, in what follows, we refer to x = 0+ and
x = 0− as Σ+

2 and Σ−2 respectively, and we refer to x = −d+

and x = −d− as Σ+
1 and Σ−1 respectively.

A. Finding the Tangential Output Fields (on Σ+
2 )

The first step involves determining tangential electric and
magnetic fields on the output side of the second (output) meta-
surface, denoted as ~E+

t2 and ~H+
t2, that produce corresponding

fields on S that match the user-defined field specifications f .
This step is formulated as an inverse source problem as shown
in Figure 2, in which the unknowns are equivalent electric and
magnetic currents, ~J2 and ~M2. A cost-functional is minimized
to find ~J2 and ~M2 such that these equivalent currents:
• produce electric and magnetic fields that satisfy the field

specifications f on the region of interest S, and
• satisfy Love’s equivalence condition (i.e., produce null

fields on the input side of Σ2).
Noting that Love’s condition is enforced, the resulting equiva-
lent currents will be related to the required tangential electric
and magnetic fields as

~H+
t2 = −αn̂× ~J2 and ~E+

t2 = αn̂× ~M2, (1)

where n̂ is the unit outward normal to Σ2 (i.e., towards the
output side) and α is a real-valued scaling factor. (n̂ = x̂ in
Figure 1.) The choice of α does not affect the normalized
output field. As will be seen, we select α to ensure that total
power is conserved across the cascaded metasurface structure.

B. Tangential Input Fields (on Σ−1 )

Since the cascaded metasurface system is assumed to be
reflectionless, the tangential fields on the input side of the first
metasurface (i.e., at x = −d−) are assumed to be the same
as the known incident field (i.e., the tangential components of
~Ψinc). Thus, ~E−t1 and ~H−t1 are known.

Fig. 3. Finding the interior fields in the cascaded metasurface design
procedure. An inverse source problem is solved to find equivalent electric
and magnetic currents ~J1 and ~M1 on x = −d+ such that (i) they result in
fields satisfying local power conservation on both metasurfaces, and (ii) they
produce null fields on the input side of Σ1 (Love’s condition). The fields
~E+
t1 and ~H+

t1 can then be directly computed from ~J1 and ~M1 since Love’s
condition is enforced, and ~E−

t2 and ~H−
t2 can be computed as a function of

~J1 and ~M1 through forward propagation.

C. Finding the Tangential Interior Fields (on Σ+
1 and Σ−2 )

The next step is to determine the tangential electric and
magnetic fields in the interior region between the two meta-
surfaces. More specifically, we want to determine ~E+

t1, ~H+
t1,

~E−t2, and ~H−t2. This is accomplished by formulating and solving
a second inverse source problem, as shown in Figure 3. In this
step, the goal is to find equivalent currents ~J1 and ~M1 on Σ+

1

such that

• their corresponding fields satisfy LPC on both metasur-
faces, and

• they satisfy Love’s condition (i.e., produce null fields on
the input side of Σ1).

On Σ1, satisfying LPC means that the time-averaged real
power density in the x̂ direction of ~E+

t1 and ~H+
t1 must be

locally (i.e., at each unit cell) equal to the real power density
of ~E−t1 and ~H−t1 in the x̂ direction. As in Section III-A, since
Love’s condition is enforced the necessary fields are related
to the equivalent currents as

~H+
t1 = −n̂× ~J1 and ~E+

t1 = n̂× ~M1. (2)

On Σ2, the LPC condition is between the previously defined
output fields, ~E+

t2 and ~H+
t2, (Section III-A) and the fields ~E−t2

and ~H−t2 that are computed from the equivalent currents using

~E−t2 = B1

(
~J1, ~M1

)
and ~H−t2 = B2

(
~J1, ~M1

)
(3)

where B1 and B2 are electric and magnetic field integral
equation operators, respectively.

D. Computing the Susceptibility Profiles

Once the tangential fields on either side of both metasur-
faces have been found, we can apply the generalized sheet
transition conditions (GSTCs) [27], [28] to compute the sur-
face susceptibility profiles required to support the two intended
field discontinuities. Assuming a planar metasurface on the
zy plane for convenience, adopting a time-dependency of
ejωt, and neglecting the normal component of the polarization
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densities for mathematical simplicity, the GSTCs (at a given
location on the metasurface) can be simplified to(
−∆Hz

∆Hy

)
= jωε0

(
χyy

ee χyz
ee

χzy
ee χzz

ee

)(
Ey,av
Ez,av

)

+ jω
√
ε0µ0

(
χyy

em χyz
em

χzy
em χzz

em

)(
Hy,av
Hz,av

) (4a)

(
−∆Ey

∆Ez

)
= jωµ0

(
χzz

mm χzy
mm

χyz
mm χyy

mm

)(
Hz,av
Hy,av

)

+ jω
√
ε0µ0

(
χzz

me χzy
me

χyz
me χyy

me

)(
Ez,av
Ey,av

) (4b)

where ε0 and µ0 are the permittivity and permeability of
free space and ω is the angular frequency of the time-
harmonic fields. The surface susceptibility terms χ represent
the electric/magnetic response (denoted by the first subscript)
to an applied electric/magnetic field (denoted by the second
subscript). For a metasurface Σi (where i = 1, 2), the average
and difference fields in (4) are defined as

~Ψav ,
~Ψ+ + ~Ψ−

2
, (5)

∆~Ψ , ~Ψ+ − ~Ψ−. (6)

Under certain assumptions that are discussed in Sec-
tion IV-H, (4) can be reduced to a well-defined system of
equations that allows for (unique) analytic solutions for the
remaining susceptibility terms for a given field transformation.

E. Conversion to Three-Layer Admittance Model
Once the surface susceptibility profiles are determined, they

can be converted to three-layer admittance-sheet models given
a known dielectric substrate (e.g., Rogers RO3010). This can
then be simulated (in our case, in ANSYS HFSS) to verify the
performance of the cascaded metasurface system with respect
to the desired specifications.

IV. NUMERICAL IMPLEMENTATION OF THE INVERSION
FRAMEWORK

The following numerical implementation assumes one-
dimensional (1D) metasurfaces along y with TEz fields propa-
gating in the xy plane, although the framework can be applied
to other geometries and field polarizations. (A TMz example
will be considered in Section V-C.)

A. Forming the Vectors of Unknowns
Each of the two metasurfaces is discretized into N unit

cells (although the number of unit cells on each metasurface
do not necessarily need to be equal). The discrete vector of
unknown electric and magnetic equivalent currents on Σ+

1 (i.e.,
on x = −d+) are denoted as J1 and M1, which are discretized
using pulse basis functions. These currents can be written in
terms of their real and imaginary components as

J1 = J1,R + jJ1,I, (7a)
M1 = M1,R + jM1,I. (7b)

We then concatenate the real and imaginary parts of the
equivalent currents into a single vector as

x1 =


J1,R
J1,I
M1,R
M1,I

 . (8)

With this organization, we will perform the optimization over
the real-valued vector x1 ∈ R4N as opposed to the complex
equivalent currents J1 ∈ CN and M1 ∈ CN .

Similarly, we perform the same re-structuring of the equiva-
lent currents J2 and M2 on Σ+

2 (i.e., on x = 0+) to construct
the second vector of unknowns denoted by x2. Assuming the
same number of unit cells for the second metasurface, then
x2 ∈ R4N . Thus, we now have two (real-valued) vectors of
unknowns: x1 and x2. As described in Section III, we first
need to determine x2, and then we will find x1.

B. Forming a Data Misfit Cost Functional with Respect to x2

The first step involves forming a cost functional with
respect to x2 representing the discrepancy between the field
specifications f on S and those generated by a predicted x2,
as described in Section III-A. Let us assume that the desired
specifications are amplitude-only fields on S. That is, let the
field specifications be |f |2, a vector of squared field amplitude
at the discrete points of S.3 The data misfit cost functional
associated with these specifications is a mapping from R4N

to R, and is expressed as

CF (x2) =

∥∥∥|AFx2|2 − |f |2
∥∥∥2

S∥∥∥|f |2∥∥∥2

S

(9)

where AF is the discretized integral operator that produces
Hz (due to TEz assumption) at the locations of the field
specifications in |f |2 from the equivalent currents x2.4 In
addition, ‖.‖S denotes the L2-norm over S. Later on in
Section V-B, we will also consider a case where the field
specifications are instead FF performance criteria such as main
beam directions, HPBW, and null locations. In such cases,
these performance criteria need to be first converted to a
desired power pattern |f |2. The procedure to perform this
conversion can be found in [17].

In addition, we note that Love’s condition is enforced by
adding ‘virtual’ data to |f |2. This is done by augmenting |f |2
with a vector of zeros associated with the locations at which
the null field is desired [17].5 In this case, these nulls are
enforced on a line which is an inward offset of Σ+

2 . Similarly,
the matrix AF needs to be augmented such that when it
operates on x2, the operation results in the fields produced
by x2 in the region of interest S and in the domain at which
null fields are desired.

3If S is in the FF zone, |f |2 is equivalent to a desired power pattern.
4For TMz polarization the operator AF would produce Ez at the locations

of interest.
5This method to enforce Love’s condition is based on enforcing Love’s

condition for the antenna diagnostic problem [29], and has also been applied
to the inverse source problem associated with noninvasive specific absorption
rate characterization [30].
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C. Forming a Total Variation Regularizer for x2

We now introduce an additive regularization term based on
the L2-norm total variation (TV) regularizer.6 This functional,
denoted as CTV (x2), penalizes solutions with rapid variations
from cell to cell and is given by

CTV (x2) = wTV
∥∥Dy (x2)

∥∥2

Σ2
(10)

where wTV is a real-valued weighting parameter. The operator
Dy (x2) applies a derivative with respect to y to the individual
current components of x2 separately, explicitly stated as

Dy (x2) ,


∂
∂yJ2,R
∂
∂yJ2,I
∂
∂yM2,R
∂
∂yM2,I

 . (11)

This regularization term biases the solution towards a higher
degree of continuity in the equivalent currents (and therefore
fields) from unit cell to unit cell. This is especially important
because in Section IV-F we attempt to enforce LPC at each
unit cell on Σ2, and rapidly varying output fields could
make this more difficult or even practically impossible given
the finite size of the metasurfaces. A secondary benefit of
this regularization is apparent when considering microscopic
metasurface design, i.e., physical unit cell design. The typical
procedure is to design and simulate each unit cell indepen-
dently while assuming infinite periodicity. When each unit cell
is then placed in the final metasurface structure, the periodicity
assumption no longer holds and the behaviour of each unit cell
will deviate from what was expected. The inclusion of the
TV regularizer reduces the variation from cell to cell, thereby
reducing the error in the periodicity assumption.

D. Iterative Minimization to Determine x2

Combining (9) and (10) results in the total cost functional
(or, regularized cost functional) that is minimized during the
first optimization step, explicitly written as

C2 (x2) = CF (x2)︸ ︷︷ ︸
data misfit

+ CTV (x2)︸ ︷︷ ︸
smoothness

. (12)

Minimization is performed in an iterative fashion using the
nonlinear conjugate gradient (CG) method. At the kth iteration,
the solution update is

x2,k+1 = x2,k − βkvk (13)

where βk is the real-valued step length. The vector vk is the
CG direction at the kth CG iteration computed using Polak-
Ribière formula [33]

vk = g2,k +

(
g2,k − g2,k−1

)H
g2,k

gH
2,k−1g2,k−1

vk−1 (14)

where the superscript “H” denotes the Hermitian operation
(complex conjugate transpose) and g2,k and g2,k−1 are the

6The TV regularizer has been utilized in microwave imaging [25], [26],
NF antenna measurements and characterization [31] as well as image deblur-
ring [32]. One of the reasons behind the use of this regularizer has been its
smoothing effect on spurious oscillations in the reconstructed solution.

gradients of (12) with respect to x2 at iterations k and k− 1,
respectively. As derived in Appendix A, the gradient of (12)
consists of a sum of the gradients of (9) and (10), the first of
which is

gF (x2) =
4 Re

{
AH

F (rF �AFx2)
}

∥∥∥|f |2∥∥∥2

S

(15)

where “�” indicates a Hadamard (element-wise) product of
two vectors, ‘Re’ denotes the real-part operator7, and rF is the
residual vector of (9) defined as

rF = |AFx2|2 − |f |2 . (16)

The gradient of (10) is

gTV (x2) = −2wTVD
2
y (x2) (17)

where the operator D2
y (x2), similarly to (11), computes the

second derivative (Laplacian operator) with respect to y of the
individual current components of x2 as

D2
y (x2) =


∂2

∂y2J2,R
∂2

∂y2J2,I
∂2

∂y2M2,R
∂2

∂y2M2,I

 . (18)

Both (11) and (18) are evaluated numerically using a central
difference approximation. The gradient required to update the
search direction vk in (14) can then be computed as

g2,k = gF,k + gTV,k. (19)

The iterative procedure is terminated when the change in
x2 from one CG iteration to the next drops below a preset
tolerance, typically 10−6%.

E. Enforcing Total Power Conservation to Find ~E+
t2 and ~H+

t2

Upon convergence, the above iterative minimization will
yield an appropriate x2. Subsequently, we need to compute
the corresponding output tangential fields on Σ+

2 using (1).
However, we first need to compute the scaling factor α needed
to ensure that total power is conserved across the cascaded
metasurface structure. (Note that this is not related to LPC.) To
do so, we define pin ∈ RN as the vector containing the time-
average real power density of ~E−t1 and ~H−t1 normally incident
on Σ−1 , with the ith element of pin defined as

pin,i =
1

2
Re
(
~E−t1 × ~H−∗t1

) ∣∣∣∣∣
unit cell i

. (20)

In this work, as noted in Section III-B, we are concerned with
the design of reflectionless metasurfaces, and thus pin can be
calculated with knowledge of the incident field only. Thus, the
total incident power will be the summation of the elements of
the vector pin, denoted by sum(pin).

7Note that since x2 is a real-valued vector, the gradient vector is naturally
a real-valued vector as well.
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The time-average real power density of the output field can
be written in terms of the equivalent currents as [18]

pout =
α2

2
(J2,R �M2,R + J2,I �M2,I). (21)

Note that since we have already determined x2 in the previous
step, we also know J2,R, J2,I, M2,R, and M2,I based on the
concatenation convention used in Section IV-A. If we now
select α to be

α =

(
sum (pin)

1
2 sum

(
J2,R �M2,R + J2,I �M2,I

)) 1
2

(22)

the total output power will be equal to the total input power,
i.e., sum(pout) = sum(pin), thus satisfying TPC. Finally,
having found α, J2,R, J2,I, M2,R, and M2,I, we can now use
(1) to determine the required output tangential fields ~E+

t2 and
~H+
t2 on Σ+

2 .

F. Forming the Cost Functional with Respect to x1

The goal of this step is to determine the fields between the
two metasurfaces that result in the intended field transforma-
tion while satisfying LPC on both metasurfaces. This involves
finding a set of equivalent electric and magnetic currents x1

on Σ+
1 , as defined in (8). The cost functional that is minimized

in this step is a mapping from R4N to R, and consists of the
following four terms

C1 (x1) = CL (x1)︸ ︷︷ ︸
Love’s cond.

+ CP,1 (x1)︸ ︷︷ ︸
LPC on Σ1

+ CP,2 (x1)︸ ︷︷ ︸
LPC on Σ2

+ CTV (x1)︸ ︷︷ ︸
smoothness

. (23)

The first term is defined as

CL (x1) = ‖Lx1‖2Σ1
(24)

where L is a discretized integral operator that produces Hz

(or Ez for TMz polarization) at the locations where Love’s
condition is enforced for Σ1. Minimizing CL (x1) ensures that
x1 produces null fields on the x = −d− side of Σ1 and allows
us to eventually calculate the tangential fields using (2).

The second term in (23) is used to enforce LPC on Σ1 as
originally derived in [18], defined as

CP,1 (x1) =
w1

∥∥∥ 1
2

(
J1,R �M1,R + J1,I �M1,I

)
− pin

∥∥∥2

Σ1

‖pin‖2Σ1

(25)
which quantifies the difference between the real power density
of ~E+

t1 and ~H+
t1 and the known incident power pin in the x

direction at each unit cell on Σ1. The real-valued weight-
ing parameter w1 is included to balance the contribution of
CP,1 (x1) to the overall functional. As noted earlier, enforcing
LPC is necessary to ensure that the resulting metasurface can
be implemented in a passive and lossless manner [20].

The third term in (23) is used to enforce LPC on Σ2. In
terms of the tangential fields, this condition can be explicitly
written as

1

2
Re
(
~E−t2 × ~H−∗t2

) ∣∣∣∣∣
unit cell i

=
1

2
Re
(
~E+
t2 × ~H+∗

t2

)
︸ ︷︷ ︸

known from Section IV-E

∣∣∣∣∣
unit cell i

(26)

which must hold at each unit cell on Σ2. Analogously to (20),
we evaluate the right-hand side of (26) for each unit cell
to generate the vector pout containing the local real power
densities of the fields ~E+

t2 and ~H+
t2. We also define discretized

integral operators B1 and B2 corresponding to (3), which
respectively produce the tangential electric and magnetic fields
at each unit cell on Σ−2 from the equivalent currents x1. We
can then write CP,2 (x1) as

CP,2 (x1) =
w2

∥∥∥ 1
2 Re

(
B1x1 �B∗2x1

)
− pout

∥∥∥2

Σ2

‖pout‖2Σ2

(27)

where w2 is a real-valued weighting parameter. The final term
of (23), CTV (x1), performs the same operation previously
defined in (10) (but operating on x1 instead of x2).

G. Iterative Minimization to Determine x1

As in Section IV-D, the cost functional in (23) is minimized
using the nonlinear CG method with update equations similar
to (13) and (14). As derived in Appendix B, the gradient of
CL (x1) is

gL (x1) = 2 Re
(
LHLx1

)
(28)

and the gradient of CP,1 (x1) is

gP,1 (x1) =
w1

‖pin‖2Σ1


r1 �M1,R
r1 �M1,I
r1 � J1,R
r1 � J1,I

 (29)

where the residual vector r1 is defined as

r1 (x1) =
1

2

(
J1,R �M1,R + J1,I �M1,I

)
− pin. (30)

In addition, the gradient of CP,2 (x1) is

gP,2 (x1) =
w2 Re

[
diag (B1x1)B∗2 + diag

(
B∗2x1

)
B1

]T
r2

‖pout‖2Σ2

(31)
where the ‘diag (·)’ operator generates a diagonal matrix from
a vector and the superscript ‘T’ denotes the transpose operator.
The residual vector r2 is defined as

r2 (x1) =
1

2
Re
(
B1x1 �B∗2x1

)
− pout. (32)

The gradient of CTV (x1) is computed in the same way as (17)
but now operates on x1. In addition, the iterative procedure
is terminated in the same way as in Section IV-D, when the
solution stagnates as determined by a preset tolerance.

Finally, once we have a solution for x1, we use (2) to
compute the tangential fields ~E+

t1 and ~H+
t1. We then use (3)

to compute the tangential fields ~E−t2 and ~H−t2. Let us also
remind ourselves that we have already determined ~E+

t2 and
~H+
t2 in Section IV-E, and we already know ~E−t1 and ~H−t1 from

Section III-B. Therefore, we now know the tangential fields on
both metasurfaces, and can therefore determine the required
surface susceptibility profiles for both of these metasurfaces.
Note that since we have enforced LPC for each individual
metasurface, we can implement the desired transformation
using lossless and passive metasurfaces.
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Fig. 4. The three-layer admittance sheet topology used for each unit cell [35].
Two substrate layers with relative permittivity εr and thickness l are placed
between three admittance sheets Y1, Y2, and Y3. Also, h represents the size of
the unit cell. (The bondply layer has not been included in this model.) From a
circuit viewpoint, this can be seen as five cascaded two-port networks: three
shunt admittances (Y1, Y2, and Y3) and two transmission line sections of
length l [14].

H. Susceptibility Profile Calculation

Once the tangential fields have been determined on both
sides of Σ1 and Σ2 we can apply the GSTCs to determine the
required susceptibility profiles to support the two field discon-
tinuities. For 1D metasurfaces along y with TEz fields, (4) at
a given unit cell simplifies to8

−∆Hz =
(
jωε0Ey,av

)
χyy

ee +
(
jω
√
µ0ε0Hz,av

)
χyz

em (33a)

−∆Ey =
(
jωµ0Hz,av

)
χzz

mm +
(
jω
√
µ0ε0Ey,av

)
χzy

me. (33b)

In order to ensure that the metasurfaces are passive, loss-
less, and reciprocal, we follow the procedure in [18] which
stipulates that χyy

ee and χzz
mm are purely real (R) while χyz

em and
χzy

me are purely imaginary (I). This restriction allows (33) to be
solved analytically on each metasurface, with a unique solution
for each unit cell.9 (Any field transformation that satisfies
LPC can be supported in this manner due to the inclusion
of magnetoelectric coupling [19].) Note that since (i) we have
already satisfied LPC in Section IV-F, and (ii) χyy

ee ∈ R and
χzz

mm ∈ R cannot create any loss, this will inherently result
in the losslessness condition χzy

me = (χyz
em)∗ [34, Appendix B]

being satisfied. Finally, the stipulation χzy
me ∈ I and χyz

em ∈ I
causes the relation χzy

me = (χyz
em)∗ to be equivalent to χzy

me =
−χyz

em, which is the condition for reciprocity [34, Sec. 2.2], and
therefore the resulting metasurface is also reciprocal. Thus, in
the next section, we have substituted χzy

me with −χyz
em.

I. Conversion to the Three-Layer Model

In order to simulate the metasurfaces using commercial
software, we employ a three-layer admittance sheet topol-
ogy [23], [35]–[37] for each unit cell as shown in Figure 4. The
conversion from the susceptibility profiles to the admittance
sheet model is performed using the procedure in [38]. At a
given unit cell, we start by rearranging (33) into the ABCD
representation of a two-port network as[

~E−ti
~H−ti

]
=

[
A B

C D

][
~E+
ti

~H+
ti

]
, (34)

8Later on, in Section V-C, we consider a TMz case as well.
9Note that (33) represents two complex equations which are equivalent to

four real equations. On the other hand, since χyy
ee ∈ R, χzz

mm ∈ R, χyz
em ∈ I

and χzy
me ∈ I we essentially have four real unknowns as well; thus, this system

of equations has a unique solution.

where i = 1, 2 for the first and second metasurfaces respec-
tively. This results in the following ABCD parameters in terms
of the surface susceptibility values

A = G−1

[
k2

0

4
χyy

ee χ
zz
mm −

(
1− jk0

2
χyz

em

)2
]

(35a)

B = G−1
[
−jωµ0χ

zz
mm

]
(35b)

C = G−1
[
−jωε0χyy

ee

]
(35c)

D = G−1

[
k2

0

4
χyy

ee χ
zz
mm −

(
1 +

jk0

2
χyz

em

)2
]

(35d)

where G is

G = −
(
k0

2
χyz

em

)2

− k2
0

4
χyy

ee χ
zz
mm − 1. (36)

It is worthwhile to note that AD−BC = 1 (the criterion for
a reciprocal network). In addition, note that since χyy

ee ∈ R,
χzz

mm ∈ R and χyz
em ∈ I, then we will have A ∈ R, D ∈ R,

B ∈ I, and C ∈ I, which further indicates a lossless two-port
network.

The ABCD parameters of the three-layer admittance sheet
topology can be computed using transmission line theory [35]
and equated with (35), allowing the three admittance sheet
values Y1, Y2, and Y3 to be calculated as10

Y1 =
D − jZ0 sin (βl) cos (βl)Y2 − cos2 (βl) + sin2 (βl)

2jZ0 sin (βl) cos (βl)− Z2
0 sin2 (βl)Y2

(37a)

Y2 =
B − 2jZ0 sin (βl) cos (βl)

−Z2
0 sin2 (βl)

(37b)

Y3 =
A− jZ0 sin (βl) cos (βl)Y2 − cos2 (βl) + sin2 (βl)

2jZ0 sin (βl) cos (βl)− Z2
0 sin2 (βl)Y2

(37c)

where Z0, β, and l are the characteristic impedance, propa-
gation constant, and thickness of the substrate layers, respec-
tively. Since A and D are purely real and B and C are purely
imaginary and noting that Z0 and β are purely real (assuming
a lossless substrate), we will have purely imaginary Y1, Y2

and Y3. Therefore, from a circuit point of view, Y1, Y2 and
Y3 represent either capacitive or inductive elements. In the
next section, we calculate Y1, Y2 and Y3 for each unit cell
on each metasurface, and subsequently simulate our cascaded
metasurface system in ANSYS HFSS.

V. FULL-WAVE SIMULATED EXAMPLES

The examples presented here use ANSYS HFSS to simulate
the cascaded metasurfaces designed using the proposed proce-
dure along with the three-layer admittance sheet topology for
each unit cell.

A. Phaseless Far-Field Power Pattern

In the first example we design a pair of metasurfaces to
produce a desired FF power pattern from a normally incident
TEz plane wave (i.e., only Ex, Ey , and Hz field components)

10Similar relations can also be found in the Supplemental Material of [23].
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Fig. 5. Comparison of the specified desired far-field power pattern (solid red
curve with circular markers) and the normalized far-field power pattern pro-
duced by the ANSYS HFSS simulation of the designed cascaded metasurfaces
(solid blue curve).

at 10.5 GHz. We assume 2D field propagation in the xy plane
with 1D metasurfaces placed along x = 0 and x = −1.5λ,
where λ denotes the free space wavelength. The metasurfaces
are both 5λ in length and each metasurface is discretized
into 30 unit cells of width λ/6. While the normally incident
plane wave requires periodic boundaries (implemented through
the use of master/slave boundaries in HFSS), the designed
metasurface will actually be aperiodic. To accommodate the
simulation of an aperiodic structure within periodic boundary
conditions, we add absorbing elements in-line with both meta-
surfaces that extend out a distance of two wavelengths from
either end. These absorbers ensure that the fields close to the
metasurfaces are not affected by the adjacent “images” of the
structure due to the periodic boundaries.

The field specifications consist of the phaseless FF power
pattern shown in Figure 5, specified for the angular range
−90◦ ≤ ϕ ≤ 90◦. In the first optimization step, we use
wTV = 10−12 and a step length of 100 and minimize (12) to
determine the equivalent currents x2 on the output metasurface
located at x = 0. The tangential output fields are then
computed and scaled to match the total incident field power
using (1) and (22). The second optimization step is then
performed to minimize (23). The weighting parameters used
in this step are w1 = 0.5, w2 = 0.7, and wTV = 8 × 10−10,
and a step length of 1 is used. Once x1 is determined, the
remaining tangential fields are found using (2) and (3) and
the susceptibility profiles can be computed using (33).

In this design, we use the Rogers RO3010 substrate (εr =
10.2, tan δ = 0.0022)11 for each of the two layers, each
with a thickness of 50 mil. We now calculate the admittance
sheet values Y1, Y2, and Y3 for each unit cell using (35)
through (37). The admittance sheets are then implemented in
the HFSS simulation using impedance boundary conditions,
with metallic baffles placed between each the unit cells as
in [14]. The real part (absolute value) of the total electric
field in the simulation domain is shown in Figure 6. The
FF pattern generated from this simulation (using a NF to FF
transformation) is shown in Figure 5, in which the simulated
FF pattern exhibits excellent agreement with the desired FF

11Since this loss tangent is small, it has not been taken into account in the
calculation of the required admittances for each unit cell of each metasurface
(Section IV-I). However, the presence of this loss tangent has been taken into
account in ANSYS HFSS simulations.
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Fig. 6. Absolute value of the real part of the total electric field when the
cascaded metasurface structure designed for the far-field power pattern in
Figure 5 is illuminated by a normally incident plane wave.

TABLE I
DESIRED FAR-FIELD (FF) PERFORMANCE CRITERIA

Specifications Main Beam 1 Main Beam 2
Direction ϕ = −34◦ ϕ = 34◦

HPBW 16◦ 16◦

Nulls (relative to main beam) 22◦ and 38◦ 22◦ and 38◦

pattern within the main beam. Although the generated side-
lobes are not exactly matched with the desired sidelobes, the
generated sidelobe level (SLL) remains almost below −20 dB.
The overall transmission efficiency, which we define as the
ratio between the total real power of the output field to the total
real power of the incident field, is 77.76% in this example.

B. Far-Field Performance Criteria

In the second example, the goal is to design a cascaded
metasurface structure that produces a FF pattern that satisfies
a collection of performance criteria. The only change required
to support this type of field specifications is to replace the
functional in (9) with

CFP (x2) =

∥∥∥W |AFx2|2 −W |f |2
∥∥∥2

S∥∥∥W |f |2∥∥∥2

S

(38)

where W is a diagonal prescaling matrix used to balance
the relative contributions of the various performance crite-
ria, calculated as in [17]. The details on converting the FF
performance criteria into |f |2 can also be found in [17]. For
this example the target FF performance criteria are shown in
Table I, which consist of two identical main beams (in different
directions), each with the same HPBW and associated nulls.
A visual representation of these performance criteria can be
seen in Figure 7, in which the elements of f are plotted using
red circular markers. In particular, note the eight red circular
markers on the −60 dB level that indicates the desired eight
null locations.

We adopt the same geometry and incident field as the
previous example in Section V-A. In the first optimization
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Fig. 7. Comparison of the specified far-field performance criteria (red circular
markers) and the normalized far-field power pattern produced by the ANSYS
HFSS simulation of the designed cascaded metasurfaces (solid blue curve).
The red circular markers on the−60 dB line specify the desired null locations.
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Fig. 8. Absolute value of the real part of the total electric field when the
cascaded metasurface structure designed for the far-field performance criteria
of Table I is illuminated by a normally incident plane wave.

step, we use parameters of wTV = 10−9 and a step length
of 10, and in the second optimization step we use weighting
parameters w1 = 0.5, w2 = 0.7, wTV = 8× 10−10, and a step
length of 0.1. The real part (absolute value) of the total electric
field resulting from simulating the designed metasurfaces in
HFSS is shown in Figure 8, while the resulting FF is shown
in Figure 7. The produced FF pattern has two main beams
at ϕ = ±33◦ with HPBWs of 15.5◦ and 15.2◦, exhibiting
excellent agreement with the field specifications. The eight
desired pattern nulls are also visible, although they deviate
from the intended directions by up to 5◦. In addition, although
we did not achieve very deep nulls (set to −60 dB level
in the specifications), all the generated nulls are still below
−20 dB with the best null being below −50 dB. Finally, the
transmission efficiency observed in this case is 83.31%.

C. Comparison to a Single Metasurface with TMz Fields

In this final example, we change the incident field to that
of an electric current line source (infinite in the z direction),
placed λ/3 away from the input metasurface. The fields
produced by this source are TMz (i.e., Ez , Hx, and Hy only).
The frequency remains at 10.5 GHz, but each metasurface now
consists of 50 unit cells of λ/10 width and the thickness of
the Rogers RO3010 substrate has been decreased to 10 mil.
Absorbing elements and periodic boundary conditions are not
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HFSS Simulation

Single MS HFSS Simulation

Fig. 9. Comparison of the specified far-field power pattern (solid red curve
with circular markers) and the normalized far-field power patterns produced by
the ANSYS HFSS simulations of the designed cascaded metasurface structure
(solid blue curve) and the single metasurface (dashed black curve).

needed with this incident field, and so the simulation domain is
bounded by an appropriate perfectly-matched layer (PML).12

The field specifications consist of a FF power pattern with
a main beam at ϕ = −15◦ as shown in Figure 9. We use
the proposed procedure to design a cascaded metasurface
structure, with wTV = 10−5 and a step length of 0.005 in the
first optimization step. In the second optimization step we use
w1 = 25, w2 = 25, and wTV = 5 × 10−11, and a step length
of 1. Additionally, we attempt to design a single metasurface
using the procedure in [18] to produce a satisfactory FF pattern
from the same incident field. The real part (absolute value) of
the total magnetic field in the simulation domains for the single
metasurface and the cascaded metasurface system are shown
in Figures 10(a) and (b), respectively. In addition, the corre-
sponding FF patterns for the single metasurface (dashed black
curve) and cascaded metasurface system (solid blue curve) are
shown in Figure 9. While the single metasurface has a higher
transmission efficiency (88.00% compared to 72.36%), the FF
pattern produced by the cascaded metasurfaces is significantly
closer to the target pattern. The narrow beamwidth requires a
rather uniform field amplitude distributed over a large aperture,
which a single metasurface is unable to produce because
it is constrained by the focused input power distribution
generated by the line source. In the cascaded scenario, the
first metasurface is able to ‘redirect’ the power such that the
second metasurface can more easily create the intended output
field.

VI. LIMITATIONS

The main limitation of the proposed design method is that
we have not yet taken reflections between the two metasurfaces
into account, and currently require that the separation be
large enough such that reflections can be neglected. However,
incorporating reflections into the model can allow for smaller
separation between the metasurfaces and improve the trans-
mission efficiency, as shown in [21] and [22]. A secondary
limitation is that the CG step length and functional weighting
parameters are determined in an ad-hoc fashion, and require
some tuning to ensure convergence.

12Periodic master/slave boundaries are still present on the faces perpendic-
ular to the z axis due to the 2D nature of the simulation.
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Fig. 10. Absolute value of the real part of the total magnetic field of the
HFSS simulations using (a) a single metasurface and (b) two metasurfaces to
produce the desired far-field power pattern shown in Figure 9 with an incident
field produced by an electric current line source.

VII. CONCLUSION

A framework for the design of passive, lossless, and re-
ciprocal cascaded metasurfaces structures was presented. The
framework utilizes electromagnetic inversion to allow for the
flexibility to specify the desired output field in a variety
of ways, including complex fields (amplitude and phase),
phaseless fields (amplitude-only), or even in terms of far-field
performance criteria such as main beam directions, half-power
beamwidths, and null locations. This framework allows for
full generality with respect to metasurface geometry and the
locations at which the field specifications are defined. Local
power conservation is enforced at each metasurface during
the two-step optimization procedure, and we have introduced
a total variation regularizer to improve the continuity of the

resulting fields from unit cell to unit cell. Several designed
metasurfaces were simulated in ANSYS HFSS using a three-
layer admittance sheet topology to demonstrate the validity
and flexibility of the method.

The next logical step is to physically implement the de-
signed metasurfaces using metallic ‘dogbone’ structures [14],
[15] or some other unit cell design. The main challenge
concerning the physical implementation is compensating for
the mutual coupling between the layers of each unit cell. To
this end, an iterative method for tuning unit cells to account
for mutual coupling was recently presented in [39]. However,
a method of this nature may not be practical for the large
number of unique unit cells required for the aperiodic designs
presented here.

APPENDIX A
DERIVATION OF THE REQUIRED GRADIENTS WITH

RESPECT TO x2

The CG minimization to update x2 requires finding the
gradient of two cost functionals, namely, CF (x2) and CTV (x2),
with respect to x2. Keep in mind that although x2 vector
represents the complex-valued equivalent electric and mag-
netic currents on Σ+

2 , it has been constructed such that it
is a purely-real vector; see Section IV-A. Therefore, all the
gradient vectors will also be purely real vectors.

A. Gradient of CF (x2)

We begin deriving the gradient of CF (x2) using standard
vector differentiation rules as

gF (x2) =
∂

∂x2

∥∥∥|AFx2|2 − |f |2
∥∥∥2

S∥∥∥|f |2∥∥∥2

S

=
2∥∥∥|f |2∥∥∥2

S

∂

∂x2

[
(AFx2)� (AFx2)

∗ − |f |2
]T

rF

(39)

where rF is given in (16) and � represents the Hadamard
(elementwise) product. To evaluate the derivative in (39), we
use the identity

∂

∂x
(Ax�Bx) = diag (Ax)B + diag (Bx)A. (40)

Noting that x2 is a purely real vector (x2 ∈ R4N ), the use of
(40) in conjunction with (39) results in

gF (x2) =
2∥∥∥|f |2∥∥∥2

S

[
diag (AFx2)A∗F + diag

(
A∗Fx2

)
AF

]T

rF

=
2∥∥∥|f |2∥∥∥2

S

[
2 Re

{
diag (AFx2)A∗F

} ]T

rF. (41)
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Noting that the residual rF is purely real and applying the
transpose operation we can simplify this expression to

gF (x2) =
4 Re

{
AH

F diag (AFx2) rF

}
∥∥∥|f |2∥∥∥2

S

=
4 Re

{
AH

F (rF �AFx2)
}

∥∥∥|f |2∥∥∥2

S

. (42)

B. Gradient of CTV (x2)

Next, consider the gradient of the total variation regularizer
given in (10). As an analogous derivation, we instead consider
the functional

C̃TV

(
u (y)

)
=
∥∥∇y u (y)

∥∥2

Σ2
(43)

in which u (y) is a continuously defined real-valued function
of y on Σ2 and the norm is defined as∥∥∥~f (y)

∥∥∥2

Σ2

=
〈
~f (y) , ~f (y)

〉
Σ2

=

∫
Σ2

~f (y) · ~f (y) dy. (44)

Note that since we are dealing with real-valued functions (i.e.,
the continuous form of the real-valued x2 vector), the presence
of the complex conjugate operator has been dropped in the
above norm definition.13 For the sake of notational simplicity,
the y dependency of u will be implied from now on. We start
by finding the first variation of C̃TV (u), i.e., the derivative of
C̃TV (u) with respect to u when u is slightly varied by some
function ψ (which is defined on the same domain as u)

∂C̃TV = lim
ε→0

C̃TV (u+ εψ)− C̃TV (u)

ε

= lim
ε→0

∥∥∇y (u+ εψ)
∥∥2

Σ2
−
∥∥∇y u

∥∥2

Σ2

ε
. (45)

Using the definition of the norm in (44), we can expand (45)
as

∂C̃TV = lim
ε→0

〈
∇y u+ ε∇y ψ,∇y u+ ε∇y ψ

〉
−
∥∥∇y u

∥∥2

Σ2

ε

= lim
ε→0

ε2
∥∥∇y ψ

∥∥2

Σ2
+ 2

〈
∇y u, ε∇y ψ

〉
ε

(46)

and evaluating the limit results in

∂C̃TV = 2
〈
∇y u,∇y ψ

〉
= 2

∫
Σ2

(
∇y u

)
·
(
∇y ψ

)
dy. (47)

If we note that

∇y ·
((
∇y u

)
ψ
)

= ψ∇y · ∇y u+∇y u · ∇y ψ (48)

then (47) becomes

∂C̃TV = 2

∫
Σ2

[
∇y ·

((
∇y u

)
ψ
)
− ψ∇y · ∇y u

]
dy. (49)

13For a similar derivation, but in the complex domain, see [40, Appendix
D.3].

Applying the divergence theorem [41] results in

∂C̃TV = 2

∫
∂Σ2

(
∇y u

)
ψ · x̂dy − 2

∫
Σ2

ψ∇y ·
(
∇y u

)
dy (50)

where ∂Σ2 refers to the edges of the metasurface. We as-
sume that the function u vanishes on the boundary, i.e.,
u (y ∈ ∂Σ2) = 0, which is equivalent to assuming that the
equivalent currents are assumed to be zero on the edges
of the metasurface in our case. Since ψ exists in the same
function space as u, then ψ (y ∈ ∂Σ2) = 0. Subsequently, (50)
simplifies to

∂C̃TV = −2

∫
Σ2

ψ∇y ·
(
∇y u

)
dy

=
〈
−2∇y ·

(
∇y u

)
, ψ
〉

Σ2

=
〈
−2∇2

y u, ψ
〉

Σ2

. (51)

If we were to discretize (43) such that the functional operates
on the equivalent currents in x2 as in (10), and considering the
regularization weight wTV, the corresponding discrete gradient
operator [42], [43] can then be written as

gTV(x2) = −2wTV


∂2

∂y2J2,R
∂2

∂y2J2,I
∂2

∂y2M2,R
∂2

∂y2M2,I

 . (52)

APPENDIX B
DERIVATION OF THE REQUIRED GRADIENTS WITH

RESPECT TO x1

This requires calculation of the gradient of the four cost
functionals, namely CL, CP,1, CP,2, and CTV, with respect to x1.
Keep in mind that although x1 represents the complex-valued
equivalent electric and magnetic currents on Σ+

1 , it has been
constructed to be a purely real vector; see Section IV-A.

A. Gradient of CL (x1)

The gradient of CL (x1) can be derived using vector differ-
entiation rules as

gL =
∂

∂x1
‖Lx1‖2Σ1

=
∂

∂x1

[
(Lx1)

H
(Lx1)

]
=

∂

∂x1

[
xT

1L
HLx1

]
=

[
LHL +

(
LHL

)T
]
x1

=
(
LHL + LTL∗

)
x1

= 2 Re
(
LHLx1

)
(53)
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B. Gradient of CP,1(x1)

To derive the required gradient of CP,1 (x1), we first find the
gradient of CP,1 (x1) with respect to J1,R only. Using vector
differentiation rules this can be computed as

∂CP,1

∂J1,R
=

∂

∂J1,R

w1

∥∥∥ 1
2

(
J1,R �M1,R + J1,I �M1,I

)
− pin

∥∥∥2

Σ1

‖pin‖2Σ1

=
2w1

∂
∂J1,R

[
1
2

(
J1,R �M1,R + J1,I �M1,I

)
− pin

]T
r1

‖pin‖2Σ1

=
w1

‖pin‖2Σ1

diag
(
M1,R

)
r1

=
w1

‖pin‖2Σ1

r1 �M1,R (54)

where r1 is given in (30). Performing the a similar derivation
for the gradients with respect to J1,I, M1,R, and M1,I and
concatenating the results according to the order of (8) produces
the final gradient with respect to x1, i.e., gP,1, which is given
in (29).

C. Gradient of CP,2 (x1)

We now derive the gradient of CP,2 (x1) as

gP,2 =
∂

∂x1

w2

∥∥∥ 1
2 Re

(
B1x1 �B∗2x1

)
− pout

∥∥∥2

Σ2

‖pout‖2Σ2

=
2w2

∂
∂x1

[
1
2 Re

(
B1x1 �B∗2x1

)
− pout

]T
r2

‖pout‖2Σ2

. (55)

Using the identity in (40) this simplifies to

gP,2 =

w2

[
Re
(

diag (B1x1)B∗2 + diag
(
B∗2x1

)
B1

)]T

r2

‖pout‖2Σ2

.

(56)

D. Gradient of CTV (x1)

This is the same as Section A-B. Thus,

gTV(x1) = −2wTV


∂2

∂y2J1,R
∂2

∂y2J1,I
∂2

∂y2M1,R
∂2

∂y2M1,I

 . (57)
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