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Abstract

In the recent electricity market framework, the profit of the generation companies depends on the decision of the operator on

the schedule of its units, the energy price, and the optimal bidding strategies. Due to the expanded integration of uncertain

renewable generators which is highly intermittent such as wind plants, the coordination with other facilities to mitigate the

risks of imbalances is mandatory. Accordingly, coordination of wind generators with the evolutionary Electric Vehicles (EVs) is

expected to boost the performance of the grid. In this paper, we propose a robust optimization approach for the coordination

between the wind-thermal generators and the EVs in a virtual

power plant (VPP) environment. The objective of maximizing the profit of the VPP Operator (VPPO) is studied. The optimal

bidding strategy of the VPPO in the day-ahead market under uncertainties of wind power, energy

prices, imbalance prices, and demand is obtained for the worst case scenario. A case study is conducted to assess the

e?effectiveness of the proposed model in terms of the VPPO’s profit. A comparison between the proposed model and the

scenario-based optimization was introduced. Our results confirmed that, although the conservative behavior of the worst-case

robust optimization model, it helps the decision maker from the fluctuations of the uncertain parameters involved in the pro-

duction and bidding processes. In addition, robust optimization is a more tractable problem and does not suffer from

the high computation burden associated with scenario-based stochastic programming. This makes it more practical for real-life

scenarios.
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that, although the conservative behavior of the worst-case robust optimiza-
tion model, it helps the decision maker from the fluctuations of the uncertain
parameters involved in the production and bidding processes. In addition,
robust optimization is a more tractable problem and does not suffer from
the high computation burden associated with scenario-based stochastic pro-
gramming. This makes it more practical for real-life scenarios.

Keywords: Wind uncertainty, Electric Vehicles (EVs), robust optimization,
wind-thermal coordination, V2G, scenario-based optimization.

Nomenclature

Uncertainty Parameters

λt Realized energy price at time t in $.

θw, θλ, θL Parameters of the uncertainty set size for wind, energy price,
demand respectively.

LRTt Realized demand at time t in MW.

WRT
d,t Realized output of wind unit d at time t in MW.

Indices

c Index for EV.

d Index for wind units.

e Index for segments.

g Index for thermal generators.

s Index for scenarios.

t Index for time periods.

Other Variables
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α Confidence level.

Γ Risk-attituude parameter.

Ω Dummy variable.

CV aRα Conditional value at risk at the α confidence interval.

Imbdnt Under-generation power from the scheduled at time t in MW.

Imbupt Over-generation power from the scheduled at time t in MW.

Parameters

η and ζ Auxliariy variables for CV aR s.

ρ Incentive for the EV owners.

a, b, c Parameters of thermal heat rate curve.

Avc,t The availability of EV c for charging at time t.

BrkPte,g Break point of a segment e for thermal unit g for the heat
rate curve.

Cg Operation cost of the thermal generator g.

FCg Fuel cost of thermal unit g in $.

I0
g Initial state of thermal unit g.

InitUPg Initial minimum up-time for thermal unit g.

Kg Offset of thermal unit g for the heat rate curve.

Lt Scheduled demand at time t in MW.

MCc Maximum capacity of charge for EV c in KWh.

MinUPg Minimum up-time for thermal unit g.

MPc Maximum charging power for EV c.

NC Number of EVs.

3



ND Number of wind units.

NE Number of segments.

NG Number of thermal generator units.

NS Number of scenarios.

NT Number of time periods.

Pmax
g , Pmin

g Max/min power generation of thermal unit g,in MW.

Pr The probability of the scenario s.

R Utility rate charged for the customers $/MWh.

rut , r
o
t Under-and over-generation imbalance penalties as multipliers

of the energy price at time t.

RUg, RDg Ramp up/down rate of thermal unit g ,in MW/hour.

Slpoee,g Slope of a segment e for thermal unit g for the heat rate curve.

SOCreduc
c Reduction in SOC of the cth EVs’ battery as a result of driv-

ing.

SOCIc Initial state of charge of EV c in KWh.

SUg,t Startup cost of thermal unit g at time t in $.

T Dep(x) Time of the xth EV departure.

Wmax
d Rated output of wind unit d in MW.

Uncertainty Variables

γ+ Binary variables its value is 1 if the uncertain parameter at
the upper bound of its set.

γ− Binary variables its value is 1 if the uncertain parameter at
the lower bound of its set.

Variables
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δg,e,t Output of thermal unit g at time t corresponding to segment
e of the thermal heat curve in MW.

APmax
c,t Maximum scheduled increase power for EV c at time t in KW.

APmin
c,t Maximum scheduled reduction power for EV c at time t in

KW.

Ig,t State of thermal unit g at time t, 1 = ON , 0 = OFF.

P bid
g,t The optimal bidding of thermal unit g at time t in MW.

PRT
g,t The real time realized power of thermal unit g at time t in

MW.

PDc,t awarded energy bid for EV c at time t in KWh.

POPc,t Preferred operating point for EV c at time t in KW.

W bid
d,t The optimal bidding of wind unit d at time t in MW.

1. Introduction

Recently, the focus of researchers was directed towards stochastic pro-
gramming approach to handle uncertainty in decision making process [1].
However, stochastic programming has been proven to be more computation-
ally challenging due to the need of large number of scenarios which is indis-
pensable to capture the real nature of the random variable. Furthermore, the
complete knowledge of the probability distribution of the random variable is
necessary but it is not always available [2]. Recently, another alternative
for the stochastic programming has attracted the attention of researchers is
Robust Optimization (RO). Although robust optimization field is considered
a relatively young research area, there have been many publications which
reflect the advantages of the RO approach in many of research areas such
as finance, energy, supply chain management, circuit design and scheduling
problems. The basic concept behind robust optimization is that it is not a
probabilistic model, the uncertainty is handled based on a construction of an
uncertainty set where the solution is robust for all realizations of the uncer-
tain parameter within the defined set [3, 4, 5, 6, 7, 8, 9].
Robust optimization was extensively discussed in models such as Unit Com-
mitments (UC) and Security Constrained Unit Commitment (SCUC) when
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the decision maker is faced with uncertainty in energy prices or/and output
of another intermittent generator such as wind. In [10] the UC problem was
formulated as a two-stage model. At the first stage, the scheduling of the
thermal generators was decided, while at the second stage, the economic dis-
patch of the units and the actual output of the power were decided. The
objective function was to minimize the total cost of the system; i.e., startup
cost in the two stages. Two formulations of the UC problem were proposed,
which are the risk constrained and the expanded robust formulations. The
results proved the economic benefits of the robust solution of the UC problem
over the opposed scenario based solution. Again in [11], the UC problem was
coupled with the wind uncertainty and demand response in a two-stage prob-
lem. Minimizing the total operation cost of the power system was aimed by
the authors. The results show that there is a significant reduction in the sys-
tem cost using the proposed robust UC model. The concept of the adjustable
uncertainty set was introduced by the authors in the problem of the UC with
wind power penetration in [12]. The problem of the robust risk-constrained
UC was formulated as a two-level problem, the decomposition method was
used to solve the optimization problem when the the sub-problem was solved
for certain values for the decision variables of the master problem. Then,
the relaxed master problem is solved based on the convergence of the sub-
problem. The objective is to minimize the total operation cost of the system.
Although the results show that the model is effective in reducing the cost, the
proposed model is hardly applicable in the current energy market structure.
Coordination of the wind power with another sources of power to mitigate
the risks and to handle the uncertainty under the robust optimization um-
brella was also proposed in the literature. In [13], a conditional value at risk
(CVaR) approach was used as a risk measure linked with the uncertainty
set of the robust model, to optimally bid the wind power plant which was
coordinated with a storage system. Maximizing the profit of the wind power
producer was aimed under the uncertainty of the wind and the energy prices.
In [14] and [15] the coordination with hydro power generators was proposed.
In [14], a two-stage robust model was formulated to maximize the profit of
the virtual power plant operator gained from the forward contracts and the
day-ahead market. Bender’s decomposition was used to facilitate the so-
lution of the min-max problem which was reformulated as a mixed-integer
linear program (MILP). The results show that the proposed robust model
was effective to mitigate the risks resulted form the uncertainties of the wind
output and the energy price and to maximize the profit.
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Despite the effectiveness of the thermal generators as a source of wind power
balancing, the need for a more flexible source which matches both positive
and negative imbalances without extra cost is raised. Exploiting the V2G
services through the EVs is considered the most suitable solution for such
a case [16, 17]. In [18], a robust model for aggregating the EVs under the
uncertainty of the arrival and departure time coupled with the energy prices’
uncertainty was proposed. In [8, 9], the interval optimization was proposed
to model the uncertainty of the energy market prices, while the uncertainty
of the hydrogen storage and the EVs fleet offering in the pool market under
uncertain real-time price was proposed [9]. Bi-objective optimization was
used to formulate the solution to the problem in both models. However,
our model includes more general formulation since the uncertainties of the
demand were considered, the demand uncertainty is crucial for the decision-
making process at the energy market. The robust optimization approach
for optimal scheduling of the VPP and the optimal bidding strategy under
the energy price’s uncertainty was proposed in [19] and [20] , respectively.
When making decisions and optimizing models based on the deterministic
values of the parameters whiles those parameters are uncertain in nature,
the obtained solutions would be figured out to lead to sub-optimal or even
infeasible solutions after the realization of uncertain parameters. Robust op-
timization based on the worst-case, which is the most conservative optimiza-
tion technique, guarantees that the obtained optimal solutions will remain
feasible for all realizations of the uncertain parameters. Another methodol-
ogy to hedge against parameters uncertainty is to formulate models based
on risk averse measures. The CVaR risk measure is a coherent risk measure
that never conflicts with optimizing the expectation of any risk-averse utility
function [4, 21, 22]. Based of the investigated literature and for the best of
our knowledge, considering the uncertainties in wind output power, energy
prices, imbalance prices, and the demand in one model under the robust op-
timization was not tackled before. To fill this gap, we propose a robust model
and a CVaR-based model for a VPPO maximization profit under a number
of uncertainties, where coordination between the EVs and the wind-thermal
generators to mitigate the risk of the uncertainties is considered. Therefore,
the main contributions of the manuscript are as follow:

• A robust thorough mathematical formulation of virtual power plant
and electric vehicles that describes and model in details the behavior
of the electric vehicles, wind plant, and thermal generation units.
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• Providing a systematic approach to decide on the uncertainty set of
the robust optimization in for the application of coordination of virtual
power plants and electric vehicles.

• Formulating the problem under the CVaR measure of risk considering
a scenario tree for energy prices, imbalance prices, and wind power
output generated using the auto-regressive integrating moving average
(ARIMA) technique and reducing the set of generated scenarios based
on the Fast-forward methodology.

• A comparative study between robust optimization and stochastic opti-
mization showing the pros and cons of each methodology in the context
of virtual power plant and electric vehicles.

The rest of the paper is organized as follows. In section (2), the system
model is introduced. Section (3) introduces the problem formulation. The
stochastic programming formulation is discussed in section (4). A case study
is presented in section (5). Simulation results are discussed in section (6).
We conclude our work and give some insights for the future work in section
(7).

2. System Model

We consider a small Virtual Power Plant (VPP) with wind generation
output Wd,t from unit d at time t, thermal units with output Pg,t form unit
g at time t, and a load consisting of two types controllable load such as EVs
and uncontrollable load, as shown in Fig. 1.
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Figure 1: schematic representation of a virtual power plant.

The VPPO is considered as a price taker who submits a certain amount
of energy to the day-ahead market 24 hours before the time market clearing
process. The VPPO faces uncertainties of the actual wind power, the energy
and imbalance prices, and the loads. The coordination between the EVs and
thermal generators to balance the wind deviation is presented in Section 3.

3. Problem Formulation

The profit of the VPPO from participating in the day-ahead market when
facing uncertainties can be maximized as:

max
x

NT∑
t=1

[ NG∑
g=1

λ̃tP
bid
g,t − Cg(PRT

g,t )− (SUg,t.(Ig,t − Ig,t−1))+

+

ND∑
d=1

λ̃tW
bid
d,t + λ̃tr

o
t Imb

up
t − λ̃trut Imbdnt

+Rt

(
L̃RTt + ρ

NC∑
c=1

PDc,t

)
− λ̃t

(
Lt +

NC∑
c=1

POPc,t
)]

(1)

where
x ∈

{
Ig,t, P

RT
g,t , P

bid
g,t ,W

bid
d,t , POPc,t, AP

max
c,t , APmin

c,t ,
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PDc,t, δg,e,t
}
, and ˜(..) defines the uncertainty in the input parameter.

The first line of (1) defines the profit from thermal generation expressed as
the income from the amount bid of power in the day-ahead market minus the
cost of production and the thermal generation start-up costs. The second
line represents the profit from bidding the wind power into the market and
the profit gained from positive imbalances minus the penalties the VPPO
might face as a result of the negative imbalances. The last line defines; in its
first term, the revenue from the loads. Noting that ρ which is less than one
represents an incentive for the EVs to participate in the coordination, and
R is the utility rate which reflects the energy price plus a fixed amount as a
revenue for the VPPO. While, the second term is the cost of purchasing the
scheduled energy from the market.

The imbalance up term defines the running long status of the producer,
where the imbalance down term defines the running short status. At least
one of them is zero at any time period t. The producer is running long when
the generation is larger than the load [16]:

Imbupt =

{
−∆Pt if ∆Pt ≤ 0
0 otherwise

(2)

Imbdnt =

{
∆Pt if ∆Pt ≥ 0
0 otherwise

(3)

and,

∆Pt =

ND∑
d=1

W bid
d,t −

ND∑
d=1

W̃RT
d,t +

NG∑
g=1

P bid
g,t −

NG∑
g=1

PRT
g,t

−
NC∑
c=1

(
POPc,t − PDc,t

)
−
(
Lt − L̃RTt

)
(4)

The objective function in (1) is constrained by:

• Imbalance constraints

∆Pt = Imbdnt − Imb
up
t (5)
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0 ≤ Imbdnt ≤
NG∑
g=1

Pmax
g .Ig,t +

ND∑
d=1

Wmax
d

−
NC∑
c=1

APmin
c,t − Lt (6)

0 ≤ Imbupt ≤
NG∑
g=1

PRT
g,t +

ND∑
d=1

W̃RT
d,t

−
NC∑
c=1

PDc,t − L̃RTt (7)

• Operating limits

0 ≤ W bid
d,t ≤ Wmax

d (8)

Ig,t.P
min
g ≤ PRT

g,t ≤ Pmax
g .Ig,t (9)

Ig,t.P
min
g ≤ P bid

g,t ≤ Pmax
g .Ig,t (10)

• Ramping up/down limits

−RDg ≤ PRT
g,t − PRT

g,t−1 ≤ RUg (11)

• Minimum up/down times

InitUpg∑
t=1

(1− Ig,t) = 0 , (12)

t+MinUpg−1∑
n=t

Ig,n ≥MinUpg.(Ig,t − Ig,t−1),

∀g,∀t = InitUpg + 1....NT −MinUpg + 1 , (13)
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NT∑
n=t

Ig,n − (Ig,t − Ig,t−1) ≥ 0,

∀g,∀t = NT −MinUpg + 2....NT . (14)

Another three equivalent constraints to (12) - (14) can be included to
model the minimum down times.

• Production cost constraints

Cg(P
RT
g,t ) = FCg.

(
Ig,t.Kg +

NE∑
e=1

Slopeg,e.δg,e,t

)
, (15)

PRT
g,t = Pmin

g .Ig,t +

NE∑
e=1

δg,e,t, ∀g , (16)

0 ≤ δg,e,t ≤ BrkPtg,e −BrkPtg,e−1 ∀g, e, t , (17)

Kg = ag + bgP
min
g + cgP

min2

g . (18)

• EV charging power limits

0 ≤ POPc,t ≤MPc,t (19)

• EV charge requirement limits

T Dep(1)∑
t=1

PDc,t ≥ 0.9MCc − SOCIc , (20a)

T Dep(1)∑
t=1

PDc,t ≤MCc − SOCIc , (20b)

T Dep(x)c∑
t=1

PDc,t − (x− 1)SOCreduc
c ≤MCc − SOCIc , (20c)

NT∑
t=1

PDc,t − 4SOCreduc
c ≤MCc − SOCIc , (20d)

NT∑
t=1

PDc,t − 4SOCreduc
c ≥ 0 . (20e)
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• EV additional power limits

0 ≤ APmax
c,t ≤MPc,t × Avc,t − POPc,t

∀c ∈ NC , t ∈ NT (21)

0 ≤ APmin
c,t ≤ POPc,t ∀c ∈ NC , t ∈ NT (22)

• EV actual power draw limits

POPc,t − APmin
c,t ≤ PDc,t ≤ POPc,t + APmax

c,t

∀c ∈ NC , t ∈ NT (23)

In general, the constraints from (19) - (23) are presented to formulate the
charging power limits, the commuting profiles and the battery capacities be-
fore and after the charging and the commuting. In (19), the charging cannot
exceed the maximum charging limits. The constraints (20a-20e) formulate
the charging requirements for the commuting profile of the EVs owners and
ensure that the battery will not exceed its maximum power capacity. For
example, constraint (20a) aims to maintain 90% or more of the battery be-
fore the first departure. While constraint (20d) aims to guarantee for the
EV owner at the end of the day that SOC must be at least equal to SOCI .
The constraints in (21)-(22) aim to set the max. and the min. limits for
the additional power that can be bid which is related to the POP . Last
constraint in (23) aims to set the limits of the actual power draw.

3.1. Deterministic Model

In the deterministic model, the VPPO takes his decision with no con-
sideration of the uncertainties such that all parameters are assumed to be
accurate. Under the deterministic model, the VPPO will not benefit form
the imbalance income or incur any imbalance cost. Hence, the part of the
imbalance profit in the objective function will be removed as the constraints
(2) - (7).

3.2. Robust Optimization Model

In the robust optimization literature, the uncertainty is handled by defin-
ing the uncertain parameters over uncertainty sets which represent all possi-
ble realizations of the uncertain parameter. More details of the uncertainty
set are introduced in section (3.3).
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3.3. Uncertainty Set

The selection of the uncertainty set usually relies on the available infor-
mation about the uncertain parameter [3]. In this paper, we consider the case
of the decision making process by the VPPO without waiting for the realiza-
tion of the uncertain parameters. In other words, the problem is formulated
for the worst-case realization of the uncertainty. Hence, the uncertainty set
is defined as Z = ZW ∪Zλ ∪ZL where ZW is the set of the wind uncertainty,
and Zλ ,ZL are the sets of the energy price uncertainty and the demand
uncertainty, respectively . The uncertainty set of the wind power gives the
relation between the nominal value of the generation and the lower and upper
bounds of the deviation as:

ZW =

{
Wt = Ŵt + γ+

t W t − γ−t Wt,

Wt ≥ 0, γ+
t , γ

−
t ∈ {0, 1},∀t

}
(24)

where Ŵ is the nominal value for the wind generation, while W and W , are
the lower and upper bounds of the deviation, respectively. Clearly for the
γ+
t and γ−t , at least one of them is equal to zero at each time period t since

there is only a positive or a negative deviation at a certain time period t.
Similarly, the sets Zλ for the price and ZL for the demand are:

Zλ =

{
λt = λ̂t + γ+

t λt − γ−t λt,

λt ≥ 0, γ+
t , γ

−
t ∈ {0, 1},∀t

}
(25)

ZL =

{
Lt = L̂t + γ+

t Lt − γ−t Lt,

Lt ≥ 0, γ+
t , γ

−
t ∈ {0, 1},∀t

}
(26)

It is worthy noting that the uncertainty in the imbalance price is considered
as a function of the energy price with the parameters ro, ru where ru > 1 and
ro < 1. For more details about the formulation of this variables, please refer
to [23] and [24].
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3.4. Robust Counterpart

One known method of dealing with uncertainty in the objective function
is to reformulate it as a constraint-wise uncertainty [25]. It is known that:

max
x

ĉTx : Ax ≤ b ∀x ∈ X

is equivalent to

max
x,m

m : ĉTx ≥ m ∀c ∈ C ,Ax ≤ b ∀x ∈ X

where C is the uncertainty set for the parameter c, m is an auxiliary vari-
able. Hence, the uncertainty of the objective function is reformulated as a
constraint-wise uncertainty. Similarly, the uncertainty in the energy price in
problem (1) and the uncertainty of the other constraints can be reformulated
as [26] :

max
x,Ω

Ω

S.t.

NT∑
t=1

[ NG∑
g=1

(λ̂t − λt)P bid
g,t

− Cg(PRT
g,t )− (SUg,t.(Ig,t − Ig,t−1))+

+

ND∑
d=1

(λ̂t − λt)W bid
d,t + (λ̂t − λt)rot Imb

up
t

− (λ̂t + λt)r
u
t Imb

dn
t +Rt

(
(L̂RTt − LRTt ) + ρ

NC∑
c=1

PDc,t

)
− (λ̂t + λt)

(
Lt +

NC∑
c=1

POPc,t
)]
≥ Ω (27)
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Since its not favorable for robust optimization to deal with equality con-
straints [25], constraint (4) will be replaced with its equivalence :

Imbdnt − Imb
up
t −

ND∑
d=1

W bid
d,t −

NG∑
g=1

P bid
g,t +

NG∑
g=1

PRT
g,t

+

NC∑
c=1

(
POPc,t − PDc,t

)
+ Lt ≤

(
(L̂RTt − LRTt )

−
ND∑
d=1

(ŴRT
t +W

RT

t )

)
× β (28)

Imbdnt − Imb
up
t −

ND∑
d=1

W bid
d,t −

NG∑
g=1

P bid
g,t +

NG∑
g=1

PRT
g,t

+

NC∑
c=1

(
POPc,t − PDc,t

)
+ Lt ≥

(
(L̂RTt + L

RT

t )

−
ND∑
d=1

(ŴRT
t −WRT

t )

)
× (1− β) (29)

Where β is a binary auxiliary variable to guarantee that only one of (28) and
(29) is active at each time. Furthermore, constraint (7) can be transformed
into its robust counterpart as:

0 ≤ Imbupt ≤
NG∑
g=1

PRT
g,t +

ND∑
d=1

(ŴRT
t −WRT

t )

−
NC∑
c=1

PDc,t − (L̂RTt + L
RT

t ) (30)

To this end, we considered all uncertainties and completed the formulation
of the robust counterpart of our model.

4. Stochastic Optimization Model

The uncertainties in obtaining the maximum profit from day-ahead mar-
ket include wind power output, hourly LMP, imbalance prices, and the loads.
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The problem of maximizing the total profit of the VPPO is formulated as
a stochastic mixed-integer linear program (MILP). As most of the problems
under the stochastic framework the uncertainties in optimization are handled
through a two-stage decision-making process. Here and now decisions in the
first stage which are made before the realization of the stochastic parame-
ters. Wait and see decisions in the second stage which are affected by those
in the first stage. The second stage decision variables are then scenario-based
[24, 27].

4.1. Scenario generation and reduction

Scenario tree is a model where the values of the random variables are
arranged. The scenario tree defines the two stages of making the decision by
two different nodes. The link between the root at the first stage and the leaf
at the second stage is called scenario. Many techniques have been developed
to generate the scenario trees. Since the size of the problem is proportional
to the number of the scenarios which were generated, the reduction of the
number of scenarios is important to overcome the huge computational bur-
den.
Monte Carlo Simulation (MCS) is one of the most common techniques to gen-
erate the scenario tree for energy prices and wind output. However, the ex-
pected values and the standard deviation of the random variable are needed.
One of the disadvantage of MCS is that it does not count for the coupling
among the consecutive hours. In this work, a seasonal auto-regressive inte-
grating moving average (ARIMA) technique is used to generate the scenario
tree for energy prices, imbalance prices, and wind power output. Then, a
fast-forward reduction method is used to reduce the number of generated
scenarios. Fast-forward methodology is based on an iterative method to
minimize the distance between the original set and the reduced set of the
scenarios.
In our model, we consider the wind power bid, thermal power bid, and the
EVs scheduling as the here and now decision variables. We also consider the
the actual power draw of the EVs, the actual output of the thermal genera-
tors, and the CVaR auxiliary variables as the wait and see decision variables.
The form of the optimization problem under stochastic optimization frame-
work can be shown as:

max
x

E[PROFIT] + Γ.CVaRα (31)
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where
x ∈

{
Ig,t, P

RT
g,t,s, P

bid
g,t ,W

bid
d,t , POPc,t, AP

max
c,t , APmin

c,t ,

PDc,t,s, δg,e,t,s, ζ, ηs
}
.

{PROFIT} is the objective function at (1)
s.t. (5) - (23), additional constraints needed to be added to the problem
such:

CVaRα = ζ − 1

1− α

NS∑
s=1

Prs.ηs (32)

−[PROFIT]s + ζ − ηs ≤ 0, ∀s (33)

ηs ≥ 0, ∀s (34)

where α is the confidence level which is considered here as 95%.

5. Case Study

A case study for a VPP that serves a small urban area is considered. We
aim from this study to assess the benefits of the proposed coordination for
both the VPPO and EVs’ owners under the considered uncertainties. VPP
consists of one wind power plant with installed capacity of 200 MW, five
thermal generators with total installed capacity of 340 MW. For detailed
characteristics of the wind and the thermal generators, we refer the reader
to [16] and [24]. A group of 10 Thousands EVs with 50 similar driving
profile representing the Spanish commuting behavior are used. A sample of
10 patterns are illustrated in Table (1) with average commuting distance of
10 KM, where it is assumed that the EVs are charging at home and work
as well.The batteries capacities, EV’s characteristics are such that in [16].
A set of 1000 scenario for the wind output, energy price, and the imbalance
price, are generated using seasonal auto-regressive integrated moving average
technique (ARIMA) [24]. Three load profiles (low, nominal,and high) are
used. Hence, reducing the scenarios-tree from 1000 to 3 is used by the fast-
forward method [28]. The final size of the scenario-tree is 34 = 81 scenarios.
The reduced scenario-tree is used to construct the uncertainty sets for the
wind output, energy price, imbalance price, and demand as shown in Fig. 2
to Fig. 4.

The robust optimization formulation is very rich based on the choice of
the uncertainty set construction. Many uncertainty sets such as Box uncer-
tainty set,interval,Ellipoidcal, and polyhedral uncertainty set were discussed
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Table 1: Travel profiles of 10 EVs

Commute to Work back
for

Lunch

return
to

Work

Back to Home

Time / EVs 8
AM

9
AM

10
AM

2 PM 4 PM 7 PM 8 PM 9 PM

EV1 1 0 0 1 1 0 1 0

EV2 0 1 0 1 1 0 0 1

EV3 0 0 1 1 1 1 0 0

EV4 0 1 0 1 1 0 1 0

EV5 0 0 1 1 1 0 0 1

EV6 0 0 1 1 1 0 1 0

EV7 1 0 0 1 1 1 0 0

EV8 1 0 0 1 1 0 0 1

EV9 0 1 0 1 1 1 0 0

EV10 0 0 1 0 0 0 1 0

in the literature. The box uncertainty set is one of the most common and
simple uncertainty sets used on the robust optimization framework, where
the uncertain parameter is considered in the uncertainty set as [nominal
value - lower bound, nominal value + upper bound], then the upper and
lower bounds are modeled as a percentage of the nominal value to repre-
sent the uncertainty set as (nominal value ×(1 ± θ) ), where θ is chosen by
the VPPO according to his/her preference as a risk-averse or risk-taker de-
cision maker. Three different values for each uncertainty set are considered
θw, θλ, θL for wind output, energy price, and demand, respectively. where θ{}
is an adjustable parameter that controls the uncertainty set size, and hence
controlling the conservativeness of the solution. The interval uncertainty set
is resulting if θ{} = 1 [5, 29].
For the uncoordinated case, the thermal-wind coordination is still consid-
ered. However, the EVs are not coordinated to mitigate the wind uncertain-
ties. Furthermore, it is assumed that the EVs are charged according to the
opportunistic charging. In this model the EVs are charged by the maximum
charging rate once they are plugged in. Moreover, the decision variables of
the EVs (i.e., POP,APmax, APmin) are set to zero, and the total amount of
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Figure 2: Wind energy output nominal values and uncertainty bounds.

energy needed for the EVs charging is added as a constant load.
The solution algorithm was modeled using IBM ILOG CPLEX [30] and ex-
ecuted on a PC with an Intel(R) core TM i3 @ 2.53 GHz CPU and 6 GB of
RAM, the processing time is about 15 seconds.

6. Simulation Results

Two cases are considered to assess the effectiveness of the proposed model.
In case 1, the robust optimization is used to model the uncertainties of the
uncoordinated case between the EVs and wind-thermal generators. In case
2, the coordination between the EVs and the thermal-wind generators is
considered under both deterministic and robust models. The profit of the
VPPO at the deterministic case is compared with both the coordinated and
the uncoordinated profit of the robust model under different levels of uncer-
tainty. Table (2) shows the results of the VPPO’s profit for the worst-case
scenario of the realization of the uncertain parameters when the uncertainty
set is at its extreme bound compared to the stochastic and deterministic
case. Although both the deterministic and Stochastic models outperforms
the robust model in terms of profits by (26072 − 24996)/26072 = 4.13 %
and (25310 − 24996)/25310 = 1.24%, respectively, the robust model counts
for the worst case realization of the uncertain parameters which keeps the
decision maker safe with any realization of the uncertainty. Moreover, mov-
ing from the most conservative situation i.e., worst case might increase the
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Figure 3: Energy price nominal values and uncertainty bounds.

profits of the VPPO while considering the uncertainties. Essentially, ex-
pected profits of the three algorithms compared to the actual realized profits
are shown in Fig. 5, the actual profits is obtained by applying an actual
day prices and units production. Indeed, CVaR results in higher profits
but with a higher risk compared to the robust optimization that provides
profits also and a safe decision-making environment for the decision maker.
The benefits of the coordination is very evident on the profit of the VPPO
compared to the uncoordinated case. The coordination gain be given as
(24996− 24404)/24996 = 2.36 %.

Table 2: VPPO’s profits with EVs coordination

Model Profits $

Deterministic 26072
Stochastic 25312

Coordinated Robust 24996
Uncoordinated Robust 24404
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Table 3: Thermal units commitment with no coordination

Unit No. Time (0-24)

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1
4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 4: Thermal units commitment with EVs coordination

Unit No. Time (0-24)

1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 0
2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Tables 3 and 4 show the commitment of the thermal generation units
in both coordinated and uncoordinated cases. Note that the status which
changes was highlighted by bold font.
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7. Conclusion

In this paper, we proposed a robust optimization model for the coordina-
tion between the wind-thermal generators and the EVs aggregators in a VPP.
The objective of maximizing the profit of the VPP operator was studied. The
optimal bidding strategy of the VPPO in the day-ahead market under un-
certainties of wind power, energy prices, imbalance prices, and demand was
obtained for the worst case scenario. A case study was conducted to assess
the effectiveness of the proposed model in terms of the VPPO’s profit. The
simulation results confirmed our argument regarding the profit maximization
in case of coordination considering the worst-case scenarios . Although, the
coordination gain is about 2%, this gain is expected to increase with the
raised demand of EVs in last years. Although robust optimization gives less
profitable operational schedules, but it is more reliable, dependable, involves
less risk and computationally more efficient than stochastic programming.
There are many directions for further extensions of the proposed work, the
uncertainties about the EVs fleet can be included such as the uncertainties
about the battery state of charge (SOC) and also the commuting patterns
which all considered deterministic in that work. The correlation between the
uncertainty sets can be studied also, where each uncertainty set to be con-
sidered independent at the proposed work. Furthermore, the coordination
of the EV aggregator with other types of energy producer such as Hydro-
plants or solar energy; which introduces more uncertainties, can be studied
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to pave the way for a safe, profitable bidding at the energy markets for the
decision-maker.
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