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Abstract

Allprimescanbeindexedbyk,asprimesmustbeintheform of 6k+1 or 6k-1. In this paper, we explore for the set of k such that either

6k+1 or 6k-1 is not a prime. Our method provides a uniform formula for k that can sieve primes and twin primes as well.

The uniform presents symmetry in terms of k that works as single index in sieving. We also propose a new conjecture that is

equivalent to Twin Prime Conjecture but possibly be easier to approach by merely exploring of sole index in term of k.
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Abstract. All primes can be indexed by k, as primes must be in the form
of 6k+1 or 6k-1. In this paper, we explore for the set of k such that either
6k+1 or 6k-1 is not a prime. Our method provides a uniform formula for
k that can sieve primes and twin primes as well. The uniform presents
symmetry in terms of k that works as single index in sieving. We also
propose a new conjecture that is equivalent to Twin Prime Conjecture
but possibly be easier to approach by merely exploring of sole index in
term of k.
The uniform formula for prime sieving are as follows:
k ∈ Sl ⇒ 6k−1 6∈ P, where Sl = [−I]6I+1 = [I]6I−1\min([I]6I−1), I ∈ N.
k ∈ Sr ⇒ 6k + 1 6∈ P, where Sr = [−I]6I−1 ∪ ([I]6I+1\min([I]6I+1)), I ∈
N.

Keywords: Twin Prime Conjecture; Computational Number Theory; Algo-
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1 Introduction

Twin Prime Conjecture and Prime testing [1–6] has been explored for a long
time. As Twin Prime must be in the form 6k ± 1, we explore for what k such
that either of 6k±1 is not a prime. We derive {k|6k+1 6∈ P∨6k−1 6∈ P, k ∈ N} in
an elementary method and the results can be used for approaching Twin Prime
Conjecture. Major notations are listed as follows:

1. P: the set of all prime integers.
2. Z: integers.
3. N: positive integers. In this paper, we only discuss x ∈ N.
4. x ∈ [i]m = {x|x ∈ N, x mod m = i,m ∈ N,m ≥ 2, 0 ≤ i ≤ m− 1, i ∈ Z}.
5. [i, j]m = [i]m ∪ [j]m.
6. |S| returns the number of items in a set S.



7. min(S) returns the minimal value in a set S.
8. gcd(m,n) returns the greatest common devisor of m and n.

Proposition 1. x ∈ P, x > 3 ⇒ x ∈ [1, 5]6.

Proof. ∀x ∈ [0, 2, 4]6, 2|x, thus x 6∈ P. ∀x ∈ [3]6, x > 3, 3|x, thus x 6∈ P. ∀x ∈ N,
x ∈ [0, 2, 4]6 ∪ [3]6 ∪ [1, 5]6. Therefore, ∀x ∈ P, x ∈ [1, 5]6. ut

Definition 1. TwinPrime(x, y) = {(x, y)|x, y ∈ P, y = x + 2}.

Twin Prime Conjecture can be stated as |{(x, y)|TwinPrime(x, y)}| = +∞.

Proposition 2. TwinPrime(x, y) ⇒ x ∈ [5]6∧y ∈ [1]6 ⇒ ∃k ∈ N, x = 6k−1, y =
6k + 1.

Proof. Due to Proposition 1, P ⊂ [1, 5]6.
If x, y ∈ [1]6, y > x, then y − x ≥ 6;
If x, y ∈ [5]6, y > x, then y − x ≥ 6;
If x ∈ [1]6, y ∈ [5]6, y > x, then y − x ≥ 4.
Because y − x = 2, we have x ∈ [5]6, y ∈ [1]6.
Thus, ∃k ∈ N, such that x = 6k − 1, y = 6k + 1. ut

Proposition 3. |{x|x = 6k − 1, k ∈ N, x ∈ P}| 6= +∞
⇒ |{(x, y)|TwinPrime(x, y)}| 6= +∞.

Proof. Let Set1 = {x|x = 6k − 1, k ∈ N, x ∈ P}. If |Set1| 6= +∞, ∃xmax =
max(Set1). When y > xmax + 2, y ∈ P, y = 6k + 1, k ∈ N, y’s twin prime does
not exist. (@x = 6k − 1, x ∈ P because y − 2 = 6k + 1 − 2 = 6k − 1 > xmax =
max(Set1).) ut

Proposition 4. |{y|y = 6k + 1, k ∈ N, y ∈ P}| 6= +∞
⇒ |{(x, y)|TwinPrime(x, y)}| 6= +∞.

Proof. The proof is similar to Proposition 3. ut

Proposition 5. |{(x, y)|TwinPrime(x, y)}| = +∞
⇒ |{x|x = 6k − 1, k ∈ N, x ∈ P}| = +∞ ∧ |{y|y = 6k + 1, k ∈ N, y ∈ P}| = +∞.

Proof. It is due to Proposition 3 and Proposition 4. ut

Proposition 6. |{x|x = 6k − 1, k ∈ N, x ∈ P}| = +∞.

Proof. Straightforward. Suppose primes with forms 6k − 1 is not infinite. List
them as p1 < p2 < ... < pn. Let X = 6p1p2...pn − 1. X is with a form 6k − 1,
thus X 6∈ P. pi - X. Thus, only primes with forms 6k + 1 can be divisors of X.
However, the multiplication of those primes must be with form 6k + 1 instead
of 6k − 1. Thus, X ∈ P where contradiction occurs. ut

Proposition 7. |{y|y = 6k + 1, k ∈ N, y ∈ P}| = +∞.



Proof. Straightforward. Given arithmetic progression ax + b where (a, b) = 1,
ax + b is prime infinitely often, due to Dirichlet’s theorem. ut
Proposition 8. x ∈ {x|x = 6k − 1, k ∈ N, k = 6A2, A ∈ N} ⇒ x 6∈ P.

Proof. x = 6k − 1 = 6 ∗ 6A2 − 1 = 36A2 − 1 = (6A + 1)(6A− 1) 6∈ P. ut
Proposition 9. y ∈ {y|y = 6k + 1, k ∈ N, k = 5B− 1, 7C + 1, B, C ∈ N} ⇒ y 6∈
P.

Proof. y = 6k +1 = 6 ∗ (5B− 1)+1 = 30B− 5 = 5 ∗ (6B− 1) 6∈ P. y = 6k +1 =
6 ∗ (7C + 1) + 1 = 42C + 7 = 7 ∗ (6C + 1) 6∈ P. ut

2 Analysis of {k|6k + 1 6∈ P, k ∈ N}
Suppose ∃m, t ∈ N, 6k + 1 = m ∗ t, k ∈ N. As 6k + 1 ∈ [1]2, m ∈ [1]2,m ≥ 3, and
t ∈ [1]2, t ≥ 3. 6k + 1 = m ∗ t ≥ 3 ∗ 3 = 9, thus, k ≥ 2.

1 = t ∗m− 6 ∗ k = (t− k) ∗m + (m− 6) ∗ k will be explored for its solutions.

Proposition 10. ∀m,n ∈ N,m > n, gcd(m,n) = 1 ⇔ ∃s, t ∈ Z, s 6= 0, t 6=
0,m ∗ s + n ∗ t = 1, and t ≡ n−1 mod m.

Proof. Straightforward due to extended Euclid algorithm. ut
(1) m > 6,m ∈ [1]2.
Observe 1 = t ∗m − 6 ∗ k = (t − k) ∗m + (m − 6) ∗ k, where t ∈ [1]2, t ≥ 3,

k ∈ N,m ∈ [1]2,m > 6.
If gcd(m,m− 6) = 1, then ∃t− k, k ∈ Z, t− k 6= 0, k 6= 0 such that (t− k) ∗

m + (m− 6) ∗ k = 1. That is, if gcd(m,m− 6) = 1, then ∃t ∈ [1]2, t ≥ 3,∃k ∈ Z,
t 6= k, k 6= 0 such that (t− k) ∗m + (m− 6) ∗ k = 1.

Next, observe gcd(m,m− 6) = 1. Recall that m > 6,m ∈ [1]2.

Proposition 11. ∀a, b ∈ N, a > b, gcd(a, a− b) = gcd(a, b).

Proof. Let gcd(a, a− b) = c, c|a, c|(a− b). Thus, c|a− (a− b) = b.
As c|a, c|b, thus, c|gcd(a, b). That is, gcd(a, a− b)|gcd(a, b)
Let gcd(a, b) = d, d|a, d|b. Thus, d|a− b.
As d|a, d|a− b, thus d|gcd(a, a− b). That is, gcd(a, b)|gcd(a, a− b).
Thus, gcd(a, a− b) = gcd(a, b). ut

Thus, gcd(m,m− 6) = 1 ⇒ gcd(m, 6) = 1 ⇒ m = 6D + 1, 6D + 5, D ∈ N.
k ≡ (m− 6)−1 mod m, thus

{
k ≡ (6D − 5)−1 mod 6D + 1 D ∈ N
k ≡ (6D − 1)−1 mod 6D + 5 D ∈ N (1)

More specifically, (6D−5)D = (6D +1)D−6D = (6D +1)D−6D−1+1 =
(6D + 1)(D − 1) + 1. Thus,



(6D − 5)−1 ≡ D mod 6D + 1.

(6D−1)(5D +4) = 30D2 +19D−4 = (6D +5)5D−6D−4 = (6D +5)5D−
6D − 5 + 1 = (6D + 5)(5D − 1) + 1. Thus,

(6D − 1)−1 ≡ 5D + 4 mod 6D + 5.

That is, Eq. 2 can be written as Eq. 5
{

k ≡ D mod 6D + 1 D ∈ N
k ≡ 5D + 4 mod 6D + 5 D ∈ N (2)

(1.1) Let k = D, m = 6D + 1.
Check
1 = (t− k) ∗m + (m− 6) ∗ k = (t−D)(6D + 1) + (6D − 5)D

= 6D(t− 1) + t = (6D + 1)(t− 1) + 1. Thus, t = 1 6≥ 3.
(1.2) Therefore, let k = (6D + 1) ∗W1 + D, W1 ∈ N.
Check
1 = (t− k) ∗m + (m− 6) ∗ k

= (t− 6DW1 −W1 −D)(6D + 1) + (6D − 5)(6DW1 + W1 + D)
= 6Dt − (6DW1 + W1 + D) + t − 6D(6DW1 + W1 + D) + 6D(6DW1 + W1 +
D)− 5(6DW1 + W1 + D)
= (6D + 1)t− 6(6DW1 + W1 + D)
= (6D + 1)t− 6(6D + 1)W1 − 6D
= (6D + 1)(t− 6W1)− 6D − 1 + 1
= (6D + 1)(t− 6W1 − 1) + 1. Thus, t = 6W1 + 1 ≥ 3, t ∈ [1]2.

(1.3) Similarly, let k = (6D + 5) ∗W2 + 5D + 4,W2 ∈ Z, m = 6D + 5.
Check
1 = (t− k) ∗m + (m− 6) ∗ k

= (t− k)(6D + 5) + (6D − 1)k
= t(6D + 5)− k(6D + 5) + (6D + 5)k − 6k
= t(6D + 5)− 6((6D + 5)W2 + 5D + 4)
= (6D + 5)(t− 6W2)− 6(5D + 4)
= (6D + 5)(t− 6W2 − 5) + 30D + 25− 30D − 24
= (6D + 5)(t− 6W2 − 5) + 1. Thus, t = 6W2 + 5 ≥ 3, t ∈ [1]2.

Therefore, 6k + 1 6∈ P, if

k =

{
(6D + 1) ∗W1 + D W1 ∈ N, D ∈ N

(6D + 5) ∗W2 + 5D + 4 W2 ∈ Z, D ∈ N (3)

(2) 3 ≤ m ≤ 6. As m ∈ [1]2, we have m = 5, 3.
If m = 3, then 6k + 1 = 3t, which is impossible.
If m = 5, then 6k + 1 = 5t. k + 1 = 5(t− k). Thus, k ∈ [4]5.
Let k = 5W3 + 4,W3 ∈ Z. Check k + 1 = 5W3 + 4 + 1 = 5(W3 + 1).

t− k = W3 + 1. t = W3 + 1 + k = W3 + 1 + 5W3 + 4 = 6W3 + 5 ≥ 3, t ∈ [1]2. Or,
6k + 1 = 6(5W3 + 4) + 1 = 30W3 + 25 = 5(6W3 + 5) 6∈ P.



Combining (1) and (2) and in summary, 6k + 1 6∈ P, if

k =





(6D + 1)W1 + D W1 ∈ N, D ∈ N
(6D + 5)W2 + 5D + 4 W2 ∈ Z, D ∈ N

5W3 + 4 W3 ∈ Z
(4)

That is,

k =

{
(6D + 1)W1 + D W1 ∈ N, D ∈ N

(6D + 5)W2 + 5D + 4 W2 ∈ Z, D ∈ Z (5)

Or,

k ∈
{

[D]6D+1\{D} D ∈ N
[5D + 4]6D+5 D ∈ Z (6)

Or,

k ∈
{

[D]6D+1\{D} D ∈ N
[5D + 4]6D+5 ∪ [4]5 D ∈ N (7)

Or,

k ∈
{

[D]6D+1\{D} ∪ [5D + 4]6D+5 D ∈ N
[4]5

(8)

3 Analysis of {k|6k − 1 6∈ P, k ∈ N}
Next, we explore for what k ∈ N, 6k − 1 6∈ P. That is, explore ∃t ∈ N, such that
6 ∗ k − 1 = t ∗ m. As 6 ∗ k − 1 ∈ [1]2, t ∈ [1]2,m ∈ [1]2. t ≥ 3,m ≥ 3, thus
6 ∗ k − 1 ≥ 3 ∗ 3 = 9, k ≥ 2.

(1) 2 ≤ m < 6,m ∈ [1]2.
Observe 1 = 6 ∗k− t ∗m = (6−m) ∗k +(k− t) ∗m, where t ∈ [1]2, t ≥ 3, k ∈

N,m ∈ [1]2, 2 ≤ m < 6. Thus, m = 3, 5.
If gcd(m, 6−m) = 1, then ∃k− t, k ∈ Z, k− t 6= 0, k 6= 0 such that (6−m) ∗

k + (k − t) ∗m = 6 ∗ k − t ∗m = 1.

Proposition 12. ∀a, b ∈ N, gcd(a, a + b) = gcd(a, b).

Proof. Let gcd(a, a + b) = c, c|a, c|a + b. Thus, c|a + b− a = b.
As c|a, c|b, thus, c|gcd(a, b). That is, gcd(a, a + b)|gcd(a, b)
Let gcd(a, b) = d, d|a, d|b. Thus, d|a + b.
As d|a, d|a + b, thus d|gcd(a, a + b). That is, gcd(a, b)|gcd(a, a + b).
Thus, gcd(a, a + b) = gcd(a, b). ut

gcd(6 − m,m) = 1 ⇒ gcd(m, 6) = 1 ⇒ m = 5. 6 ∗ k − 1 = 5t ∈ [0]5, thus
k ∈ [1]5.

Let k = 5X1+1, X1 ∈ N. 6k−1 = 6(5X1+1)−1 = 30X1+5 = 5(6X1+1) 6∈ P.
(2) m > 6,m ∈ [1]2.
1 = 6 ∗ k − t ∗m = (6 + m) ∗ k + (−t− k) ∗m, t, k ∈ N,m ∈ [1]2,m > 6.



If gcd(6 + m,m) = 1, then ∃t, k ∈ N, such that (6 + m) ∗ k + (−t− k) ∗m =
6 ∗ k − t ∗m = 1.

gcd(6 + m,m) = 1
⇒ gcd(m, 6) = 1
⇒ m ∈ [1, 5]6
⇒ m = 6I + 1, 6I + 5, I ∈ N.

k ≡ (6 + m)−1 mod m
⇒ k ≡ 6−1 mod m
⇒ k ≡ 6−1 mod 6I + 1, k ≡ 6−1 mod 6I + 5.

6(5I + 1) = (6I + 1)5 + 1. Thus, 6−1 ≡ 5I + 1 mod 6I + 1.
Let k = (6I + 1)X2 + 5I + 1, X2 ∈ Z.
6k − 1 = 6((6I + 1)X2 + 5I + 1)− 1

= 6(6I + 1)X2 + 30I + 6− 1
= 6(6I + 1)X2 + 5(6I + 1)
= (6I + 1)(6X2 + 5) 6∈ P.

6 ∗ (I + 1) = (6I + 5) + 1. Thus, 6−1 ≡ I + 1 mod 6I + 5.
Let k = (6I + 5)X3 + I + 1, X3 ∈ N.
6k − 1 = 6((6I + 5)X3 + I + 1)− 1

= 6((6I + 5)X3 + 6I + 6− 1
= (6I + 5)(6X3 + 1) 6∈ P.

Together with the result in (1), 6k − 1 6∈ P, if

k =





5X1 + 1 X1 ∈ N
(6I + 1)X2 + 5I + 1 X2 ∈ Z, I ∈ N
(6I + 5)X3 + I + 1 X3 ∈ N, I ∈ N

(9)

That is,

k =

{
(6I + 1)X1 + 5I + 1 X1 ∈ Z, I ∈ N
(6I + 5)X2 + I + 1 X2 ∈ N, I ∈ N (10)

Or,

k ∈
{

[5I + 1]6I+1 I ∈ N
[I + 1]6I+5\{I + 1} I ∈ N (11)

4 Analysis of {k|6k ± 1 6∈ P, k ∈ N}

(1) Due to Eq. 7, we have

k ∈
{

[D]6D+1\{D} D ∈ N
[5D + 4]6D+5 ∪ [4]5 D ∈ N ⇒ 6k + 1 6∈ P (12)

Note that, recall Eq. 5, (6D+5)W2+5D+4 = (6(D+1)−1)W2+5(D+1)−1 =
(6E − 1) ∗W2 + 5E − 1,W2 ∈ Z, D ∈ Z, thus E = D + 1 ∈ N.

Thus, Eq. 12 can be rewritten as follows:



k =

{
(6D + 1)W1 + D W1 ∈ N, D ∈ N

(6E − 1)W2 + 5E − 1 W2 ∈ Z, E ∈ N ⇒ 6k + 1 6∈ P (13)

Or,

k ∈
{

[D]6D+1\{D} D ∈ N
[5E − 1]6E−1 E ∈ N ⇒ 6k + 1 6∈ P (14)

Or,
k ∈ [D]6D+1\{D} ∪ [5D − 1]6D−1, D ∈ N⇒ 6k + 1 6∈ P.

(2) Due to Eq. 11, we have

k ∈
{

[5I + 1]6I+1 I ∈ N
[I + 1]6I+5\{I + 1} I ∈ N ⇒ 6k − 1 6∈ P (15)

Note that, recall Eq. 10, (6I + 5)X2 + I + 1 = (6(I + 1)− 1) ∗X2 + (I + 1) =
(6J − 1)X2 + J,X2, I ∈ N, J = I + 1 ∈ N, J ≥ 2.

Thus, Eq. 15 can be rewritten as follows:

k =

{
(6I + 1)X1 + 5I + 1 X1 ∈ Z, I ∈ N

(6J − 1)X2 + J X2 ∈ N, J ∈ N, J ≥ 2
⇒ 6k − 1 6∈ P (16)

Or,

k ∈
{

[5I + 1]6I+1 I ∈ N
[J ]6J−1\{J} J ∈ N, J ≥ 2

⇒ 6k − 1 6∈ P (17)

Or,
k ∈ [5I + 1]6I+1 ∪ [I]6I−1\{I}\[1]5, I ∈ N⇒ 6k − 1 6∈ P.

Note that, [1]5 ⊂ [5I + 1]6I+1 ∪ {1}, I ∈ N. The proof is as follows:
[1]5 = {a|a = 5 ∗ K + 1,K ∈ Z}. ∀x ∈ [1]5 ⇒ ∃K ∈ Z such that x =

5 ∗K + 1 ⇒ x ∈ [5I + 1]6I+1 ∪ {1}, since min([5I + 1]6I+1) = 5I + 1 = x when
I = K and x > 1 (x = 1 when K = 0 is trivial due to x ∈ {1}.)

Therefore,

k ∈ [5I + 1]6I+1 ∪ [I]6I−1\{I}, I ∈ N⇒ 6k − 1 6∈ P.

(3) Summarizing (1) and (2), therefore, we have following result that looks
more symmetrical.

k ∈ [5I + 1]6I+1 ∪ [I]6I−1\{I}, I ∈ N⇒ 6k − 1 6∈ P.
k ∈ [I]6I+1\{I} ∪ [5I − 1]6I−1, I ∈ N⇒ 6k + 1 6∈ P.
That is,

{
k ∈ [I]6I−1\{I} ∪ [5I + 1]6I+1, I ∈ N⇒ 6k − 1 6∈ P,

k ∈ [5I − 1]6I−1 ∪ [I]6I+1\{I}, I ∈ N⇒ 6k + 1 6∈ P.
(18)



Or,
{

k ∈ [I]6I−1\min([I]6I−1) ∪ [5I + 1]6I+1, I ∈ N⇒ 6k − 1 6∈ P,

k ∈ [5I − 1]6I−1 ∪ [I]6I+1\min([I]6I+1), I ∈ N⇒ 6k + 1 6∈ P.
(19)

Or,
{

k ∈ [I]6I−1\min([I]6I−1) ∪ [−I]6I+1, I ∈ N⇒ 6k − 1 6∈ P,

k ∈ [−I]6I−1 ∪ [I]6I+1\min([I]6I+1), I ∈ N⇒ 6k + 1 6∈ P.
(20)

Lemma 1.
⋃

I∈N[−I]6I+1 ⊆
⋃

I∈N[I]6I−1\min([I]6I−1).

Proof. ∀k ∈ ⋃
I∈N[−I]6I+1, ∃J ∈ N such that k ∈ [−J ]6J+1, thus k = (6J + 1) ∗

W −J,W ∈ N. Note that, k = (6J +1)∗W −J = (6J −1)∗W +J +(2W −2J).
When W = J , then

k ∈ [J ]6J−1\min([I]6I−1) ∵ W ∈ N⇒ k = (6J − 1) ∗W + J > J
⊆ ⋃

I∈N[I]6I−1\min([I]6I−1).
Obviously, W is determined by J . ut

Lemma 2.
⋃

I∈N[I]6I−1\min([I]6I−1) ⊆
⋃

I∈N[−I]6I+1.

Proof. ∀k ∈ ⋃
I∈N[I]6I−1\min([I]6I−1), ∃J ∈ N such that k ∈ [J ]6J−1\min([J ]6J−1),

thus k = (6J − 1) ∗ W + J,W ∈ N (instead of W ∈ Z since k > J due to
\min([J ]6J−1)). Note that, k = (6J−1)∗W +J = (6J +1)∗W −J +(2J−2W ).
When W = J , then

k ∈ [−J ]6J+1 ⊆
⋃

I∈N[−I]6I+1. Obviously, W is determined by J . ut
Theorem 1.

⋃
I∈N[I]6I−1\min([I]6I−1) =

⋃
I∈N[−I]6I+1.

Proof. It is straightforward due to Lemma 1 and Lemma 2. ut
More specifically, we discover a mapping between the j-th element in all

residue classes in [I]6I−1\min([I]6I−1) and a residue class in [−I]6I+1. In other
words or roughly speaking, a column exactly equals a row, if those two residue
classes are looked as a matrix. Next, we explain this result in the following.

Definition 2. Function π(·, ·): s×i ∈ N takes as input a set of sets s whose ele-
ments are ordered increasingly and a sequence number i, outputs the i-th element
(minimal) in s.

Recall that [I]6I−1\min([I]6I−1), I ∈ N is a set of sets consisting of
[i]6i−1\min([i]6i−1), i = 1, 2, 3, ....

Theorem 2. π(S = [I]6I−1\min([I]6I−1), j) = [−j]6j+1.

Proof. ∀si ∈ S = [I]6I−1\min([I]6I−1). W.o.l.g., let si = [i]6i−1\min([i]6i−1) =
{k|k = (6i − 1) ∗ W + i,W ∈ N}. Thus, the j-th minimal element in si is
(6i − 1)j + i. ∀i ∈ N, (6i − 1)j + i = 6ji − j + i = (6j + 1)i − j. That is,
{k|k = (6i− 1)j + i, i ∈ N} = [−j]6j+1. ut



Corollary 1. At = B, where A is a matrix generated by
⋃

I∈N[I]6I−1\min([I]6I−1),
B is a matrix generated by

⋃
I∈N[−I]6I+1, t means matrix transposition, the i-th

row of A is an increasingly ordered set [i]6i−1\{i} = {k|k = (6i−1)∗W + i,W ∈
N}, the i-th row of B is an increasingly ordered set [−i]6i+1 = {k|k = (6i + 1) ∗
W − i,W ∈ N}.

In other words, A[x, y] = x+(6x−1)∗y and B[x, y] = −x+(6x+1)∗y, x, y ∈
N.

Proof. It is straightforward due to Theorem 2. Alternatively, A[x, y]t = A[y, x] =
y + (6y − 1) ∗ x = y + 6yx− x = −x + (6x + 1) ∗ y = B[x, y]. ut
Corollary 2. [I]6I−1\min([I]6I−1) = [−I]6I+1 =
{k|k = (6I − 1) ∗W + I, W ∈ N, I ≤ W, I ∈ N} ∪
{k|k = (6I + 1) ∗W − I, W ∈ N, I ≤ W, I ∈ N}.
Proof. It is straightforward due to Theorem 2 or Corollary 1. Simply speaking,
since At = B, A(B)’s upper triangle is B(A)’s lower triangle. Thus, B’s upper
triangle combines A’s upper triangle equals total A or B. ut

Besides, we discover that [−I]6I−1 ∪ [I]6I+1\min([I]6I+1), I ∈ N itself is an
symmetric matrix, if the sets are listed row by row as a matrix and each row is
[−I]6I−1 or [I]6I+1\min([I]6I+1).

Theorem 3. π(S = [−I]6I−1, j) = [−j]6j−1.

Proof. ∀si ∈ S = [−I]6I−1. W.o.l.g., let si = [−i]6i−1 = {k|k = (6i − 1) ∗
W − i,W ∈ N}. Thus, the j-th minimal element in si is (6i − 1)j − i. ∀i ∈ N,
(6i− 1)j − i = 6ji− j − i = (6j − 1)i− j. That is, {k|k = (6i− 1)j + i, i ∈ N} =
[−j]6j−1. ut
Theorem 4. π(S = [I]6I+1\min([I]6I+1), j) = [j]6j+1.

Proof. ∀si ∈ S = [I]6I+1\min([I]6I+1). W.o.l.g., let si = [i]6i+1\min([i]6i+1) =
{k|k = (6i + 1) ∗ W + i,W ∈ N}. Thus, the j-th minimal element in si is
(6i + 1)j + i. ∀i ∈ N, (6i + 1)j + i = 6ji + j + i = (6j + 1)i + j. That is,
{k|k = (6i + 1)j + i, i ∈ N} = [j]6j+1. ut
Corollary 3. At = A, where A is a matrix generated by [−I]6I−1, I ∈ N;
t means matrix transposition; the i-th row of A is an increasingly ordered set
[−i]6i−1. In other words, A[x, y] = −x + (6x− 1) ∗ y.

Proof. It is straightforward due to Theorem 3. Alternatively, A[x, y]t = A[y, x] =
−y + (6y − 1) ∗ x = −y + 6xy − x = −x + (6x− 1) ∗ y = A[x, y]. ut
Corollary 4. At = A, where A is a matrix generated by [I]6I+1\min([I]6I+1),
I ∈ N; t means matrix transposition; the i-th row of A is an increasingly ordered
set [i]6i+1\{i}. In other words, A[x, y] = x + (6x + 1) ∗ y.

Proof. It is straightforward due to Theorem 4. Alternatively, A[x, y]t = A[y, x] =
y + (6y + 1) ∗ x = y + 6xy + x = x + (6x + 1) ∗ y = A[x, y]. ut



Corollary 5. [−I]6I−1 = {k|k = (6I − 1) ∗W − I, W ∈ N, I ≤ W, I ∈ N.}
Proof. It is straightforward due to Theorem 3. ut
Corollary 6. [I]6I+1\min([I]6I+1), I ∈ N = {k|k = (6I + 1) ∗ W + I, W ∈
N, I ≤ W, I ∈ N}.
Proof. It is straightforward due to Theorem 4. ut

5 6k index Conjecture

Let Sl = [−I]6I+1 = [I]6I−1\min([I]6I−1), I ∈ N.
Let Sr = [−I]6I−1 ∪ [I]6I+1\min([I]6I+1), I ∈ N.
Recall that, k ∈ Sl ⇒ 6k − 1 6∈ P, k ∈ Sr ⇒ 6k + 1 6∈ P.

Proposition 13. ∀k ∈ N, k 6∈ Sl ⇒ 6k − 1 ∈ P.
∀k ∈ N, k 6∈ Sr ⇒ 6k + 1 ∈ P.

Proof. Straightforward. ut
Proposition 14. Given ∀Kt ∈ N,∃k ≥ Kt, k 6∈ Sl.

Proof. Straightforward. It is due to Proposition 6. ut
Proposition 15. Given ∀Kt ∈ N,∃k ≥ Kt, k 6∈ Sr.

Proof. Straightforward. It is due to Proposition 7. ut
Conjecture 1. (6k index Conjecture.) Given ∀Kt ∈ N, ∃k ≥ Kt, k ∈ N, such that
k 6∈ Sl ∧ k 6∈ Sr.

Proposition 16. 6k index Conjecture is equivalent to Twin Prime Conjecture.

Proof. If Trap Conjecture is true, that is, ∀Kt ∈ N, ∃k > Kt, k 6∈ Sl ∧ k 6∈ Sr.
Thus, 6k − 1 ∈ P and 6k + 1 ∈ P. Let x = 6k − 1, y = 6k + 1; those are Twin
Prime. Thus, Twin Prime Conjecture is true.

Similarly, if Twin Prime Conjecture is true, the Trap Conjecture is true. ut
Proposition 17. If ∃Kt ∈ N, ∀k ≥ Kt, k ∈ Sl ∨ k ∈ Sr, then Twin Prime
Conjecture is false.

Proof. Straightforward. ut
Proposition 18. If given ∀Kt ∈ N, ∃k ≥ Kt, k ∈ N, k 6∈ Sl∧k 6∈ Sr, then Twin
Prime Conjecture is True.

Proof. Straightforward. ut
Trap Conjecture and Proposition 18 provides sufficient and necessary condi-

tion for the proof of soundness and completeness of Twin Prime Conjecture. We
depict a graph to show the rationale for better understanding in Fig. 1.
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Fig. 1. The sieve of non-prime numbers in 6k − 1, 6k + 1, k ∈ N. If there exist either
trap (denoted as a box) in column (6k − 1) and column (6k + 1) for any k > Kt (k
is the row number), then Twin Prime Conjecture is false. Otherwise, when and only
when ∀Kt, ∃k > Kt such that at k row there exists no box at either column, then Twin
Prime Conjecture is true.



6 Applications

Let Sl = Sl1 ∪ Sl2, Sr = Sr1 ∪ Sr2.

Proposition 19. k 6∈ (Sl1 ∪ Sl2) ⇒ 6k − 1 ∈ P, where Sl1 = {k|k = (6I − 1) ∗
W + I, W ∈ N, I ≤ W, I ∈ N} and Sl2 = {k|k = (6I + 1) ∗W − I, W ∈ N, I ≤
W, I ∈ N}.
Proof. It is straightforward due to Corollary 2. ut
Proposition 20. k 6∈ (Sr1 ∪ Sr2) ⇒ 6k + 1 ∈ P, where Sr1 = {k|k = (6I − 1) ∗
W − I, W ∈ N, I ≤ W, I ∈ N} and Sr2 = {k|k = (6I + 1) ∗W + I, W ∈ N, I ≤
W, I ∈ N}.
Proof. It is straightforward due to Corollary 5 and Corollary 6. ut

If we can obtain the concrete set of Sl and Sr, then we will be able to generate
primes directly. Recall that, Sl = Sl1 ∪ Sl2, Sr = Sr1 ∪ Sr2.

Sl1 = {k|k = (6I − 1) ∗W + I, W ∈ N, I ≤ W, I ∈ N}
= {k|k = 6IW −W + I, W ∈ N, I ≤ W, I ∈ N}
= {k|k = 6xy + (x− y), x, y ∈ N, x ≤ y}.

Sl2 = {k|k = (6I + 1) ∗W − I, W ∈ N, I ≤ W, I ∈ N}
= {k|k = 6IW + W − I, W ∈ N, I ≤ W, I ∈ N}
= {k|k = 6xy − (x− y), x, y ∈ N, x ≤ y}.

Sr1 = {k|k = (6I − 1) ∗W − I, W ∈ N, I ≤ W, I ∈ N}
= {k|k = 6IW −W − I, W ∈ N, I ≤ W, I ∈ N}
= {k|k = 6xy − (x + y), x, y ∈ N, x ≤ y}.

Sr2 = {k|k = (6I + 1) ∗W + I, W ∈ N, I ≤ W, I ∈ N}
= {k|k = 6IW + W + I, W ∈ N, I ≤ W, I ∈ N}
= {k|k = 6xy + (x + y), x, y ∈ N, x ≤ y}.
Proposition 21. If ∀Kt ∈ N,∃k ∈ N, k > Kt, k 6∈ (Sl1 ∪ Sl2 ∪ Sr1 ∪ Sr2), then
Twin Prime Conjecture is True.

Proof. Straightforward. ut
Proposition 22. ∀Kt ∈ N, ∃k > Kt, k 6∈ (Sl1 ∪ Sl2).

Proof. Straightforward. The number of prime with form 6k − 1 is infinite. ut
Proposition 23. ∀Kt ∈ N, ∃k > Kt, k 6∈ (Sr1 ∪ Sr2).

Proof. Straightforward. The number of prime with form 6k + 1 is infinite. ut
Proposition 19 and Proposition 20 provide a method (or algorithm) to gen-

erate primes.
Following proposition provides a method (or algorithm) to generate twin-

primes.

Proposition 24. ∀k ∈ N, k 6∈ Sl ∧ k 6∈ Sr ⇒ TwinPrim(6k − 1, 6k + 1).

Proof. Straightforward. ut



7 Conclusion

In this paper, we derive {k|6k − 1 6∈ P, k ∈ N} and {k|6k + 1 6∈ P, k ∈ N} to
approach Twin Prime conjecture. We find that

k ∈ Sl ⇒ 6k − 1 6∈ P, where Sl = [−I]6I+1 = [I]6I−1\min([I]6I−1), I ∈ N.

k ∈ Sr ⇒ 6k + 1 6∈ P, where Sr = [−I]6I−1 ∪ ([I]6I+1\min([I]6I+1)), I ∈ N.
That is,

k 6∈ (Sl1 ∪ Sl2) ⇒ 6k − 1 ∈ P where
Sl1 = {k|k = (6I − 1) ∗W + I, W ∈ N, I ≤ W, I ∈ N}

= {k|k = 6IW −W + I, W ∈ N, I ≤ W, I ∈ N}
= {k|k = 6xy + (x− y), x, y ∈ N, x ≤ y};

Sl2 = {k|k = (6I + 1) ∗W − I, W ∈ N, I ≤ W, I ∈ N}
= {k|k = 6IW + W − I, W ∈ N, I ≤ W, I ∈ N}
= {k|k = 6xy − (x− y), x, y ∈ N, x ≤ y}.

k 6∈ (Sr1 ∪ Sr2) ⇒ 6k + 1 ∈ P, where
Sr1 = {k|k = (6I − 1) ∗W − I, W ∈ N, I ≤ W, I ∈ N}

= {k|k = 6IW −W − I, W ∈ N, I ≤ W, I ∈ N}
= {k|k = 6xy − (x + y), x, y ∈ N, x ≤ y};

Sr2 = {k|k = (6I + 1) ∗W + I, W ∈ N, I ≤ W, I ∈ N}
= {k|k = 6IW + W + I, W ∈ N, I ≤ W, I ∈ N}
= {k|k = 6xy + (x + y), x, y ∈ N, x ≤ y}.

We also propose 6k index conjecture that is equivalent to Twin Prime Con-
jecture.

The source codes and outputting data by computer programmers used to
support the findings of this study can be downloaded from IEEE Dataport [7].
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