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Abstract

High quality generator dynamic models are critical to reliable and accurate power systems studies and planning. With the avail-

ability of PMU measurements, measurement-based approach for model validation has gained significant prominence. Currently,

the model validation results are analyzed by visually comparing real–world PMU measurements with the model-based response

measurements, and parameter adjustments rely mostly on engineering experience. This paper proposes advanced performance

metrics to systematically quantify the generator dynamic model validation results by separately taking into consideration slow

governor response and comparatively fast oscillatory response. The performance metric for governor response is based on the

step response characteristics of a system and the metric for oscillatory response is based on the response of generator to each

system mode calculated using modal analysis. The proposed metrics in this paper is aimed at providing critical information

to help with the selection of parameters to be tuned for model calibration by performing enhanced sensitivity analysis, and

also help with rule-based model calibration. Results obtained using both simulated and real-world measurements validate the

effectiveness of the proposed performance metrics and sensitivity analysis for model validation and calibration.
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Abstract—High quality generator dynamic models are critical
to reliable and accurate power systems studies and planning.
With the availability of PMU measurements, measurement-
based approach for model validation has gained significant
prominence. Currently, the model validation results are analyzed
by visually comparing real–world PMU measurements with the
model-based response measurements, and parameter adjustments
rely mostly on engineering experience. This paper proposes
advanced performance metrics to systematically quantify the
generator dynamic model validation results by separately taking
into consideration slow governor response and comparatively
fast oscillatory response. The performance metric for governor
response is based on the step response characteristics of a system
and the metric for oscillatory response is based on the response of
generator to each system mode calculated using modal analysis.
The proposed metrics in this paper is aimed at providing critical
information to help with the selection of parameters to be
tuned for model calibration by performing enhanced sensitivity
analysis, and also help with rule-based model calibration. Results
obtained using both simulated and real-world measurements
validate the effectiveness of the proposed performance metrics
and sensitivity analysis for model validation and calibration.

Index Terms—Model validation and calibration, performance
metrics, oscillatory response, governor response, signal Process-
ing, PMU measurements, sensitivity analysis.

I. INTRODUCTION

H IGH quality dynamic model of generators are critical
to reliable and economical power system operations and

planning. Dynamic studies for various system disturbances,
such as faults, generation loss, line trip, etc., is carried
out using these models for both short and long term plan-
ning. These studies provide information on several aspects of
power systems dynamic stability such as rotor angle stability,
damping ratio of system modes, primary frequency response,
system frequency and voltage recovery, etc., and identify
contingencies that can result in system instability and stability
constrained transmission paths. The accuracy of these studies
heavily depends on the quality of dynamic models used,
thereby making validation and calibration of generator dy-
namic models critically important. The need for accurate and
up-to-date dynamic models for reliable and economical grid
operations and planning was reinforced after the well–known
1996 western grid blackout. The planning Western System
Coordinating Council (WSCC) model could not replicate the
unstable system oscillations observed following the series of
events that led to the system-wide outage [1]. After this
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Electricity through CERTS program. Pacific Northwest National Laboratory
is operated by Battelle for DOE under contract DE-AC05-76RL01830.

U. Agrawal, P. Etingov and R. Huang are with the Pacific North-
west National Laboratory, Richland, WA, 99352 USA E-mail: ur-
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event, NERC now requires all generators having capacity of
greater than 10 MVA to be validated every five years. Also,
Reliability Standards MOD-026 [2] and MOD-027 [3] have
been developed to provide guidelines for generator model
validation.

Traditional methods for validating generator dynamic mod-
els include staged and standstill frequency response testing
[4]. These methods involve physical testing of the generators
and therefore generators to be validated remain unavailable for
normal operations. Even though these methods provide high
quality dynamic models, these methods are technically difficult
and are expensive [4]. With the availability of synchrophasor
measurements, measurement-based validation methods have
become widely-accepted [5]–[11]. This method requires Pha-
sor Measurement Units (PMU) to be installed at the point of
interconnection (POI) of each generator to be validated. The
PMU measurements recorded at these locations are then used
as play-in signals to validate generator dynamic models as
shown in Fig. 1 [12]. This approach of validating dynamic
models is available in several power systems simulator such
as GE PSLF, SIEMENS PTI PSSE, PowerWorld Simulator
and TSAT [13]. Several tools have been developed to validate

Fig. 1. Generator dynamic model validation using play-in PMU measurements

generator dynamic modele using play-in PMU measurements,
such as power plant model validation (PPMV) tool by Bon-
neville Power Administration (BPA) and Pacific Northwest
National Laboratory (PNNL) [13], generator parameter valida-
tion (GPV) tool by Electric Power Group [14] and Power Plant
Model Verification (PPMVer) tool by ISO-New England [7].
Currently, the model validation in most of the available tools is
carried out either by visually inspecting the difference between
the simulated and actual measurements of real and reactive
power [7] or using some simple metric such as root-mean
square error used in [13], peak value and peak-time of the first
swing and steady-state error used in [15]. These metrics do
not provide any information on model inaccuracies associated
with various aspects of generator dynamic response, such
as oscillatory response. Ref. [16] describes the application
of frequency-domain based metrics, first defined in [17] as
Magnitude-shape similarity measure, for quantifying model
validation results. This metric finds a weighted average of
the similarity measure of the magnitude and phase spectra
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in frequency domain. However, the frequency-domain based
metric defined in [16] is a generic one and does not specify
anything with respect to generator oscillatory response or
governor response. In order to automate the process of model
validation and calibration, some advanced metrics system
is needed that takes into consideration various aspects of
generator dynamic response for quantifying model validation
results.

In this paper, a new methodology is proposed to quantify
the model validation results by separating the slow governor
and fast oscillatory response. Separate metrics are developed
for these two responses; phase and magnitude for generator
oscillatory response [18], and delay, peak value, peak-value
time, rise-time and steady-state value for generator governor
response. This proposed set of metrics is further used for en-
hanced sensitivity analysis to help with the selection of specific
parameters for model calibration similar to the trajectory sensi-
tivity analysis described in [19]. The proposed sensitivity anal-
ysis is, however, more rigorous in nature and provide detailed
information on the sensitivity of each paraemter to specific
aspect of generator response. The proposed advanced metrics
and sensitivity analysis can further be used for rule-based
model calibration method as described in [20]. In [20], model
calibration methodology is based on mismatches observed in
maximum amplitude and damping ratio of oscillations. With
the methodology proposed in this paper, model calibration can
be performed by capturing not just amplitude and damping
ratio of generator oscillatory response, but also other aspects
of oscillatory response including governor response. A detailed
methodology is included in the paper to obtain proposed
metrics and perform sensitivity analysis for model validation
and calibration.

The rest of the paper is organized as follows: Section II
provides background theory required to develop the proposed
methodology, Section III presents a detailed description of
the proposed methodology, Section IV provides results and
discussion for proposed metrics and sensitivity analysis, and
Section V concludes the paper.

II. BACKGROUND THEORY

This section briefly describes the Prony method used for
analyzing generator oscillatory response, and characteristics
of the step-response of a system used for analyzing generator
governor response.

A. Prony method

While any modal analysis method, such as Prony [21] and
Matrix-pencil [22], can be used to obtain the metrics for
generator oscillatory response, Prony analysis method is used
in this paper to illustrate the methodology of the proposed
metrics for oscillatory response. The Prony method consists
of three steps as described in [21]. Let the N samples of
measurements be given by y[0], y[1],..., y[N-1].

1) In the first step, a discrete linear prediction model (LPM)
is obtained, that fits the signal, by solving a linear least-
squares problem given by

Ya = y, (1)

where
a =

[
a1 a2 · · · an

]T
,

y =
[
y[n+ 0] y[n+ 1] · · · y[N − 1]

]T
,

Y =


y[n− 1] y[n− 2] · · · y(0)
y[n− 0] y[n− 1] · · · y(1)

... · · · · · ·
...

y[N − 2] y[N − 3] · · · y(N − n− 1)

 and

n is the model order selected to obtain system mode
estimates. The least squares solution of (1) is given by

â = Y†y, (2)

where † denoted pseudo–inverse of a matrix. The n–th
order polynomial equation is then given by

1 + a1z
−1 + a2z

−2 + ...+ anz
−n = 0 (3)

2) In the second step, mode estimates, given by λ̂i = ωi +
jσi for i = 1 to n, are calculated using

λ̂i =
1

∆T
log ẑi, (4)

where {ẑi}na

i=1 are the roots of the estimated n-th order
polynomial equation given by (3), ∆T is the sampling
time period of the measurements, ωi is the frequency of
each mode in rad/sec, and σi is the damping coefficient.
The damping ratio of each ith mode is given by

ζ̂i =
−σi√
ω2
i + σ2

i

. (5)

3) In the final step, the initial amplitude and phase of each
mode, given by the phasor estimate B̂i, is calculated
solving

ZB = y’, (6)

where

Z =


z01 z02 · · · z0n
z11 z12 · · · zn1
... · · · · · ·

...
zN−11 zN−12 · · · zN−1n


B =

[
B1 B2 · · · Bn

]T
and

y’ =
[
y[0] y[1] · · · y[N − 1]

]T
.

The least squares solution of (6) is given by

B̂ = Z†y’, (7)

Following steps 1 to 3, mode estimates are given by (4)
and mode shape of each mode is given by (7).

Validation of mode estimates:
Only estimating modes is not sufficient unless the mode
estimates are validated [23]. For validating mode estimates,
the original signal is compared with the reconstructed signal
given by

ŷ[k] =

nr+nc∑
i=1

ŷi[k], (8)
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where nr is the number of real modes, nc is the number of
pair of complex modes and ŷi[k] is the contribution of the ith

mode to the signal given by

ŷi[k] = B̂iẑ
k
i for real mode

= 2 ∗ <(B̂iẑ
k
i ) for complex mode pair.

(9)

The goodness of fit metric is calculated using [21]

GoF =
||y[k]− ŷ[k]||
||y[k]||

, (10)

where ||.|| denotes root-mean-square norm. Using (10), model
order n is selected that gives the best fit between the analyzed
and reconstructed signal.

Sorting of system mode estimates
As described in [23], not all mode estimates represent actual
modes. Some of the mode estimates are spurious ones and
need to be discarded. One of the ways of distinguishing
actual mode estimates and spurious ones is to rank mode
estimates based on their energy given by

Ei =

N∑
k=1

ŷi[k]
2 (11)

The modes having insignificantly small energy as compared
to the highest energy can be discarded.

B. Characteristics of the step-response of a system

Governor response of a generator can be represented by the
step-response of a system as shown in Fig. 2.

Fig. 2. Step-response characteristics of a system

The metrics for validating model-based governor response is
based on the following step-response characteristics [24]:
• Peak value: Given by the peak absolute value of the

governor response.
• Peak time: Given by the time-instant at which peak

absolute value of the governor response occurs.
• Steady-state value: Given by the final value of the gov-

ernor response.
• Rise-time: Given by the time required by the governor

response to reach from 10% to 90% of it’s steady-state
value.

III. ADVANCED PERFORMANCE METRICS AND
SENSITIVITY ANALYSIS

This paper proposes a new methodology for quantifying
model validation results as shown in Fig. 3. The main objective
of this paper is to develop a set of metrics that can not
only help distinguish a good model from a bad one, but
also provide detailed information on specific aspect of model-
based generator response that does not match with actual
generator response, such as phase and magnitude of oscillatory
modes observed in the actual generator measurements and
characteristics of the governor response. A detailed description
of the proposed methodology is discussed next.

A. Step-1: Separating governor and oscillatory response
During system faults, generator dynamic response can usu-

ally be broken down into two components, one is the slow
governor response and the other fast oscillatory response.
The generator oscillatory response is determined by system
modes and therefore the frequency range of this response lies
between 0.1 and 2.0 Hz. Therefore, the slow governor response
and the oscillatory response can be separated by passing the
generator response through a high–pass filter having a cut-off
frequency of less than 0.1 Hz as illustrated in the Fig. 4(a) and
Fig. 4(b). The oscillatory response is then obtained by taking
the difference of the generator response and the oscillatory
response, and passing the resultant signal through median filter
to smooth out any oscillatory components present in the signal.
This is the first and the important step in calculating proposed
metrics and performing sensitivity analysis.

B. Step-2: Calculation of performance metrics
In the second step, metrics is calculated for the separated

governor and oscillatory response corresponding to the active
power. Metrics proposed for each of these responses is de-
scribed next.

1) Active power - Oscillatory response: The metric for
validating generator oscillatory response is calculated based on
the properties of the oscillatory modes observed in the PMU
and simulated measurements. Two metrics are proposed in this
paper for validating generator oscillatory response, one for
magnitude and the other for phase of oscillatory modes. The
metric for magnitude incorporates any discrepancy associated
with initial amplitude, damping-ratio and frequency of system
modes between the model-based response and actual response.
The metric for phase calculates any phase difference between
the two signal. The two metrics can either be combined as a
weighted average or can be used separately. In this paper, the
two metrics are used separately as this can provide information
helpful for calibration, i.e., if the calibration should focus on
phase shift or magnitude or both.

The metric for validating the magnitude component of the
model-based oscillatory response is given by:

OscM = 1− 1∑p
i=1 wi

p∑
i=1

wiεm,i, (12)

where

εm,i = (
||ŷa

i |−|ŷs
i ||

|ŷm
i |

) s.t. 0 ≤ εm,i ≤ 1 (13)
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Fig. 3. FlowChart for the proposed methodology
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(a) Generator response and the separated governor response
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(b) Governor and oscillatory response

Fig. 4. Separated governor and oscillatory response using high-pass filter.

ŷi =
[
|ŷi[0]| |ŷi[1]| · · · |ŷi[N − 1]|

]T
(14)

ŷi[k] = |B̂i|ẑki , (15)

superscript ‘a’ corresponds to estimates using actual response
and ‘s’ corresponds to estimates using simulated response,
εm,i is the normalized error metric for each mode, wi is the
weight factor for each mode given by its energy as defined in
(11), p is the number of dominant modes selected out of n
modes based on their energy, and |.| denotes absolute value of

the quantity. Here, the reconstructed signal used for calculating
this metric is obtained by discarding initial phase of the modes
so that the error associated with the phase does not impact the
magnitude metric.

The metric for validating the phase component of the model-
based oscillatory response is given by:

OscP = 1− 1∑p
i=1 wi

p∑
i=1

wiεp,i, (16)

where

εp,i = (
| 6 B̂a

i − 6 B̂s
i |

180
) s.t. 0 ≤ εp,i ≤ 1, (17)

εp,i is the normalized phase error associated with the ith mode
observed in actual and simulated measurements.

The metric obtained for each mode is weighted with its
energy to obtain a single metric. If any mode observed in
the PMU measurement is not observed in the mode estimated
using the simulated data, a error of 1 is assigned to both εm,i

and εp,i for that mode.
The step-wise methodology to obtain the proposed metrics

for validating model-based oscillatory response is as below:
(i) Pre-process PMU and simulated measurements by using

signal processing techniques, such as filtering, downsam-
pling, etc., for modal analysis

(ii) Obtain mode estimates and mode-shapes for both pre-
processed PMU and model–based measurements using
(4) and (7). In this step, selection of model order is carried
out for both the signals by comparing pre–processed
original and reconstructed signal. Also, dominant modes
are distinguished from the spurious ones by calculating
energy of mode estimates using (11).

(iii) Calculate the two metrics to validate the model-based
oscillatory response by comparing it with the actual
oscillatory response using (12) and (16).
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2) Active power - Governor response: Based on the step-
response characteristics of a system, as shown in Fig. 2, several
metrics are defined to validate the model-based governor
response by comparing it with the actual governor response.
Each metric looks into a specific aspect of the governor
response, which are as follows:

(i) Delay (Gd): Obtained by taking the difference of the time
taken by the model-based and actual governor response
to reach 10% of their respective peak value with respect
to a common time–reference.

(ii) Peak value (GP ): Obtained by taking the difference of
the peak value of the model-based and actual governor
response.

(iii) Peak time (GPT ): Obtained by taking the difference of
the time taken by the model-based and actual governor
response to reach peak-value

(iv) Steady-state error (GSS): Obtained by taking the differ-
ence of the final value of the model-based and actual
governor response

(v) Rise time (GRT ): Obtained by taking the difference of
the time taken by the model-based and actual governor
response to change from 20% to 90% of their respective
peak-value.

A simple root-mean square error can also be used instead of
these several metrics to validate generator governor response,
however it will not be able to provide any information on
errors in specific aspects of the governor response, such
as delay in the response, which can be helpful for model
calibration.

Ideally, the mismatch observed in the actual and model-
based generator response should be equal to zero. However,
that is generally not the case. Therefore, certain thresholds
need to be determined for each metric to validate the generator
model. These thresholds should be determined based on the
industry practices and is beyond the scope of the paper.

C. Step-3: Sensitivity analysis

Based on the calculated metrics, if it is determined that
the model needs calibration then the next step will be to
perform sensitivity analysis to identify parameters that needs
to be calibrated. In this paper, sensitivity analysis is carried out
to identify these parameters by analyzing the impact of each
model parameter on a specific metric having error greater than
the threshold, for example

SGd,H =
∆Gd%

∆H%
, (18)

where SGd,H provides information on the sensitivity of gen-
erator inertia (H) parameter on governor delay metric (Gd).
This analysis can help determine if a specific parameter can
be calibrated to reduce error associated with a specific error
metric.

IV. RESULTS AND DISCUSSIONS

Results were obtained using both simulated and real-world
PMU measurements to illustrate the effectiveness of the pro-
posed metrics and sensitivity analysis.

A. Simulated data

The simulated-data based example used in this paper is
taken from the 12 disturbances set prepared by NASPI Engi-
neering Analysis Task Team and NERC synchrophasor mea-
surement subcommittee team for NASPI Technical Workshop
on Model Verification Tools in 2016 [25]. Fig. 5 shows the
active power measured at the POI of the generator, and the
model-based response of the generator obtained using PPMV
tool developed by BPA and PNNL. Fig. 6(a) and Fig. 6(b)
show governor and oscillatory response obtained from actual
and model-based active power response. The results obtained
for oscillatory and governor response is presented next.
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M
W
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Modle-based response

Fig. 5. PMU measurements recorded at the Point of Interconnection, and
model-based response of the generator obtained using PPMV tool
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(a) Generator governor response
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(b) Generator oscillatory response

Fig. 6. Generator governor and oscillatory response calculated using actual
and model-based active power response.

1) Metrics for oscillatory response: Using the methodology
described in the earlier section, metrics were calculated for
validating the model-based oscillatory response of the gen-
erator. Before performing modal analysis, the signals were
downsampled to 5 samples/sec and also frequency components
lower than 0.1 Hz were removed. Using this pre-processed
measurements, system modes and mode shapes were estimated
for both actual measurements and model-based response. The
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model order selection is very critical to the proposed method
as it can significantly affect the metrics for quantifying the
validation results. For both actual measurements and model-
based simulated data, model order of n = 22 was chosen that
gave the best fit between the original and reconstructed data
as shown in Fig. 7(a) and Fig 7(b).

Table I and II give the mode estimates for the PMU and
model–based simulated measurements. For metric calcula-
tions, mode estimates having energy less than 5% of the
highest energy were not considered.

TABLE I
MODE ESTIMATES FOR PMU MEASUREMENTS

Frequency
(Hz)

Damping
ratio (%)

Initial
Amplitude

Initial
Phase (Deg)

Normalized
Energy

0.362 11.999 3.028 48.384 1.000

0.799 14.678 2.990 -65.998 0.426

0.634 8.873 1.599 161.012 0.272

1.248 2.276 0.503 64.129 0.045

1.737 1.177 0.412 -33.676 0.040

TABLE II
MODE ESTIMATES FOR MODEL-BASED SIMULATED DATA

Frequency
(Hz)

Damping
ratio (%)

Initial
Amplitude

Initial
Phase (Deg)

Normalized
Energy

0.361 11.759 1.236 41.543 1.000

0.814 12.912 1.177 -76.053 0.399

1.935 4.673 0.545 30.661 0.126

0.634 8.592 0.419 166.861 0.111

2.038 10.432 0.758 151.799 0.101

1.749 4.239 0.351 -1.507 0.059

1.261 1.953 0.112 13.848 0.015
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(a) For PMU measurements: n = 22 and Goodness of fit = 0.96
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(b) For Model-based response: n = 22 and Goodness of fit = 0.97

Fig. 7. Illustration of the model order selection by comparing pre-processed
signal with the reconstructed signal.

Using (12) and (16), metrics for validating model-based os-
cillatory response is given in Table III. Based on the metric cal-
culated for magnitude component of the oscillatory response,

it can be said that the dynamic model does not accurately
represent the model that generated the PMU measurements and
requires calibration. This is also illustrated in Fig. 8(a) and 8(b)
that compare the contribution of two dominant mode estimates
to the PMU measurements and simulated generator response.
As seen in these figures, the contribution of the two modes to
the PMU measurements and generator response do not have a
good match. However, the phase component of the oscillatory
response matched well based on the metric calculated. By
performing sensitivity analysis, model parameters that affect
the magnitude of the oscillatory response can be identified for
model calibration.

TABLE III
METRICS CALCULATED FOR OSCILLATORY RESPONSE.

Mode-1 Mode-2 Mode-3 Mode-4
Osc. Metric

wi 1 0.426 0.272 0.045

εm,i 0.588 0.593 0.734 0.772 0.3759

εp,i 0.038 0.056 -0.032 0.279 0.9342
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(a) Mode-1
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(b) Mode-2

Fig. 8. Comparison of contribution of selected modes to the magnitude
component of oscillatory response of actual and model-based response

2) Metrics for governor response: Using governor response
extracted from actual and model-based response measure-
ments, metrics were calculated comparing the actual and
model-based governor response given in Table IV. Based on
these metrics, it can be said that model parameters that can
increase the peak-value of the governor response needs to be
calibrated. These parameters were identified using sensitivity
analysis as will be discussed later.

TABLE IV
METRICS CALCULATED FOR GOVERNOR RESPONSE

Gd (sec) GP (MW) GPT (sec) GRT (sec) GSS (MW) GN.RMSE

0.025 0.9 -4 -18.32 0.88 0.216

B. Real-world data
The proposed methodology was also implemented using real

PMU measurements recorded in Western Interconnection. Due



URMILA AGRAWAL et al.:ADVANCED PERFORMANCE METRICS AND SENSITIVITY ANALYSIS FOR MODEL VALIDATION AND CALIBRATION 7

to the confidentiality agreement, only limited information is
available about the data. Fig. 9 compares the active-power
response corresponding to actual and model-based response.
The methodology described earlier were used to obtain the
metrics, which are shown in Fig. 10(a) and 10(b), along with
the respective responses. For modal analysis, model order of
n = 18 and n = 16 was chosen for actual and model-based
response with GoF metric equal to 0.88 and 0.84 respectively.
Table V provides the error associated with each mode of the
oscillatory response. Based on the response obtained for the

0 10 20 30 40 50

Time(Sec)

-5

0

5

10

15

20

25

M
W

Actual active-power response

Model-based active power response

Fig. 9. Real-world PMU measurements and model-based response

governor response, it can be seen that the mismatch between
the actual and model-based response comes from delay, which
could not have been known by using a simple root mean square
metric. Based on metrics for oscillatory response, it can be said
that the model parameters need to be calibrated to improve
oscillatory response of the model.

TABLE V
METRICS FOR OSCILLATORY RESPONSE REAL-WORLD DATA EXAMPLE.

Mode-1 Mode-2 Mode-3 Mode-4
Osc. Metric

wi 1 0.614 0.338 0..084

εm,i 0.3611 0.5773 0.1129 1 0.587

εp,i 0.2768 0.6357 0.0242 1 0.627

C. An example illustrating the application of proposed metrics
to the sensitivity analysis and model calibration

In this paper, simulated-data example is used to illustrate
the application of proposed metrics for sensitivity analysis
and rule-based model calibration. In this example, all model
parameters were changed by specific % and the corresponding
change in the error metrics were calculated with respect to the
original error metric using

∆X = Xnew −Xold, (19)

where X is the error metric for which sensitivity analysis is
carried out. The sensitivity analysis results for the generator
machine model (GENROU) parameters are summarized in
Table VI. Table VII provides sensitivity analysis results for
the selected parameters of the governor model (GGOV1) that
were significant. The change in the exciter and stabilizer
model parameters did not results in any significant changes
to the active power response and therefore the results are not
included.

Based on this sensitivity analysis results, model calibration
was carried out using rule-based method as described in [20].
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Fig. 10. Metrics calculated for the real-world data example.
TABLE VI

SENSITIVITY ANALYSIS RESULT FOR MACHINE MODEL PARAMETER

Parameter %change ∆OscM ∆OscP ∆Gd ∆GP ∆GPT ∆GRT ∆GSS

Error 0 0.37 0.93 0 0.9 -4 -18.32 0.88

h 50% 0.35 0.19 0.0 0.0 0 0.6 0.0

h -50% -0.17 -0.02 0.0 0.0 0 -0.4 0.0

ld 50% 0.00 0.01 0.0 0.0 0 0.2 0.0

ld -50% -0.04 -0.06 0.0 0.0 0 0.1 0.0

lpd 50% -0.04 -0.06 0.0 0.0 0 -0.1 0.0

lpd -50% -0.01 -0.04 0.0 0.0 0 0.0 0.0

lpq 50% -0.05 -0.04 0.0 0.0 0 -0.2 0.0

lpq -50% 0.06 0.18 0.0 0.0 0 0.0 0.0

lq 50% 0.05 0.18 0.0 0.0 0 0.0 0.0

lq -50% -0.04 -0.03 0.0 0.0 0 0.2 0.0

tpdo 50% -0.05 -0.05 0.0 0.0 0 0.1 0.0

tpdo -50% 0.00 0.00 0.0 0.0 0 0.1 0.0

tppdo 50% -0.05 -0.05 0.0 0.0 0 0.2 0.0

tppdo -50% -0.03 0.00 0.0 0.0 0 0.1 0.0

tppqo 50% -0.01 0.00 0.0 0.0 0 0.2 0.0

tppqo -50% -0.05 -0.03 0.0 0.0 0 0.0 0.0

tpqo 50% -0.02 -0.01 0.0 0.0 0 0.1 0.0

tpqo -50% -0.05 -0.03 0.0 0.0 0 0.2 0.0

By increasing the value of inertia–constant (h), the magnitude
component of the oscillatory response showed a better match
with the actual oscillatory response. For improving governor
response, first the integral gain (kigov) was increased and then
the proportional gain (kpgov) was adjusted to minimize error
associated with the peak-time. The model-based active power
response obtained using this calibrated model is shown in Fig.
11 along with the error metrics. As seen in this figure, the
error metrics is much improved as compared to the original
model. One thing must be noted here that, the objective of this
example is only to illustrate how these proposed metrics and
sensitivity analysis can be helpful for model validation and
calibration, and not model calibration itself. Model calibration
will require the validation using multiple events, which is
beyond the scope of the paper.
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TABLE VII
SENSITIVITY ANALYSIS RESULT FOR GOVERNOR MODEL PARAMETER

Parameter %change ∆OscM ∆OscP ∆Gd ∆GP ∆GPT ∆GRT ∆GSS

Error 0 0.37 0.93 0 0.9 -4 -18.32 0.88

kigov 50% 0.0 0.0 0.0 0.56 -2.7 -13.93 0.54

kigov -50% 0.0 0.1 0.0 -1.03 0.5 8.48 -1.04

kpgov 50% 0.0 0.0 0.0 -0.05 -2.2 -55.21 -0.08

kpgov -50% 0.0 0.0 0.7 0.13 2.0 4.59 0.13

kturb 25% 0.0 0.0 0.0 0.28 -0.4 -11.49 0.26

kturb -25% 0.1 0.0 0.7 -3.57 -84.7 -61.63 -4.57

r 50% 0.0 0.1 0.0 -1.12 -2.7 -14.20 -1.15

r -50% 0.0 0.0 0.0 2.19 2.0 12.50 2.19
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Fig. 11. Model calibration using proposed metrics and sensitivity analysis

V. CONCLUSION

This paper proposes advanced performance metrics for
quantifying model validation results in a rigorous manner
by breaking down generator active power response into slow
governor response and fast oscillatory response. The results
obtained using both simulated and real-world data validate
the effectiveness of the proposed metrics in distinguishing
a good model from the one that requires calibration. These
proposed metrics analyze several aspects of generator dynamic
response as compared to other existing metrics, and therefore
provides more accurate results. Furthermore, generator model
parameters that can help improve specific aspect of generator
dynamic response, as given by error metrics, can be identified
by performing sensitivity analysis using proposed metrics.
This has been illustrated in the paper using simulated test-case
based example. The proposed metrics and sensitivity analysis
can also be further used for rule-based model calibration. A
simple example is used to highlight this application in this
paper. To conclude, proposed metrics and sensitivity analysis
can be very useful tool for model validation and calibration.
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