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Abstract

Marine hydrokinetic (MHK) turbines extract renewable energy from oceanic environments. However, due to the harsh conditions
that these turbines operate in, system performance naturally degrades over time. Thus, ensuring efficient condition-based
maintenance is imperative towards guaranteeing reliable operation and reduced costs for hydroelectric power.

This paper proposes a novel framework aimed at identifying and classifying the severity of rotor blade pitch imbalance faults

experienced by marine current turbines (MCTs). In the framework, a Continuous Morlet Wavelet Transform (CMWT) is first

utilized to acquire the wavelet coefficients encompassed within the 1P frequency range of the turbine’s rotor shaft. From these

coefficients, several statistical indices are tabulated into a six-dimensional feature space. Next, Principle Component Analysis

(PCA) is employed on the resulting feature space for dimensionality reduction, followed by the application of a K-Nearest

Neighbor (KNN) machine learning algorithm for fault detection and severity classification. The framework’s effectiveness is

validated using a high-fidelity MCT numerical simulation platform, where results demonstrate that pitch imbalance faults can

be accurately detected 100% of the time and classified based upon severity more than 97% of the time.
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Abstract—Marine hydrokinetic (MHK) turbines extract renew-
able energy from oceanic environments. However, due to the
harsh conditions that these turbines operate in, system perfor-
mance naturally degrades over time. Thus, ensuring efficient
condition-based maintenance is imperative towards guaranteeing
reliable operation and reduced costs for hydroelectric power.
This paper proposes a novel framework aimed at identifying
and classifying the severity of rotor blade pitch imbalance
faults experienced by marine current turbines (MCTs). In the
framework, a Continuous Morlet Wavelet Transform (CMWT)
is first utilized to acquire the wavelet coefficients encompassed
within the 1P frequency range of the turbine’s rotor shaft.
From these coefficients, several statistical indices are tabulated
into a six-dimensional feature space. Next, Principle Component
Analysis (PCA) is employed on the resulting feature space for
dimensionality reduction, followed by the application of a K-
Nearest Neighbor (KNN) machine learning algorithm for fault
detection and severity classification. The framework’s effective-
ness is validated using a high-fidelity MCT numerical simulation
platform, where results demonstrate that pitch imbalance faults
can be accurately detected 100% of the time and classified based
upon severity more than 97% of the time.

Index Terms—Marine current turbine, rotor blade imbalance
fault, non-intrusive techniques, fault detection and identification,
wavelet transform, feature representation

I. INTRODUCTION

THE kinetic energy housed within open-ocean, tidal, and
riverine currents represents a highly concentrated source

of energy that is both renewable and sustainable. It has been
estimated that the energy extracted from the U.S. Gulf Stream
current alone has the potential to generate up to 18.6 GW (163
TWh/yr) of electrical power [1]. In addition, the temporally
averaged power density encompassed within the section of the
Gulf Stream that runs between South Florida and North Car-
olina reaches 3.3 kW/<2 [2], while the technically extractable
riverine and tidal power encompassed within the entirety of the
U.S. has been calculated at 14 GW (123 TWh/yr) [3] and 50
GW (438 TWh/yr) [4] respectively. Various forms of marine
current turbines (MCTs) are utilized to convert the kinetic
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energy residing within open-ocean, tidal, and riverine currents
into electricity. However, for the purposes of this research,
only horizontal axis MCTs equipped with permanent magnetic
synchronous generators are considered.

There are significant cost reductions that need to be made
before marine energy technologies can become cost competi-
tive with other forms of contemporary energy generation (e.g.,
coal, gas, oil, and nuclear power) [5]. A fundamental chal-
lenge impeding the wider scaled implementation of marine-
based electricity generation revolves around its currently high
Levelized Cost of Energy (LCOE). From the perspective of
a marine energy device, the LCOE is an integrated metric
that takes into account both the cost and estimated electricity
producing capability of the device. Such metrics aid in esti-
mating the revenue per megawatt-hour (MWH) of electricity
generation needed to satisfy a minimum rate of return, while
also considering the costs associated with building, deploying
and operating the device over its lifetime. Investments in
marine-based electricity generation are expected to remain
sparse until more reliable baseline cost scenarios that utilize
standardized cost reporting methodologies and assumptions
are made available [6].

Research aimed at reducing the LCOE generally progress
down one of two paths. Path one focuses on increasing the
marine energy device’s overall power output, while path two
deals with decreasing the device’s operation and maintenance
costs (O&M). Regardless of path however, the overall goal is
to maximize the amount of revenue obtainable from the grid
tied electricity produced by the device.

Path one research was performed in [7], where control
strategies for MCTs operating at overrated current speeds were
investigated. The results of the research revealed that a flux-
weakening control strategy could be used to accelerate the
turbine’s permanent magnetic synchronous generator (PMSG)
over its nominal speed for better power limiting control at
high marine current speeds. In one of our recent works [8],
an adaptive super-twisting sliding mode control strategy was
developed and validated on the same 720-kW numerical
simulation platform utilized in this work. Path two research
was performed in [9], where a Smart Vibration Monitoring
System (SVMS) was developed to improve ocean current
turbine efficiency and reliability. The SVMS methodology
utilized advanced signal processing on vibration data captured
in real time to perform condition-based monitoring and incip-
ient fault detection. In [10], high frequency modal analysis,
power trending and envelope analysis were used to identify
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faulty bearings possessed by an emulated ocean current turbine
(OCT).

The research performed in this work is focused on O&M
cost reduction, as such costs were found to account for an
estimated 26-32% of the LCOE [11]. Due to the lack of
industry maturity, research relating to this field remains an
under-represented area. Therefore, to address such headwinds,
we have proposed an innovative framework that possess the
following scientific merits:

1) The creation of a fault detection framework that does not
require the use of a multi-sensor network. We propose
a novel single sensor based methodology that only
requires the use of a shaft key encoder.

2) To combat challenges associated with non-stationary
signal analysis, our method incorporates the use of
wavelet analysis to overcome issues related to spectral
leakage.

3) Our framework incorporates the use of dimension reduc-
tion techniques for optimal fault feature representation
learning. This step facilitates improved downstream ma-
chine learning-based fault detection and identification.

The remainder of this paper is structured as follows: Sec-
tion II discusses the advancements made by related work in
this field. Section III briefly references the MCT numerical
simulation platform utilized in this work and touches upon the
nature of the rotor blade pitch imbalance faults being analyzed.
Section IV introduces our fault detection framework along
with a background literature synopsis. Section V discusses our
experimental design and quantifies its results. Lastly, Section
VI presents the conclusion and future work.

II. RELATED WORK

Due to the intrinsic similarities between wind turbines and
marine current turbines, many of the same fault detection
methodologies developed for wind turbine generators (WTG)
can easily be employed on MCT generators without ma-
jor modification. Electrical stator current analysis is one of
the most widely used fault detection techniques for such
tasks [12]–[14], as it provides an optimal means of identi-
fying abnormal frequency excitations within the characteris-
tic frequency ranges of WTGs. Such methods traditionally
incorporate the use of advanced signal processing and ma-
chine learning techniques due to their adeptness at facilitating
varying degrees of non-intrusive condition based monitoring.
However, since many of the signals utilized for non-intrusive
fault detection are non-stationary in nature, the occurrence of
spectral leakage adds an additional layer of complexity to their
analysis. Spectral leakage occurs when the power of a signal
is smeared across its frequency spectrum due to the signal
not being periodic during some predefined sampling interval.
This phenomenon adds additional frequency components to
the spectrum of the signal, thereby masking important spectral
details about the signal. To overcome such challenges, the
following research has been carried out.

Synchronous Sampling-based Methods: Gong et-al devel-
oped a synchronous sampling algorithm for the detection of
rotor eccentricities and bearing faults experienced by variable

speed direct drive wind turbines. The algorithm synchronously
sampled the turbine’s non-stationary generator stator current
signal and applied an impulse detection module to identify
fault signatures within the stator current’s frequency spectrum.
Unfortunately, this version of the algorithm is only applicable
towards wind turbines possessing PMSGs, as frequency smear-
ing is induced within the spectrum of the stator current signal
when such a method is employed on a turbine possessing
a DFIG [15] . In [15], Cheng et-al utilized synchronous
sampling on the Hilbert Envelope obtained from the generator
stator current signal of a DFIG wind turbine for gearbox fault
detection. Since the stator current’s envelope signal still retains
fault frequencies proportional to the turbine’s shaft rotating
frequency, frequency excitations at the gearbox’s characteristic
frequencies were able to be easily identified when applying
synchronous sampling on the amplitude demodulated envelope
signal. However, such methods are limited to fault diagnosis,
and provide no insight toward wind turbine fault prognosis.

Empirical Mode Decomposition-based Methods: In [16],
Lu et-al leveraged the abilities of Empirical Mode Decomposi-
tion (EMD) and the Hilbert-Huang Transform (HHT) to extract
wind turbine fault signatures related to rotor blade imbalances
and inner-race way bearing faults from the frequency spectrum
of the turbine’s electrical stator current signal. Lu’s proposed
method accomplished this by accurately capturing the instan-
taneous amplitude and frequency of the generator current
signals and then performing a comparative study between
the signals in healthy and faulty conditions. In [13], Zhang
utilized synchronous sampling and EMD in conjunction with
a Generalized Likelihood Ratio (GLR) test to demodulated
ocean current and turbulence fluctuation effects from the
frequency spectrum of the generator’s stator current signal.
Doing so allowed for much easier fault signature identification
within the frequency spectrum of the stator current signal.
Challenges encountered when utilizing EMD-based methods
for fault detection include the lack of a strong theoretical
foundation, limitations associated with the creation of edge
effects, strong reliances on the sifting of the stopping criteria,
and extreme amounts of interpolation.

Wavelet-based Methods: In [17], Freeman employed the
use of a Morlet Continuous Wavelet Transform (MCWT) on
the generator power signal of a MCT. The wavelet coefficient
energy contained within the frequency range of the turbine’s
rotor shaft (1P frequency) was quantified and utilized as a
fault signature for rotor blade pitch imbalance faults. In [18],
an adaptive Morlet wavelet was used to create a rolling
bearing fault detection algorithm for wind turbine planetary
gearboxes. Unfortunately, the performance of wavelet based
fault detection lies within the user’s ability to match the shape
of the wavelet kernel to the shape of the fault signature within
a signal of interest. Thus, it is imperative for the user to have
an extensive domain knowledge in the wavelet field.

Artificial Intelligence-based Methods: In [19], a stacked
autoencoder was used in conjunction with a support vector
machine to extract fault features affecting gearboxes in DFIG
wind turbines. In [20], an adaptive feature extraction algorithm
that utilized signal resampling, frequency tracking, and a
particle swarm optimized multi-class support vector machine
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was developed to identify gearbox fault signatures masked
within the stator current signal of a PMSG generator.

III. MCT MODELING AND IMBALANCE FAULTS ANALYSIS

A. MCT Modeling and Simulation

The MCT numerical simulation platform utilized for this
work incorporates the blade element momentum modeling
technique and dynamic wake inflow model presented in [21]
to calculate the fluid structure interactions. Additionally, the
20-m diameter variable pitch rotor utilized by the platform is
based upon the work done in [22]. The degrees of freedom
of the rotor were limited to the rotation angle and velocity,
and incorporates the “Tidal Turbine” version of the numerical
simulation platform presented in [23]. The turbulence model
accounts for spatial coherence over the swept area of the
rotor bade as presented in [24], and a vertical shear profile
that linearly decreases with depth. Including vertical shear
was very important in this study as the coupling between
the naturally occurring water shear and the rotor blade pitch
imbalance is what is responsible for generating the primary
fault signatures that appear in the MCT’s generated power
signal. Thus, increasing the shear magnifies the fault signature
while increasing the turbulence creates the fault signatures.

B. Analysis of Rotor Blade Pitch Imbalance Faults

Rotor blade pitch imbalance faults are induced by mis-
aligned rotor blades. Such misalignments create differences
in the vertical shear profiles experienced by the blades and
have the potential to induce shaft torque variations [25].

The kinetic energy inherent within the varying dynamic
loads and vibrations produced by shaft torque variations is
transferred between the turbine’s rotor shaft and generator via
the electromagnetic couplings shared between the two. It was
shown in [26], that through such interconnections, amplitude
and frequency modulations (AM and FM) are induced upon
the generator’s electrical stator current signal. Thus, for a
direct drive MCT under the influence of pitch imbalance faults,
the shaft torque generated by the variable speed rotor can be
described as:

Tt = Ttw (t) + Astv · cos
(∫

2c · fst dt
)

(1)

where, Tt is the torque experienced by the rotor shaft, Ttw is
the torque resulting from turbulence and wave activity, Astv
is the amplitude of the shaft torque variation stemming from
the pitch imbalance fault, and fst is the frequency of the shaft
torque variation.

The resulting AM and FM affects both the generator stator
current signal, Igen (t), and its fundamental frequency, fI (t),
such that:

Igen (t) = Ivca (t) + Apfc (t) · sin
(∫

2c · fst dt + kpf

)
(2)

fgen = fvcf (t) + Apff · sin
(∫

2c · fst dt + ipf

)
(3)

where in (2), Igen is the amplitude of the stator current signal,
Ivca is the component of the stator current amplitude that is

generated from the variable ocean current power, Apfc and
k? 5 are the respective amplitude and phase components of the
signal that are created by the pitch imbalance fault. In (3), fgen
is the fundamental frequency of the stator current signal, fvcf
is the component of the fundamental frequency that is created
by the variable ocean current power, and Apff and i? 5 are the
amplitude and phase components of the signal created by the
pitch imbalance fault, respectively.

Combining equations (2) and (3) allows for the formulation
of the modulated stator current signal:

Cgen = Igen (t) · sin
(∫

2c · fgen dt
)

(4)

where Cgen is the AM and FM version of the generator stator
current signal under pitch imbalance fault conditions.

Lastly, if it is assumed that the generator outputs an ideal
three-phase supply voltage, then the instantaneous power can
be described as:

Pgen (t) = Vgen (t) · Cgen (t) (5)

where Vgen (t) is the single phase stator terminal voltage. Thus,
the single-phase power of the generator can be described
similarly to [27] as:

Pgen (t) =

√
3

2
·


+"0G�"0G [2>B(2lBC − iB) + 2>BiB]

+∑∞<=1


+"0G��

[
2>B((2lB − <lA )C − i� )
+2>B(<lA C + i� )

]
++"0G��#

[
2>B((2lB + <lA )C − i�# )
+2>B(<lA C − i�# )

]


where VMax is the maximum value of the supply line-to-
line voltage, CMax is the maximum value of the fundamental
supply current, m is a positive constant integer, ls is the
angular frequency of the stator’s supply current signal, and
CF is the maximum value of the characteristic fault compo-
nent in the stator current signal at the frequency fgen + mfrf ,
where frf is the rotational frequency of the turbine’s rotor
shaft. Additionally, iF is the initial value of the phase angle
when the characteristic fault component has a frequency of
fgen + mfrf , CFN is the maximum value of the characteristic
fault component in the stator current signal at the frequency
fgen − mfrf , and iFN is the initial value of the phase angle
when the characteristic fault component has a frequency of
fgen − mfrf , and lr is the angular velocity of the turbine’s rotor.

This analysis yields the following conclusions: 1) Rotor
blade pitch imbalance faults induce shaft torque variations; 2)
The shaft torque variations create dynamic loads and vibrations
that are transferred onto the rotor shaft [28]; 3) The kinetic
energy housed within these dynamic loads and vibrations
modulate the generator’s electrical power signal; and 4) The
shaft torque variations create excitations within the frequency
spectra of the electrical power signals. However, due to the
induced AM, FM, and spectral leakage, these excitations
become masked within the frequency spectrum of Pgen (t).
Thus, traditional Fourier based frequency analysis methods are
unable to fully capture the entire range of such dynamics and
highlights the need for more robust techniques.
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Fig. 1: Schematic diagram of the proposed fault detection and
classification framework.

IV. PROPOSED FAULT DETECTION FRAMEWORK

Our novel fault detection and severity classification frame-
work is proposed in Fig. 1, and begins with a signal acquisition
phase, whereupon the instantaneous rotor frequency signal,
frot, and Pgen (t) are acquired from the turbine’s generator. The
signal frot is strictly used to determine the 1P frequency range
that Pgen (t) is band-passed filtered around and is not used
afterwards.

Since the CWT is highly adept at analyzing the frequency
spectrums of non-stationary signals, a time-frequency spec-
trum of Pgen (t) is created utilizing a Morlet wavelet based
CWT. The resulting wavelet coefficients are then tabulated
into a six-degree feature space, where each dimension of the
feature space corresponds to a different statistical index calcu-
lated from the wavelet coefficients. The chosen six statistical
features are the mean, standard deviation, skewness, kurtosis,
RMS, and peak to peak values.

Principle Component Analysis (PCA) is then employed to
reduce the dimensionality of the feature space by only utilizing
the components that correspond to the directions of maximum
variation within the data set. Finally, a KNN machine learning
algorithm is employed on the lower dimension feature space
for the purpose of fault detection and severity classification.
Additional details for each step of the framework are provided
below.

A. Signal Acquisition and Conditioning

Band-pass filtering is performed on Pgen (t) via the appli-
cation of a Gaussian filter kernel that is mean centered at
frot’s average frequency, such that the full width and half
maximum of the kernel corresponds to the +/- 3 standard
deviation (3-STD) range of frot. This filtering removes the DC
offset, sampling noise, and any other unrelated frequencies of
interest form the the spectrum of Pgen (t).

B. Time Frequency Spectrum Analysis

A Continuous Wavelet Transform (CWT), is used to gener-
ate the time-frequency spectrum of Pgen (t). The CWT can be

interpreted as the convolution between Pgen (t) and several lo-
calized wave-like functions of oscillatory nature. These wave-
like functions possess finite energy, zero mean, and are all
derived from a single mother wavelet basis function, Ψ(C) [29],
[30].
Ψ(C) contains two hyper-parameters that can be tuned to

increase its robustness for non-stationary signal analysis. The
first parameter is the dilation parameter, a, which controls the
stretching and contraction of Ψ(C). The second parameter is
the translation parameter, b, which shifts Ψ(C) along the length
of Pgen (t). Ψ(C) takes the general form: Ψ(C) = Ψ ((C − 1)/0),
utilizing a range of a’s and b’s. In the equation below:

T(0, 1) = F(0)
∫ ∞

−∞
G(C)Ψ∗

(
C − 1
0

)
3C (6)

the quantities represented by T(0, 1) are known as the wavelet
coefficients, and are measures of cross-correlation between
Pgen (t) and Ψ(C) [30]. Values of T(0, 1) are usually visualized
via a spectrogram image, whose axes represent the various
translation and dilation parameters of Ψ(C). Additionally, w(a)
is a weighting function that is customarily set equal to 1/

√
0

to ensure that wavelets of the same scale all posses equal
amounts of energy. Lastly, the * symbol indicates that the
complex conjugate of Ψ(C) is used.

A wide variety of Ψ(C) functions may be used when apply-
ing the CWT, with the optimal choice largely dependent upon
the similarity of shape between Ψ(C) and the fault signature
being analyzed. Since this research is concerned with analyz-
ing 1P band specific frequency activity, the increased control,
precision, and shape of the Morlet wavelet’s windowing kernel
made it the ideal Ψ(C) for this research [31].

A complex Morlet wavelet, w, can be constructed by
multiplying a Gaussian window function with a sine wave:
w = 428 c 5 C4(−C2/2f2) , where i is the imaginary operator, f
is the peak frequency in Hertz of the sine wave, and t is
the time in seconds [32]. Additionally, f = n/2cf , is the
parameter that controls the width of the Gaussian window
function, for which n dictates the trade off between frequency
and time precision. Furthermore, n is an extremely non-trivial
parameter that controls the Heisenberg uncertainty principle
for time-frequency analysis and heavily influences the quality
of results that are achievable from the data [31]. Through
empirical analysis, n was selected to range from 5-15, with
100 increments between these values.

C. Feature Space Creation & Optimization

The wavelet coefficients generated by the CWT are statis-
tically tabulated into a that is comprised of features corre-
sponding to the mean, standard deviation, skewness, kurtosis,
RMS, and peak to peak values. PCA is then utilized to
reduce the dimensionality of this six-degree feature space by
extracting out only the principle components associated with
the directions of maximum variation within the data set.

PCA is a data reduction technique whose aim is to construct
a set of principle components based upon the covariance
amongst a set of correlated features in an N-dimensional data
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set [31]. Each principle component represents a vector in N-
dimensional space that characterizes the direction of a certain
amount of variance contained within the data set.

Performing PCA begins with the construction of a covari-
ance matrix, CovMat [31]:

CovMat = (= − 1)−1 (
- − -̄

) (
- − -̄

)) (7)

In the equation above, X is the given n by m data set or feature
matrix being analyzed and X̄ is the mean value X. After the
covariance matrix has been calculated, an eigendecomposition
of the covariance matrix is performed. Matlab’s eig function
makes this process convenient and efficient via the use of the
functional equation: [W, _] = eig (X), where W is an m by m
matrix of the resulting principal components, and _ is a di-
agonal matrix of the associated eigenvalues. The eigenvectors
characterize patterns within the covariance matrix, and can be
viewed as a set of new coordinate axes to analyze the feature
space with. The eigenvalues, _, represent the magnitude of the
eigenvectors.

Principle components are customarily ordered according
to decreasing score value, T , such that the 1st principle
component characterizes the “direction” of the largest amount
of variance within the data set, the 2nd principle component
characterizes the “direction” of the 2nd largest amount of
variance within the data set, and so forth. Since T = X ·W,
for which T is an n by m score matrix, is ordered, it can
be truncated to contain only the “r” most relevant principle
components, such that: Tr = X ·Wr. Here, Wr is an m by r
matrix, and Tr is the n by r truncated score matrix obtained
from T .

D. Application of Machine Learning Algorithm

A KNN machine learning algorithm is then employed on
the truncated feature space for fault detection and severity
classification.

The KNN machine learning algorithm is a lazy, non-
parametric, supervised learning algorithm that is adept at solv-
ing both regression and classification problems. The decision
making capability of the KNN algorithm is based on feature
similarity, in that the algorithm assumes that similar instances
exist in close proximity to each other. The prediction of a
new instance is determined by a majority voting mechanism,
in which the class of the new instance is chosen to be the
same as that of the majority class of the K nearest instances
(neighbors) around this new instance. The most common way
to compute the distance between instances is via a Euclidean

distance measure, D =

√∑n
i=1 (x − xi)2. When classifying a

new instance, the selection of the most optimal amount of
neighbors is usually done empirically.

V. EXPERIMENTS AND QUANTIFICATION OF RESULTS

A. Simulation Setup and Data Set Preparation

50 random seeds of data were simulated for the experiment,
where for each seed a generator power and rotor frequency
signal were simulated for each of the three studied fault cases
(i.e., zero degrees, two degrees, and four degrees).

Each signal was sampled at a frequency of 10Hz and for a
total duration of 300 seconds. The simulation platform utilized
a turbulence intensity of 10% and a shear reduction rate
of 0.0035 (m/s)/m with depth. The mean flow speed of the
simulated ocean currents was 2 m/s at a max height of 20
m above the center of rotation of the rotor. To control the
rotor speed, an industry standard fixed gain torque, g = k · l2,
controller was used to maintain an operating speed near that
of maximum power production. A representative look at the
simulation output corresponding to seed one of the data set
can be seen in Fig. 2.

B. Experimental Results

Fig. 2a displays the Pgen (t) signals corresponding to seed 1
of the data set. In Figs. 2b - d, the time-frequency spectrums
of the Pgen (t) signals are shown. The bottom portion of the
spectrums portray the sum of the wavelet coefficient energy
contained within the 1P frequency region, for which the center
red line represent the mean of frot, and the two boundary red
lines represents the +/- 3STD range limit of frot. While there
does appear to be a clear distinction within the 1P band specific
activity amongst these plots, establishing a consistent means of
accurately quantifying the difference in this activity, through
out the entirety of the data set, is a fundamental goal of this
work.

To aid in developing a means of accurately quantifying the
1P band specific frequency activity for all fault cases, a six
dimensional statistical feature space was created to concisely
describe the statistical characteristics of the wavelet coefficient
energy contained within the +/- 3STD regions. Fig.3 is a
plot of the Pearson’s Correlation Matrix which is used to
simultaneously investigation the linear dependencies between
the different wavelet coefficient statistical features used to
create the feature space.

Since the correlation coefficients possessed by many of the
pairs of features have large magnitudes, PCA can be employed
to reduce the dimensionality of the feature space. Figs.4a
depicts the cumulative sum of variance possessed principle
components, where it is shown that approximately 95% of
the total variance contained within the feature space can be
captured by these first two principle components. Figs.4b-
c show the relative percentage wise contribution that each
statistical features makes towards the creation of principle
components one and two respectively. Furthermore, the shear
and turbulence characteristics that are responsible for creating
the analyzed fault signatures and their intensities in this
research are captured very well via the use of PCA. As shown,
principle component one has its largest contributions made by
the RMS, Mean, and STD features, while principle component
2 is constructed primarily from the Skew and Kurt features.

Fig.4d is the projection matrix obtained when the coordinate
axes of the feature space are aligned to coincide with the
directions of principle components one and two. To further
increase the succinctness of the clustering within the figure,
concentration ellipses are drawn around the barycenter of
point belonging to each fault class. Discernible from the
figure is the major benefit of using PCA, which lies within
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(a) Time series representation of the electrical power signal output
by the turbine’s generator (b) CWT image of BL Power Signal

(c) CWT image of 2 Deg Power Signal (d) CWT image of 4 Deg Power Signal

Fig. 2: (a) Pgen (t) signals corresponding to seed 1 of the data set. (b) - (d) CWT Time-Frequency spectrums of the Pgen (t)
signals corresponding to (a). The bottom portion of the figures portray the sum of the wavelet coefficient energy contained
within the 1P frequency region. The center red line represent the mean rotational frequency of the rotor, while the two boundary
red lines represents the +/- 3STD range limits of the rotational frequency.

Fig. 3: Pearson’s Correlation Matrix

the fact that instead of using a single or subset of features
for classification, the principle components are in themselves
linear combinations of all of the features used to create the
feature space.

Before the KNN machine learning algorithm is employed
the data set is partitioned into a 70% training set and 30%
testing set. Fig.5a is a display of the projection matrix obtained
after employing PCA on the testing partition. Repeated cross
validation was utilized to train the KNN classifier, such that

10 fold cross validation was performed 10 distinct times on
the training data set. The trained classifier was then employed
on the testing data set displayed in Fig.5a. Correspondingly,
Fig.5b displays the confusion matrix, for which the reported
accuracy shows that the classifier is able to correctly predict
the presence of a fault 100% of the time and correctly classify
the severity of the fault 97.78% of the time. Through empirical
analysis, the KNN algorithm was optimized to used five
neighbors, for which a simple Euclidean distance measure was
used to determine the distance between each neighbor.

Lastly, a summary table of the experimental results are
presented in TABLE I. Of note in the table is the Kappa metric,
which was found to be 96.67%. The Kappa metric is a measure
of how closely the instances classified by the KNN classifier
matched the ground truth while also taking into account the
extent to which the data collected in the experiment is cor-
rectly represented by the measured features [33]. The Kappa
metric is relevant because it removes the element of instances
being correctly classified based upon random chance from its
evaluation of accuracy. Additionally,the table also shows that
the classifier proposed in our framework outperformed the No
Information Rate, which is a metric produced when a naive
classifier is employed with the purpose of proving that the
model presented in this work possess a statistically significant
P-value.

which compares the observed accuracy of the classifier with
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(a) Cumulative sum of variance contained within
principle components.

(b) Contribution percentage per statistical feature used to
construct principle component 1.

(c) Contribution percentage per statistical feature used to
construct principle component 2.

(d) PCA projection matrix constructed using principle compo-
nents 1 and & 2

Fig. 4: (a) Cumulative Sum of Variance Explained per principle component plot. (b) Plot of the contribution of variance per
statistical feature for principle component one. (c) Plot of the contribution of variance per statistical feature for principle
component two. (d) Principle component projection matrix using only principle components one and two.

the expected accuracy of the classifier

Experimental Summary Statistics
Kappa 0.9667
Accuracy 0.9778
95% CI Range <0.8823 - 0.9994>
No Information Rate 0.3333
P - Value (Accuracy >NIR) 2.2e-16

TABLE I: Summary of Experimental Results

VI. CONCLUSIONS

The objective of this research was to develop a fault detec-
tion and severity classification framework for MCT rotor blade
pitch imbalance faults. In the proposed framework, a Morlet
CWT was first utilized to view the time-frequency spectra
of the turbine’s electrical power signals. Next, the wavelet
coefficient energy encompassed within the 1P rotational fre-
quency range of the turbine’s rotor shaft were extracted and

statistically tabulated into a six-degree feature space. PCA
was then used to reduced the dimensionality of the feature
space so that the new coordinate axes of the space are aligned
with the directions of maximum variation. Lastly, a KNN
machine learning algorithm was employed on the resulting
feature space for fault detection and severity classification.
This research found that the KNN machine learning algorithm
correctly predicted the presence of pitch imbalance faults
100% of the time and correctly classify their severity 97.78%
of the time.

Our proposed method has very low hardware cost, and does
not require the use of complex sensor networks (containing
vibration, strain, torque, and/or acoustic emission sensors)
that are used in contemporary fault detection and condition
monitoring systems. Additionally, the proposed framework
can also be effortlessly integrated into existing MCT control
systems. In the future, it is hoped that the robustness of this
framework can be expanded to allow for the prediction and
classification of an extended range of faults that affect MCT
systems, such as gear faults, drivetrain and bearing faults, and
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(a) PCA Projection Matrix for Testing Data Set (b) Confusion Matrix.

Fig. 5: (a) Projection Matrix for testing partition of the data set. (b) Confusion matrix results after the KNN machine learning
algorithm was applied on the feature space created by the PCA projection Matrix in (a).

even sensor faults.
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