
P
os
te
d
on

11
A
u
g
20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
27
83
89
3
.v
1
—

T
h
is

is
a
p
re
p
ri
n
t.

V
er
si
on

of
R
ec
or
d
av
ai
la
b
le

at
h
tt
p
s:
//
d
oi
.o
rg
/1
0.
11
09
/T

A
S
E
.2
02
1.
30
88
04
7

An Innovative Formulation Tightening Approach for Job-Shop

Scheduling

Bing Yan 1, Mikhail Bragin 2, and Peter Luh 2

1Rochester Institute of Technology
2Affiliation not available

October 30, 2023

Abstract

Job shops are an important production environment for low-volume high-variety manufacturing. Its scheduling has recently

been formulated as an Integer Linear Programming (ILP) problem to take advantages of popular Mixed-Integer Linear Pro-

gramming (MILP) methods, e.g., branch-and-cut. When considering a large number of parts, MILP methods may experience

difficulties. To address this, a critical but much overlooked issue is formulation tightening. The idea is that if problem con-

straints can be transformed to directly delineate the problem convex hull in the data pre-processing stage, then a solution

can be obtained by using linear programming methods without much difficulty. The tightening process, however, is NP hard

because of the existence of integer variables. In this paper, an innovative and systematic approach is established for the first

time to tighten the formulations of individual parts, each with multiple operations, in the data pre-processing stage. It is

a major extension from our previous work on problems with binary and continuous variables to integer variables. The idea

is to first link integer variables to binary variables by innovatively combining constraints so that the integer variables are

uniquely determined by binary variables. With binary variables and continuous only, the vertices of the convex hull can be

obtained based on the vertices of the linear problem after relaxing binary requirements with proved tightness. These vertices

are then converted to tight constraints for general use. This approach significantly improves and extends our previous results

on tightening single-operation parts without actually achieving tightness. Numerical results demonstrate significant benefits

on solution quality and computational efficiency. This approach also applies to other ILP problems with similar characteristics

and fundamentally changes the way how such problems are formulated and solved.

1

1

 25

Abstract – Job shops are an important production environment

for low-volume high-variety manufacturing. Its scheduling has

recently been formulated as an Integer Linear Programming (ILP)

problem to take advantages of popular Mixed-Integer Linear

Programming (MILP) methods, e.g., branch-and-cut. When

considering a large number of parts, MILP methods may

experience difficulties. To address this, a critical but much

overlooked issue is formulation tightening. The idea is that if

problem constraints can be transformed to directly delineate the

problem convex hull in the data pre-processing stage, then a

solution can be obtained by using linear programming methods

without much difficulty. The tightening process, however, is NP

hard because of the existence of integer variables. In this paper, an

innovative and systematic approach is established for the first time

to tighten the formulations of individual parts, each with multiple

operations, in the data pre-processing stage. It is a major extension

from our previous work on problems with binary and continuous

variables to integer variables. The idea is to first link integer

variables to binary variables by innovatively combining

constraints so that the integer variables are uniquely determined

by binary variables. With binary variables and continuous only,

the vertices of the convex hull can be obtained based on the vertices

of the linear problem after relaxing binary requirements with

proved tightness. These vertices are then converted to tight

constraints for general use. This approach significantly improves

and extends our previous results on tightening single-operation

parts without actually achieving tightness. Numerical results

demonstrate significant benefits on solution quality and

computational efficiency. This approach also applies to other ILP

problems with similar characteristics and fundamentally changes

the way how such problems are formulated and solved.

Note to practitioners – Scheduling is an important but difficult

problem in planning and operation of job shops. The problem has

been recently formulated in an integer linear programming (ILP)

form to take advantage of popular mixed-integer linear

programming methods. Given an ILP problem, there must exit a

linear programming (LP) formulation so that all of its vertices are

also the vertices to the ILP problem. If such an LP problem can be

found in the data preprocess stage, then the corresponding ILP

problem is tight and can be solved by using an LP method without

much difficulty. In this paper, an innovative and systematic

approach is established to tighten the formulations of individual

parts, each with one or multiple operations. It is a major extension

from our previous work on problems with binary and continuous

variables by novel exploitation of the relationship between integer

and binary variables in job-shop scheduling. The resulting

tightened constraints are characterized by part parameters and

can be easily adjusted for other data sets. Results demonstrate

significant benefits on solution quality and computational

Bing Yan is with the Department of Electrical and Microelectronic

Engineering at Rochester Institute of Technology, Rochester, NY 14623, USA

(e-mail: bxyeee@rit.edu).

Mikhail A. Bragin and Peter B. Luh with the Department of Electrical and

Computer Engineering, University of Connecticut, Storrs, CT 06269-4157,

USA (e-mail: mikhail.bragin@uconn.edu and peter.luh@uconn.edu).

efficiency. This approach also applies to other ILP problems with

similar characteristics and fundamentally changes the way how

such problems are formulated and solved.

Index terms–Manufacturing, job-shop scheduling, mixed-

integer linear programming, formulation tightening

I. INTRODUCTION

ob shops are an important production environment for low-

volume high-variety manufacturing. In a job shop,

machines are usually categorized into different types based

on their functions. With these machines, multiple parts with

different due dates are processed, and each part needs a

sequence of operations to be completed [1]. To meet on-time

deliveries, scheduling of parts is critical. The problem is to

minimize the required objective, e.g., the total weighted

tardiness and the total cycle time, by assigning parts to

machines while satisfying part processing time requirements,

and operation precedence and machine capacity constraints.

As reviewed in Section II, some nonlinear job-shop

scheduling formulations were established and efficiently

exploited by decomposition and coordination methods. To take

advantage of popular mixed-integer linear programming

(MILP) methods, e.g., branch-and-cut, the problem is recently

formulated in an integer linear programming (ILP) form.

Branch-and-cut first solves the linear programming (LP)

problem without integrality requirements. If the solution is

feasible to the original MILP problem, it is optimal. If not, valid

cuts are performed around the solution of the LP problem on

the fly to get solutions to the MILP problem. If such solutions

are obtained, the problem is directly solved. If not, the method

replies on time-consuming branching operations.

When considering a large number of parts, MILP methods

may experience convergence and quality difficulties. To obtain

near-optimal job-shop schedules fast, a critical but much

overlooked issue is formulation transformation. The idea is to

transform problem constraints to directly delineate the convex

hull (the smallest convex set that contains all feasible solutions

[2]) in the data pre-processing stage. If this can be done (i.e.,

the formulation is “tight”), then a solution can be obtained by

using an LP method without combinatorial difficulties. The

tightening process, however, is fundamentally challenging for

job-shop scheduling problems because of the existence of

integer variables (e.g., beginning time) in addition to binary

variables and interactions among multiple operations. In the

This work is supported in part by the National Science Foundation (NSF)

under the grant ECCS-1810108 and U.S. Department of Energy (DoE)’s Office

of Energy Efficiency and Renewable Energy under the Advanced

Manufacturing Office Award Number DE-EE0007613. Any opinions,

findings, and conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views of NSF or DoE.

An Innovative Formulation Tightening

Approach for Job-Shop Scheduling
Bing Yan, Member, IEEE, Mikhail A. Bragin, Member, IEEE, Peter B. Luh, Life Fellow, IEEE

J

2

literature, a few tightened single-part formulations were

reported without a systematic approach. They were shown

computationally efficient for overall problems.

In this paper, the job-shop scheduling problem is first

formulated in an integer programming form in Section III, and

the objective is to minimize the total weighted tardiness and the

total cycle time. Since tardiness is a nonlinear function of due

dates, it is linearized by introducing new binary and continuous

variables and the corresponding constraints to make effective

use of MILP methods. After linearization, the problem

becomes an MILP problem. To tighten the formulations of

individual parts with multiple operations in the data pre-

processing stage, an innovative and systematic approach is

established for the first time in Section IV. It is a major

extension from our previous work on unit commitment

problems in power systems with binary and continuous

variables to integer variables. The idea is to first link integer

variables (e.g., beginning time) to binary variables (e.g., part

statues) by innovatively combining constraints so that the

integer variables are uniquely determined by the binary

variables. With binary variables and continuous only, the

vertices of the convex hull can be obtained by simply

eliminating the vertices of its integer-relaxed problem with

factional values for binary variables with proved tightness [3,

4]. These vertices are then converted to tight constraints. The

number of resulting tight constraints, the number of variables

involved, and constraint coefficients depend on part parameters.

Since all parts must be processed within the scheduling horizon,

the above also depends the length of the horizon. For general

use purposes, these tight constraints are characterized by

analyzing constraint structures and relationships between

coefficients and part parameters as well as the scheduling

horizon. The resulting tightened constraints can be easily

adjusted for other data sets. This approach significantly

improves and extends our previous results on tightening single-

operation parts without actually achieving tightness [5].

Three examples are considered in Section IV. The first is to

tighten formulations for single-parts with one and two

operations to illustrate the tightening idea and present insights.

Robustness of formulation tightening is shown in the second

example. The last example is to demonstrate the performance

of tightened single-part formulations when solving overall job-

shop scheduling problems. Results demonstrate significant

benefits on solution quality and computational efficiency.

Beyond MILP job-shop scheduling problems under

consideration, this approach also applies to the other MILP

problems with unique relationships between integer and binary

variables. It fundamentally changes the way how such problems

are formulated and solved. This approach goes naturally with

decomposition and coordination approaches, a subject worthy

of further exploration.

II. LITERATURE REVIEW

Existing job-shop formulations are reviewed in Subsection

A. Tightened constraints are reviewed in Subsection B.

A. Problem formulations

With large numbers of decision variables and constraints in

job-shop scheduling, developing efficient formulations is

complex [6]. “Separable” and nonlinear formulations were

established and efficiently exploited by the decomposition and

coordination Lagrangian relaxation method in [7-12]. ILP

models were developed in [13-18]. Considering sequence-

dependent setups, an ILP model was established in [13]. With

additional variables, job successors and predecessors were

modeled. In our previous work on high-volume and low-

variety manufacturing [19], an ILP model was developed.

However, by using those models, large-scale problems cannot

be effectively solved.

Branch-and-cut has also been widely used. The method

solves the linear program problem without integer constraints

using by LP methods first. If the solution has integer values for

all integer decision variables, it is optimal with respect to the

original problem. If not, the method tries to obtain the convex

hull by adding valid cuts to cut off regions outside the convex

hull without cutting off feasible solutions. If successful, the

problem is directly solved. If not, time-consuming branching

operations are performed, resulting in very slow convergence.

In [14] and [16], the problems were solved by branch-and-cut

implemented in commercial software CPLEX. For a problem

with 10 parts and 8 machines, the Mixed-Integer Programming

(MIP) gap is still 26.7% after one hour in [13]. In [14], for

problems with 6 parts and 3 to 5 machines, no good solutions

are found even after 72 hours. For branch-and-cut, it is a major

challenge to enhance computation efficiency.

B. Tightened constraints

Obtaining a tight formulation is fundamentally difficult and

NP hard without clear ways. In the literature, few tightening

studies exist on general problems. For traveling salesman

problems, a tightened formulation was obtained based on

subtour elimination [20]. For knapsack problems, tight

formulations were obtained through the use of “structural”

disjunctive cuts based on the problem structure [21].

For manufacturing scheduling, a few tightened constraints

were presented for single parts without explaining how they

were generated.

For traditional job shop scheduling, a few valid cuts were

developed by analyzing problem structures in [14]. The major

idea is to find a ceiling for inventory shortage, and the longest

working procedure sequence till completion for parts. Testing

results based on randomly generated data for 325 instances with

3 to 5 machines and 4 to 6 parts demonstrate computational

efficiency of the cuts. For flow-shop scheduling, subtour

elimination constraints and lower/upper bound mixed-integer

inequalities were developed by analyzing formulation

structures in [13], and some of them are facet-defining cuts.

Testing results based on randomly generated data for problems

with 2 to 6 machines and 7 to 10 parts show that the

computational time is much reduced with these tightened

constraints. For both studies, testing results demonstrate

computational efficiency of these tightened constraints.

In our previous work [5], a few processing time-related

constraints were tightened for single parts based on integration

of “constraint-and-vertex conversion” and “vertex projection”

where non-integer values in vertices are rounded up or down to

nearest feasible integers. For unit commitment problems in

power systems, a systematic method was developed based on

novel integration of “constraint-and-vertex conversion,”

“vertex elimination” and “parameterization” processes to

3

tighten single-unit formulations in the data pre-processing stage

for the first time [3, 4]. Results show that our formulation

tightening is effective in terms of solution quality and

computational efficiency.

III. JOB-SHOP SCHEDULING FORMULATION

Consider a job shop with multiple machines categorized into

M types based on their functions. With these machines, I parts

with different due dates need to be processed, and the part index

is i. Part i requires Ji operations, and the operation index is j. It

is assumed that the scheduling horizon is long enough so that

all parts can be processed. Discretize the horizon into K time

slots and let k denote the time index. Assuming system-level

machine capacity constraints are relaxed, a single-part

scheduling problem is formulated based on our previous work

[5] in Subsection A. Machine capacity constraints and the

objective function are briefly described in Subsection B.

A. Single-part formulation

For a part with J operations, the main decision variables are

beginning time bj and completion time cj for each operation j.

To capture the status of j at time k, i.e., active (processed) or not,

binary variables jk with operation and time indices is

considered as follows:

1, if is active at time ;

0, otherwise.
jk

j k



 


Part-level constraints are processing time requirements and

operation precedence constraints. Modeling of linearized

tardiness is also included.

a) Processing time requirements

Because of “non-preemptive,” a contiguous time period

with length of pj is needed to process operation j, i.e.,

1, , , .j j j j jc b p j b c Z     (1)

Since  represents the status of the part, jk must be 1 within

[bj, cj], and 0 otherwise, i.e.,

1, if ;

0, otherwise.

j j

jk

b k c


 
 


 (2)

Logical Eq. (2) is linearized as follows:

 1 , , , ;j jkk c N j k B       (3)

 1 , , , ;j jkk b N j k B       (4)

 , ,jk j
k

p j   (5)

where N is a larger number. It can be seen Eqs. (3-5) guarantee

that jk = 1 iff bj ≤ k ≤ cj; and jk = 0 when k < bj or k > cj.

b) Operation precedence constraints

It is assumed that the operation sequence of the part is fixed,

and operation j+1 cannot start until j is finished, i.e.,

1 1, .j jb c j    (6)

Also, the part cannot start the process of operation j until it

is arrived at time aj, i.e.,

, .j jb a j  (7)

c) Linearized tardiness

Tardiness T is formulated as follows,

max(,0),Jc d (8)

where d is the due date. To represent this, a piecewise-linear

function is used shown in Fig. 1 below.

cJ - d jpj - d K - d

K- d

0

T

Figure 1. Tardiness function

As shown in the figure, the upper and lower bounds of cJ -

d are jpj - d and K - d, and the corresponding tardiness is 0 and

K - d. The three break points of this function on the x-axis are

jpj - d, 0 and K - d (if jpj - d < 0 < K - d), and the corresponding

values at the y-axis are 0, 0 and K - d. This piecewise-linear

function is linearized by special ordered set techniques [22].

Three continuous variables w1, w2, and w3 (0 ≤ w1, w2, w3 ≤ 1)

are considered to represent weights of the three points. In

addition, three binary variables 1, 2 and 3
 are used to set up

upper bounds for these weights. The constraints are as follows,

   1 2 30 ;
J j i

j

c d p d K d        (9)

 1 2 30 ;T o K d      (10)

,1 3;l l l    (11)
1 3 1;   (12)

1;l

l

  (13)

2.l

l

  (14)

For simplicity, instead of jpj - d and T - d, two break points -K

and 2K are used for all parts (d could be negative).

B. Machine capacity constraints and objective function

For completeness, machine capacity constraints and the

objective function are briefly described in this subsection.

a) Machine capacity constraints

For each machine type m, the total number of active parts

cannot exceed its capacity Mm at any time slot, i.e.,

(,)

, , .
m

ijt m
i j O

M m t
 

   (15)

In the above, (i, j) denotes operation j of part i, and Om denotes

the set of (i, j) that can be processed by machine type m.

b) Objective function

The objective function to minimize the weighted sum of

total tardiness and total cycle time, i.e.,

   ,1max(,0) (1) ,
i i

T
i iJ i iJ i

i i

c d c a       (16)

where  is the weight for total tardiness, and i
T is for part i.

The job-shop scheduling problem with Eqs. (1), (3)-(7), and

(9-16) established above is an MILP problem. Most of the

decision variables are binary (e.g., ). There are also a few

integer variables (e.g., b and c), and continuous variables (i.e.,

w). The machine capacity constraints and objective function

are linear but irrelevant for tightening.

IV. FORMULATION TIGHTENING

Building upon our previous work [3-5], an innovative and

systematic method is established to tighten the above single-

part formulation in Subsection A. A numerical example is also

4

presented to illustrate the tightening idea. Tightness is proved

in Subsection B.

A. Formulation tightening

In our previous work on unit commitment in power systems,

a systematic approach is developed to tighten Mixed-Binary

Linear Programming (MBLP) problems [3, 4]. To illustrate the

idea, consider a simple Binary Linear Programming (BLP)

problem in Fig. 2 with two binary variables x1 and x2, and x1 +

x2 ≥ 0.5. After relaxing integrality requirements, the vertices

(blue dots in Fig. 2b) of the convex hull (blue lines in Fig. 2b)

to the integer-relaxed problem are obtained. Then the vertices

(red dots in Fig. 2a) of the original convex hull (red lines in Fig.

2a) can be obtained by simply eliminating the vertices with

factional values for binary variables (open blue dots in Fig. 2b)

[3-4]. These vertices are then converted to tight constraints for

general use. The idea to tighten MBLP problems is the same.

Figure 2(a). Convex hull of a BLP

problem with binary variables x1, x2
Figure 2(b). Convex hull of its

integer-relaxed problem

For the ease of presentation, the following terms are defined.

Definition 1. For an MBLP problem, if the integrality

requirements are relaxed, the resulting convex hull is defined as

the “integer-relaxed convex hull.” In terms of the simple

example above, the integer-relaxed convex hulls is defined by

blue lines in Fig. 2b.

Definition 2. For an integer-relaxed convex hull, a vertex

consists of integral and real components. If all integral

components have integer values, then it is called an “integral

vertex.” Otherwise, it is called a “fractional vertex.” In terms

of the simple example above, integral and fractional vertices are

denoted by solid and open blue dots respectively in Fig. 2b.

The above definitions can apply to an MILP problem.

To tighten the formulation of parts with multiple operations,

the idea is to start with parts which have one operation. To

apply the MBLP tightening idea to tighten the MILP problem

under consideration, the unique relationship between integer

variables (e.g., beginning time b) and binary variables (e.g., part

status ) are innovatively established where integer values of b

uniquely determine binary values of , and vice versa.

Therefore, the MBLP principle of eliminating fractional

vertices with respect to  described above can be applied. Then

the same method is applied to tighten parts with two operations

to explore tightened constraints across two operations. The

process can be repeated for parts with more operations.

a) One operation

For a single-operation part, given part parameters (due date

d, processing time p, and arrival time a) and the length of the

scheduling horizon (K) in numerical values, tightened

constraints are established by an innovative and systematic

method through four steps as shown in Fig. 3.

Step 1. Constraint-to-vertex conversion. After relaxing

integrality requirements, the vertices of the integer-relaxed

convex hull are generated from constraints. The conversion is

done by algebraic manipulation of part parameters and the

Figure 3. Flow chart of formulation tightening

scheduling horizon length with algorithms [23] well established

in existing software Porta [24]. With constraints as input, the

software outputs vertices in numerical values.

Step 2. Vertex elimination. If all vertices obtained in Step 1

are integral, the formulation is tight. If not, fractional vertices

are projected onto the original convex hull. For this particular

problem, all integral vertices of the integer-relaxed problems

are the same as the vertices of the original convex hull and vice

versa, as will be proved in Subsection B. Thus vertex projection

can be done by eliminating factional vertices.

Step 3. Vertex-to-constraint conversion. In this step, vertices

obtained in Step 2 are converted back to tight constraints by

using Porta as a reverse process of that in Step 1. The resulting

formulation with those constraints should be tight.

Step 4. Parameterization. Constraints obtained above have

coefficients in numerical values. To make them reusable for

other parts, the idea is to convert numerical coefficients to part

parameters (e.g., processing time) and the total number of time

slots in the scheduling horizon. This parameterization is done

by analyzing constraints and relationships between numerical

coefficients and part parameters and the scheduling horizon

length. It is verified by checking physical meanings of the

resulting constraints with coefficients in part parameters and the

scheduling horizon length under all possible combinations of

binary variables. The resulting tightened constraints can be

easily adjusted for problems with other data sets.

For a single-operation part, the number of tight constraints,

the number of variables involved, and constraint coefficients

depend on part parameters and the length of the scheduling

horizon. For example, consider a part with p = 3 and K = 5.

Because of “non-preemptive,” a contiguous time period with

length of 3 is needed to process this operation. If the first time

block is taken, then the contiguous time period cannot go

beyond time block 3, otherwise, the process is disjunctive.

Therefore 1 + 4 ≤ 1 and 2 + 5 ≤ 1. Since the assumption

is that the scheduling horizon is long enough so that the part can

be processed, 1 + 4 = 1 and 2 + 5 = 1. For the same part with

K = 6, there is one more similar constraint. Note that after

parameterization, the resulting tightened constraints can be

used for individual operations of parts with multiple operations.

Numerical Example. To illustrate the approach, a numerical

example is presented. Consider a single-operation part problem

with p = 3 and K = 8. Decision variables include part status k,

beginning time b, and completion time c. Constraints are

processing time requirements Eq. (1), and Eqs. (3) - (5).

Without integrality requirements, the constraints to Porta are

shown in Fig. 4 (x1: b; x2: c; x3 - x10: 1 - 8).

5

x2-x1+1=3

x3+x4+x5+x6+x7+x8+x9+x10=3

x2+8-8x3>=1

x1-8+8x3<=1

x2+8-8x4>=2

x1-8+8x4<=2

x2+8-8x5>=3

x1-8+8x5<=3

x2+8-8x6>=4

x1-8+8x6<=4

x2+8-8x7>=5

x1-8+8x7<=5

x2+8-8x8>=6

x1-8+8x8<=6

x2+8-8x9>=7

x1-8+8x9<=7

x2+8-8x10>=8

x1-8+8x10<=8

Figure 4. Original constraints of a single part problem

By constraint-to-vertex conversion, 1234 vertices are

obtained and the last 10 are shown in Fig. 5. Six integral

vertices remain after eliminating factional vertices as shown in

Fig. 6. By vertex-to-constraint conversion, tight constraints are

generated by Porta in Fig. 7.

(1225) 1 3 1 1 0 7/ 8 1/ 8 0 0 0

(1226) 1 3 1 1 1/ 8 0 0 0 1/ 2 3/ 8

(1227) 1 3 1 1 1/ 8 7/ 8 0 0 0 0

(1228) 1 3 1 1 1/ 4 0 3/ 4 0 0 0

(1229) 1 3 1 1 3/ 8 0 0 5/ 8 0 0

(1230) 1 3 1 1 1/ 2 0 0 0 1/ 2 0

(1231) 1 3 1 1 5/ 8 0 0 0 0 3/ 8

(1232) 3 5 0 0 1 1 1 0 0 0

(1233) 2 4 0 1 1 1 0 0 0 0

(1234) 1 3 1 1 1 0 0 0 0 0

Figure 5. Vertices of the linear programming problem

(1) 1 3 1 1 1 0 0 0 0 0

(2) 2 4 0 1 1 1 0 0 0 0

(3) 3 5 0 0 1 1 1 0 0 0

(4) 4 6 0 0 0 1 1 1 0 0

(5) 5 7 0 0 0 0 1 1 1 0

(6) 6 8 0 0 0 0 0 1 1 1

Figure 6. Integral vertices

(1) +x2+2x3+2x4-7x5+x6+x7-8x8=0;

(2) -x3+x5-x6+x8-x9=0;

(3) -x4+x5-x7+x8-x10=0;

(4) -4x1+3x2-2x3-2x4-x5-x6-x7=0;

(5) +x5+x8=1;

(6) -x10<=0;

(7) -x9+x10<=0;

(8) -x8+x9<=0;

(9) -x7+x8-x10<=0;

(10) -x6+x7-x9+x10<=0;

(11) +x6+x9<=1;

(12) +x9<=1;

Figure 7. Tightened constraints

Equalities (2), (3), and (5) in Fig. 7 are converted to a set of

processing time-related tightened constraints as follows,

1 4 7
1,     (17a)

2 5 8
1,     (17b)

3 6
1.   (17c)

Because of “non-preemptive,” a contiguous time period

with length of 3 is needed to process this operation. If the first

time block is taken, then the contiguous time period cannot go

beyond time block 3, otherwise, the process is disjunctive.

Therefore 1 + 4 + 7 ≤ 1. Since the assumption is that the

scheduling horizon is long enough so that the part can be

processed, 1 + 4 + 7 = 1 as shown in Eq. (17a). Similarly,

one  from time slots 2, 5 and 8 must be 1 as shown in Eq. (17b),

and one  from time slots 3 and 6 must be 1 as shown in Eq.

(17c). Given Eq. (17), inequality (11) in Fig. 7 is redundant.

This constraint set has been reported in our previous work [5].

The above set of tightened constraints can be generalized for

all operations with different processing time as follows,
/ :

0

1, [1,].
K p p k K

k p
k p

 





    




  (18)

b) Two operations

Now consider a part with two operations, given part

parameters (due date d, processing time p1 and p2, and arrival

time a) and the scheduling horizon length in numerical values,

tightened constraints are established as follows.

For the first and second operations, they have their own

constraints such as processing time requirements. There is also

an operation precedence constraint that couples the two

operations together. Denote the operation-level constraints for

the first and second operations as C1 and C2, respectively, and

the coupling constraint as C1-2. Apply the tightened constraints

obtained by tightening single-operation parts to C1 and C2, and

obtain TC1 and TC2, respectively. With the constraint set {TC1,

TC2, C1-2}, tighten the two-operation formulation through the

four steps presented in the above subsubsection, and obtain

tightened constraints across two operations as TC1-2. Note that

after parameterization, TC1-2 can be used for every two

consecutive operations of parts with multiple operations.

Similar to the tightened constraints for every operation, the

tightened constraints across two operations also depend on part

parameters and the length of the scheduling horizon. For

example, consider a part with p1 = 3 and p2 = 1, and K = 5.

Because the part must be processed in the scheduling horizon,

the latest completion time of operation one is 4 as operation two

needs one time slot after it, thus 1,5 = 0. Similarly, the earliest

beginning time of operation two is 4 as operation one needs

three time slots before it, thus 2,1 = 2,2 = 2,3 = 0.

c) Multiple operations

With tightened constraints for individual operations and

every two consecutive operations, the tightening process is

repeated for parts with more operations. Since the number of

vertices increases exponentially in constraint-and-vertex

conversion and so does the number of constraints, it is difficult

to obtain a tight formulation. Our goal is thus to obtain “near-

tight” formulations by analyzing parts with few operations.

B. Tightness proof

Tightness proof is established in the following Theorem 1.

Theorem 1. For the formulation of single-operation parts

described by Eqs. (1), (3-5) and (9-14), the integral vertices

(Definition 2) of its integer-relaxed convex hull (Definition 1)

Conv(PMILP-IR) are the vertices original convex hull

Conv(PMILP), and vice versa.

Proof. The proof will be conducted in two steps. The first is

to show that the values of integer decision variables can be

uniquely determined by the values of binary variables, and vice

versa. The second step is to prove that integral vertices of the

6

integer-relaxed convex hull Conv(PMILP-IR) are the vertices of

the original convex hull Conv(PMILP) based on the theorems

developed for MBLP problems in our previous work [4].

Step 1. Integer variables can be uniquely determined by

binary variables and vice versa

Binary to Integer. Given an integral vertex of the integer-

relaxed convex hull, it is feasible to the original MILP problem.

Since Eqs. (3-5) are all satisfied, a contiguous time period of

length p should be assigned to process the part. For any k0 such

that 1 ≤ k0 ≤ T – p +1, it is assumed that the part is processed

during time interval [k0, k0 + p-1]. Thus k equals to 1 for k 

[k0, k0 + p-1] and 0 otherwise as required by the processing time

requirements Eqs. (3-5). After replacing c by b + p - 1 in Eqs.

(3-4), the following inequalities are obtained:

0 1;b k b p    (19)

0 1 1.b k p b p      (20)

Eq. (20) can be rewritten as b - p +1 ≤ k0 ≤ b. Combining the

rewritten Eq. (20) and Eq. (19), obtain k0 ≤ b ≤ k0, which

implies b = k0. Thus c = b + p – 1 = k0 + p – 1. Therefore the

values of  uniquely determine the values of b and c.

Integer to binary. Assume b and c equal to k0 and k0 + p - 1,

respectively, and Eqs. (3-4) become the following,

 0 ,1 1 kk k p N    (21)

 0 1 .kk k N    (22)

Rewrite Eqs. (21) and Eq. (22) as,

  01 (,1)kN pk k     (23)

  01 .kN k k   (24)

When k < k0, it can be seen that k < k0 + p-1. Thus the right-

hand sides of Eqs. (24) and (23) are positive and negative,

respectively. Therefore, k must be 0 to satisfy both constraints.

Similar analysis applies when k > k0 + p-1, and k must be 0.

When k0 ≤ k ≤ k0 + p-1, the right hand sides of Eqs. (23) and

(24) are both non-positive, so k could be 0 or 1. However,

because of Eq. (5), kk = p, k can only be 1. In summary, the

values k must be 1 for k  [k0, k0 + p-1] and 0 otherwise. Thus

the values of b and c uniquely determine the values of .

The above implies that when s are binary and Eqs. (3-5)

are all satisfied, the values of integer decision variables b and c

can be uniquely determined by the values of s, and vice versa.

Therefore, given a vertex of integer-relaxed convex hull

Conv(PMILP-LR), if all the binary variables have binary values,

then the integer variables have integral values, and vice versa.

Thus the MILP problem under consideration can be treated as

an MBLP problem for the tightening process.

Step 2. Tightness of MILP problems

For an MBLP, it has been proved that, the integral vertices

(Definition 2) of its integer-relaxed convex hull are all vertices

of the original convex hull in our previous work [4], and vice

versa. Since the MILP under consideration can be treated as

MBLP in the tightening process, integral vertices of its integer-

relaxed convex hull Conv(PMILP-LPR) are the vertices original

convex hull Conv(PMILP), and vice versa. End.

Based on Theorem 1, vertex projection can be simply done

by eliminating factional vertices in Step 2 to tighten the single-

operation part formulation. For parts with multiple operations,

since the relations between b and  within individual operations

still hold, the values of b and c can be uniquely determined by

the values of s. Thus the formulation is still tight by applying

the same idea as that for the single-operation parts.

Generalization. Beyond MILP job-shop scheduling

problems under consideration, this approach also applies to

other MILP problems with unique relationships between integer

and binary variables.

V. NUMERICAL RESULTS

The above tightening method is implemented by using Porta

[24]. The job-shop scheduling problems are solved by using

IBM ILOG CPLEX Optimization Studio V 12.8.0.0 [25] on a

PC with 2.40GHz Intel Xeon E-2286M CPU and 32G RAM.

Three examples are presented. The first is to tighten

formulations of single-parts with one and two operations to

illustrate the idea and present the insights. Robustness of

formulation tightening is shown in the second example. The

last is to demonstrate performance of tightened single-part

formulations when solving overall problems.

Example 1: Single part

a) One operation

Consider the scheduling problem with a single-operation

part with p = 3 and K = 8 in used in Subsection III-C.

Constraints (2), (3), (5) and (11) in Fig. 7 have been explored

in Subsection III-C, and inequality (12) is redundant given the

binary requirements of . Therefore the focus is on exploring

inequalities (6) to (10) and equalities (1) and (4) in Fig. 7.

1) Inequality constraints

Inequality (9) in Fig. 7 is converted to a set of processing

time-related tightened constraints as follows,

 2 3 1 4
2      (25a)

 3 4 2 5
2 ,      (25b)

 4 5 3 6
2 ,      (25c)

 5 6 4 7
2 ,      (25d)

 6 7 5 8
2 .      (25e)

Eq. (25a) implies that if 2 and 3 are both 1, either 1 or 4

must be 1 because of “non-preemptive” processing time

requirements, similar for Eqs. (25b) - (25e). This set of

constraints has been reported in our previous work [5].

The above set of tightened constraints can be generalized for

all operations with different processing time as follows,

 
1

1

(1) , [1,].
k p

k k p
k

p k K p




  
 


 

     (26)

Eq. (26) implies that if  are all 1, either k or k+p must be 1.

When examining inequalities (6) to (10) in Fig. 7 as a group,

they can be put together in the matrix form in Eq. (27) below,

4

5

6

7

8

0 0 0 0 1

0 0 0 1 1

0.0 0 1 1 0

0 1 1 0 1

1 1 0 1 1











   
  

   
   
  

    
     

 (27)

It is noted that 1 to 3 do not show up in the above equation.

7

The reason is that if 4 to 8 are properly regulated to satisfy the

“non-preemptive” processing time requirements by Eq. (27),

then 1 to 3 are expected to satisfy the requirements too because

of the processing time related tightened constraint Eq. (17). In

addition, although the first row of Eq. (27), denoted as Eq. (27-

1), is redundant given the binary requirements of , it helps put

the constraints together in a square matrix form. Physical

meanings of Eqs. (27-2)-(27-5) are analyzed one by one below.

Physical meanings of Eq. (27-2) under all combinations of

binary variables involved are shown in Table I below.

TABLE I. CONSTRAINT ANALYSIS FOR EQ.(27-2)

Case 7 8 Eq. (25-2) Satisfy or not

1 0 0 -0 + 0 ≤ 0 Yes

2 0 1 -0 + 1 ≤ 0 No

3 1 0 -1 + 0 ≤ 0 Yes

4 1 1 -1 + 1 ≤ 0 Yes

It can be seen Eq. (27-2) guarantees that if 8 is 1, 7 must

be 1 as implied by the 2nd row of Table I. This is reasonable

because the last possible three time slots to process the part is

6, 7, and 8 given the processing time is 3. If the 8th time slot is

taken, then the 7th must be taken too, otherwise the part cannot

be completed within the scheduling horizon. The physical

meaning of Eq. (27-3) is similar, if 7 is 1, 6 must be 1.

Physical meanings of Eq. (27-4) under all combinations of

binary variables involved are shown in Table II below.

TABLE II. CONSTRAINT ANALYSIS FOR EQ.(27-4)

Case 5 6 7 8 Eq. (24-4) Satisfy or not

1 0 0 - 0 -0 + 0 -0 ≤ 0 Yes

2 0 0 - 1 -0 + 0 -1 ≤ 0 Yes

3 0 1 - 0 -0 + 1 -0 ≤ 0 No

4 0 1 - 1 -0 + 1 -1 ≤ 0 Yes

5 1 0 - 0 -1 + 0 -0 ≤ 0 Yes

6 1 0 - 1 -1 + 0 -1 ≤ 0 Yes

7 1 1 - 0 -1 + 1 -0 ≤ 0 Yes

8 1 1 - 1 -1 + 1 -1 ≤ 0 Yes

It can be seen Eq. (27-4) guarantees that 6 cannot be 1 when

5 and 8 are both 0 as implied by the 3rd row of Table II. In

other words, if 6 is 1, one of 5 and 8 has to be 1. This is

reasonable because if neither of the 5th time slot or the 8th is

taken, then the 6th cannot be taken based on the processing time

requirement. Note that Case 8 is not feasible because 5 and 8

cannot be 1 at the same time as guaranteed by Eq. (17b).

Physical meanings of Eq. (27-5) under all combinations of

binary variables involved are shown in Table V in the appendix,

as well as the analysis. The physical meanings of Eq. (27) can

be intuitively shown in Fig. 8 below.

As shown in the figure: (a) if 8 is 1, then 7 must be 1; (b)

if 7 is 1, then 6 must be 1; (c) if 6 is 1, then one of 5 and 8

has to be 1; and (d) if 5 is 1, then one of 4 and 7 has to be 1.

Eq. (27) with the processing time related tightened constraint

Eq. (17) guarantee a contiguous time period with length of 3 to

process the part. For example, if 6 is 1, there are two

possibilities: (1) 8 is 1; or (2) 5 is 1. The first situation is

simple since 7 will be 1 when 8 is 1, thus time slots 6, 7 and 8

are used to process the part. For the second situation, 5 is 1,

and there are two possibilities again: (2.1) 4 is 1; or (2.2) 7 is

1. Time slots 4, 5 and 6 are used to process the part in the first

situation, and time slots 5, 6 and 7 are used for the second

situation. Among all situations described above, a contiguous

time period with length of 3 is guaranteed to process the part.

Similar analysis can be performed for other s.

Figure 8. Intuitive description of Eq. (27)

With further analysis on the meanings of Eq. (27), it can be

extended to a set of tightened constraints Eq. (28) for problems

with longer time periods as follows,

... 0 0 0 0 0 0 0 0 1

... 0 0 0 0 0 0 0 1 1

... 0 0 0 0 0 0 1 1 0

... 0 0 0 0 0 1 1 0 1

... 0 0 0 0 1 1 0 1 1

... 0 0 0 1 1 0 1 1 0

... 0 0 1 1 0 1 1 0 1

... 0 1 1 0 1 1 0 1 1

... 1 1 0 1 1 0 1 1 0

... 1 0 1 1 0 1 1 0 1

...

 
 

 
 
 

  
  
 

  
   

   


  
   

 

4

5

6

7

8

9

10

11

0.

...

K



















 
 
 
 
 
 
 
  
 
 
 
 
 
 
  

(28)

The entries xnh of the matrix are presented below.
Let 4 ,

0, 0

1, 0 and mod 3 =1

1, 0 and mod 3 =2

0, 0 and mod 3 =0

nh

n h K y y Z

y

y y
x

y y

y y

    



 

 


 

 (29)

The meaning of Eq. (28) is similar to Eq. (27). For example,

when k is 1, it is intuitively shown in Fig. 9.

For example, if k is 1, there are two possibilities: (1) k-1 is

1; or (2) k+2 is 1. For Case (1), there are two possibilities again:

(1.1) k-2 is 1; or (1.2) k+1 is 1. For each of them, a contiguous

time period with length of 3 is guaranteed to process the part.

For Case (2),  k+2 is 1, and there are two possibilities again:

(2.1) k+1 is 1; or (2.2) k+4 is 1. For Case (2.1), a contiguous

time period with length of 3 is guaranteed to process the part.

For Case (2.2), according to Eq. (18), one of k+3 and k+6 has to

be 1, which is contradictory with the current set up where both

of k+3 and k+6 are zero. Among all the situations described

above, a contiguous time period with length of 3 is guaranteed.

Similar analysis can be performed for other s.

8

Figure 9. Intuitive description of Eq. (28)

When the process time is 2 and 4, the corresponding sets of

tightened constraints for problems with longer time periods are

shown in Eqs. (30) and (32), respectively. The entries of these

two matrices are presented in Eqs. (31) and (33), respectively.

... 0 0 0 0 0 0 0 0 1

... 0 0 0 0 0 0 0 1 1

... 0 0 0 0 0 0 1 1 1

... 0 0 0 0 0 1 1 1 1

... 0 0 0 0 1 1 1 1 1

... 0 0 0 1 1 1 1 1 1

... 0 0 0 1 1 1 1 1 1

... 0 0 1 1 1 1 1 1 1

... 0 1 1 1 1 1 1 1 1

... 1 1 1 1 1 1 1 1 1

...

 
 

 
  


 
  


  
   

    


   
     

 

3

4

5

6

7

8

9

10

0,

...

K



















 
 
 
 
 
 
 
  
 
 
 
 
 
 
  

 (30)

2, 3 ,

0, 0

1, 0 and mod 3 =1

1, 0 and mod 3 =0

nh

P n h K y y Z

y

x y y

y y

     




  
 

 (31)

... 0 0 0 0 0 0 0 0 1

... 0 0 0 0 0 0 0 1 1

... 0 0 0 0 0 0 1 1 0

... 0 0 0 0 0 1 1 0 0

... 0 0 0 0 1 1 0 0 1

... 0 0 0 1 1 0 0 1 1

... 0 0 1 1 0 0 1 1 0

... 1 1 0 0 1 1 0 0

... 1 1 0 0 1 1 0 0 1

... 1 0 0 1 1 0 0 1 1

...

 
 

 
 
 

 
  
 

  
  
 
 
 

   
  
 
 

5

6

7

8

9

10

11

12

0.

...

K



















 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

 (32)

4, 5 ,

0, 0

1, 0 and mod 4 =1

1, 0 and mod 4 =2

0, 0 and mod 4 =3

0, 0 and mod 4 =0

nh

P n h K y y Z

y

y y

x y y

y y

y y

     



 


 
 




 (33)

2) Equality constraints

With further analysis on the meanings of equalities (1) and

(4) in Fig. 7 under all possible part statuses, i.e., active or not at

each time slot, two new sets of beginning/completion time-

related tightened constraints are obtained as follows,

1 2
1 2()b K p      

3 4 5 6 7 8
() 0(),           (34)

8 7 6 5 4
0() ()c K         

3 2 1
(1) 2().K       (35)

Since the processing time is p and the part must be completed

within the scheduling horizon, the largest beginning time is K-

p + 1 with 6, 7 and 8 as 1 as implied in Eq. (34). When the

starting of nonzero  moves earlier, b gets smaller. The earlier

the , the larger the impacts on b. The meaning of Eq. (35) is

similar. The largest completion time is K with 6, 7 and 8 as

1. When the starting of nonzero  moves earlier, c gets smaller.

The earlier the , the larger the impacts on c. It can be verified

that these constraints are meaningful under all possible part

statuses of 1 - 8.

The above two tightened constraints can be generalized for

all operations with different processing time as follows,

 
/ 1:

0 0

1
n K p p np K

K np
n

b K p n
 





      

 
 

      (36)

  
/ 2: 1:

0 0 1

() .
n K p p np K np p K

K np K np p
n

c n K n
   

 
 

 
          

    
  

      (37)

Eqs. (18), (26), (36) and (37) directly constrain 1 - 8, b,

and c within one operation. For the single-operation part

problem with p = 3 and K = 8 under consideration, with Eqs.

(17) and (25), the total number of vertices decreases from 1234

to 250 in a major way. With Eqs. (34) and (35), it is further

reduced to 42. Replace (25) by (27), the total number of

vertices is 6, and all of the vertices are integral vertices,

implying the formulation is tight. For the single part and one

operation scheduling problem with the processing time as 1, 2,

3, and 4, tight formulations are obtained.

b) Two operations

Now add another operation with processing time of 3 to the

problem in a), with additional operation precedence constraint

Eq. (6). Decision variables include two sets of k, b, and c for

operations 1 and 2, respectively. With the standard formulation

established in Section III, after relaxing integrality

requirements, 63,872 vertices are obtained by constraint-to-

vertex conversion. With Eqs. (18) and (26) obtained in the one-

operation example, a total number of 23,206 vertices remain.

With Eqs. (36) and (37), 333 vertices remain. After eliminating

factional vertices, there are 6 integral vertices. After vertex-to-

constraint conversion, the resulting tight constraints are

obtained as shown in Fig. 10 (x1: b1; x2: c1; x3 - x10: 1,1 - 1,8;

x11: b2; x12: c2; x13 - x20: 2,1 - 2,8).

9

(1) +x12+x16+x17-8x18=0;

(2) -x8=0;

(3) -x9=0;

(4) -x10=0;

(5) -x13=0;

(6) -x14=0;

(7) -x15=0;

(8) +2x5+x11-x12=0;

(9) -x3+x5-x6=0;

(10) -x4+x5-x7=0;

(11) -x16+x18-x19=0;

(12) -x17+x18-x20=0;

(13) -4x11+3x12-x16-x17=0;

(14) +x2+x3+x4-5x5=0;

(15)-5x1+3x2-2x3-2x4=0;

(16)+x18=1;

(17)-x7<=0;

(18)-x6+x7<=0;

(19)-x19+x20<=0;

(20)+x7-x20<=0;

(21)+x6-x19<=0;

(22)+x19<=1.

Figure 10. Ex.1-b) Tightened constraints

After analyzing the meanings of equalities (2) to (7) in Fig.

10 under possible part statuses, two sets of operation

precedence-related tightened constraints are obtained below,

1, 2
0, [1,];

k
k K p K     (38)

2, 1
0, [1,].

k
k p   (39)

Since the two operations of the part needs to be completed in

the scheduling horizon, the largest completion time for

operation 2 is K, with beginning time of K – p2 + 1. Therefore

operation 1 must be completed by that time, and 1 for period

of [K - p2 + 1, K] must be 0 as implied in Eq. (38). The meaning

of Eq. (39) is similar. The smallest beginning time of operation

1 is 1, with completion time of p1. Therefore operation 2 cannot

start before p1, and 2 for period of [1, p1] must be 0.

The above two tightened constraints can be generalized for

all operations with different processing time as follows,

,
1

0, [1,], [1, 1],
J

j k g
g j

k K p K j J
 

      (40)

1

,
1

0, [1,], [2,].
j

j k g
g

k p j J




   (41)

Eqs. (40) and (41) directly constrain 1 - 8 across

operations. With them, the total number of vertices decreases

to 14 from 333 in a major way.

c) One operation with linearized tardiness

Now add the constraints associated with tardiness to the

problem in a), assuming due date d is 2. Constraints under

consideration are processing time requirements Eq. (1) and Eqs.

(3) - (5), and tardiness constraints Eqs. (9) - (14). Decision

variables include a set of k, b, and c, a set of continuous

variables w, a set of binary variables , and tardiness T. With

the standard formulation established in Section III, after

relaxing integrality requirements, 6,170 vertices are obtained by

constraint-to-vertex conversion. With Eqs. (17), (25), (34) and

(35) obtained in the one-operation example, a total number of

210 vertices remain. After eliminating factional vertices, there

are 8 integral vertices. After vertex-to-constraint conversion,

the resulting tight constraints are shown in Fig. 11 (x1: b; x2: c;

x3 - x10: 1 - 8; x11 - x13: w1 - w3; x14 - x16: 1 - 3; x17: T).

(1) +x2+2x3+2x4-7x5+x6+x7-8x8=0;

(2) +x6+x7+x8+2x9+2x10+x12-15x13=0;

(3) -x11=0;

(4) -x14=0;

(5) +16x13-x17=0;

(6) +x15-x16=0;

(7) +x12+x13-x15=0;

(8) -x3+x5-x6+x8-x9=0;

(9) -x4+x5-x7+x8-x10=0;

(10) +15x5-x6-x7+14x8-2x9-2x10-16x12=0;

(11) -4x1+3x2-2x3-2x4-x5-x6-x7=0;

(12) +x16=1;

(13) +2x7+x8+x9+3x10-x17<=-1;

(14) -x10<=0;

(15) -x8+x9<=0;

(16) -x9+x10<=0;

(17) -x7+x8-x10<=0;

(18) -x7-x8-x9-2x10+x17<=2.

Figure 11. Ex.1-c) Tightened constraints

By combining equalities (2), (5) and (10) in Fig. 11, the

following constraint is obtained,

3 4 5 6 7 8
2 2 2 .T            (42)

Since the processing time is 3 and the due date is 2, the

smallest tardiness is 1 with 1, 2 and 3 as 1, and the largest

tardiness is 6 with 6, 7 and 8 as 1 as implied in Eq. (42).

When the starting of nonzero  moves earlier, T gets smaller.

The earlier the , the smaller the impacts on T.

After analyzing the physical meanings, Eq. (42) is converted

to the following constraint in generic forms,

 

 

(1)/ 1 0: 1:

1 0 1

(1)/ 1 : (1)

(1)
1 1

(1) ,

,

K P P pn K p pn K

pn pn
n

K d P p d p n K

d p n
n

p d n n p d

T

n p d

 

 
 






 



         

 
  

        

  
 

       
 
  


 (43)

Eq. (43) directly constrains 1 - 8 and tardiness T. With it,

the total number of vertices decreases to 84 from 210.

The tightened constraints obtained in a), b), and c) tighten

the formulation. However, they can hardly be obtained

manually without going through the above tightening process.

The formulation with them is much tighter (not tight yet) than

the original one. Those tightened constraints can be extended

to other parts with more operations and processing time other

than 3, and whose due date is positive and less than K.

Example 2: Medium-sized problems

This medium-sized example is to demonstrate effectiveness

and robustness of formulation tightening. The instance is

created based on the first 89 parts and all machines in [7].

According to which parts/operations that machines can process,

machines are categorized into 19 types, and each type has 1 to

6 machines with the same function. The number of time slots

under consideration is 220 so that all the parts can be processed.

Machines are assumed always available for simplicity. There

are three values for tardiness weights, 1, 10, and 100, and they

are randomly assigned to parts with percentage of 50%, 40%

and 10%, respectively. The weight for the total tardiness is 0.95.

Before and after adding tightened constraints, the overall job-

shop scheduling problems are solved by using branch-and-cut.

Results with different formulations are presented in Table III

bellow: (a) the original formulation; (b) adding Eq. (18) and

(26); (c) adding Eqs. (36) and (37); (d) adding Eqs. (40) and

(41); (e) adding Eq. (43); and (f) replacing Eq. (26) in (e) by

10

Eqs. (28), (30) and (32) for operations with processing time of

2, 3, and 4 time slots. From (a) to (e), the process is

accumulative. Eq. (43) is applied to operations with processing

time of 1, 2, and 3 time slots. Stopping criteria are 600 second

(s) CPU time or 0.01% MIP gap. CPU time consists of three

parts, data and model loading, solving, and solution outputting.

TABLE III. COMPARISON OF FORMULATIONS: MEDIUM-SIZED

Formulation
Total

tardiness

Total cycle

time

MIP

gap (%)

CPU

 (s)

Solve

(s)

Cut

(s)

Branch

(s)

(a): Original 35,288 826 1.33 607.7 606.3 38.8

523.8

(b): (a) + (18), (26) 35,243 766 0.94 59.4 57.8 8.0

43.2

(c): (b) + (36)-(37) 35,100 613 0.01 6.3 4.5 1.5 0

(d): (c) + (40)-(41) 35,100 613 0.01 6.3 4.6 1.5 0

(e): (d) + (43) 35,100 613 0.01 6.3 4.6 1.6 0

(f): replace (26) in (e)

by (28), (30), (32)

35,100 617 0.01 8.5 6.5 2 0

According to Table III, the CPU, solving, cutting and

branching time is much reduced by adding new tightened

constraints Eqs. (18), (26), (36), (37), (40), (41) and (43), while

the solution quality is still high. With the standard formulation,

a feasible solution with the total weighted tardiness of 35,288

and total cycle time of 826 is obtained in 10 minutes with a MIP

gap of 1.3%, while the time on cutting and branching is 39s and

524s, respectively. By adding new tightened constraints, a

feasible solution with a lower total weighted tardiness and cycle

time is obtained in 6s, while the cutting time is 1.6s and there

are no branching operations.

When replacing Eq. (26) by Eqs. (28), (30) and (32) (the

formulation becomes tighter), a similar solution is obtained in

9 s, with cutting time as 2s. The reason is that when solving the

problem by using branch-and-cut, cuts are performed around

the optimal solution to the LP relaxation problem [20], not on

the entire feasible region as mentioned in Section I. Therefore

more tightened constraints may not guarantee better

computational efficiency. There is a trade-off between

tightness and computational efficiency.

The problem is also solved with randomly assigned part

tardiness weights considering formulations (a), (e) and (f)

presented above. Cutting and branching time for problems with

different sets of weights are compared in Fig. 12. Then for each

part, a random variable following U(-5, 5) is generated and

added to the due date, while tardiness weights are the same as

the original problem. The results are shown in Fig. 13.

Figure 12. Cutting, branching and other time under different weights

Figure 13. Cutting, branching and other time under different due dates

For every instance, the same solution is obtained with and

without tightened constraints. By adding tightened constraints,

the total cutting and branching time is significantly reduced,

and the reduction is mainly from the reduction of branching

time. Results demonstrates effectiveness and robustness of our

formulation tightening.

Example 3: Large-sized problems

This large-sized example is to demonstrate performance of

tightened single-part formulations. The instance is created

based on all 127 parts and all machines in [7]. The number of

time slots under consideration is 300 so that all the parts can be

processed. The other problem setup is the same as in Example

2. Before and after adding tightened constraints, the job-shop

scheduling problems are solved by using branch-and-cut, and

results are shown in Table IV. Stopping criteria are 1200

second (s) CPU time or 0.011% MIP gap.

TABLE IV. COMPARISON OF FORMULATIONS: LARGE-SIZED

Formulation
Total

tardiness

Total cycle

time

MIP

gap (%)

CPU

time (s)

Solving

time (s)

(a): Original 18,198 1447 20.83 1204.2 1200.8

(b): (a) + (18), (26) 14,568 891 1.45 1204.6 1201.3

(c): (b) + (36)-(37) 14,543 762 0.01 14.93 12.27

(d): (c) + (40)-(41) 14,543 762 0.01 14.79 12.01

(e): (d) + (43) 14,543 763 0.01 13.74 11.03

(f): replace (26) in (e) by

(28), (30), (32) 14,543 762 0.01 19.67 15.91

According to Table IV, both the solution quality and

computational efficiency is significantly improved by adding

new tightened constraints. With the standard formulation, a

feasible solution with the total weighted tardiness of 37,633 and

total cycle time of 613 is obtained in 20 minutes with a MIP gap

of 21%. By adding new tightened constraints Eqs. (18), (26),

(36), (37), (40), (41) and (43), a feasible solution with lower

tardiness and cycle time is obtained in 14s. Similar to Example

2, when replacing Eq. (26) by Eqs. (28), (30) and (32) (the

formulation becomes tighter), the CPU and solving time both

increases. The results show that tightening single parts also

improves solution quality and computational efficiency when

solving overall problems. Results demonstrate great potential

of our formulation tightening method for complex MILP

problems where the values of integer variables are uniquely

determined by the values of binary variables.

(a) (e) (f)

Instance 3

(a) (e) (f)

Instance 2

0

100

200

300

400

(a) (e) (f)

Instance 1

Cut

(a) (e) (f)

Instance 6

(a) (e) (f)

Instance 5

0

200

400

600

800

(a) (e) (f)

Instance 4

Cut

Branch

11

VI. CONCLUSION

In this paper, an innovative and systematic method is

established for the first time to tighten the formulations of

individual parts with multiple operations in the data pre-

processing stage. The idea is to first link integer variables to

binary variables by innovatively combining constraints so that

the integer variables are uniquely determined by binary ones.

With binary variables only, the vertices of the convex hull can

be obtained based on the vertices of the linear problem after

relaxing binary requirements with proved tightness. These

vertices are then converted back to tight constraints with

coefficients characterized by part parameters and the length of

the scheduling horizon. This method significantly improves

and extends our previous results on tightening single-operation

parts without actually achieving tightness. Numerical results

demonstrate significant benefits on solution quality and

computational efficiency.

Beyond MILP job-shop scheduling problems under

consideration, this approach also applies to other MILP

problems unique relationships between integer and binary

variables, such as job-shop scheduling problems with other

features like machine-depend processing time and sequence-

dependent setups. For practical applications, the idea is to

obtain “near-tight” formulations by partially tightening. The

approach fundamentally changes the way how such problems

are formulated and solved. In addition, this method goes

naturally with part-based decomposition and coordination

approaches, a subject worthy of further exploration.

VII. APPENDIX

A. Physical meanings of tight constraints

Physical meanings of Eq. (27-5) under all combinations of

binary variables involved are shown in Table V below.

TABLE V. CONSTRAINT ANALYSIS FOR EQ. (27-5)

Case 4 5 6 7 8 Eq. (23-5) Satisfy or not

1 0 0 - 0 0 -0 + 0 -0 +0 ≤ 0 Yes

2 0 0 - 0 1 -0 + 0 -0 +1 ≤ 0 No

3 0 0 - 1 0 -0 + 0 -1 +0 ≤ 0 Yes

4 0 0 - 1 1 -0 + 0 -1 +1 ≤ 0 Yes

5 0 1 - 0 0 -0 + 1 -0 +0 ≤ 0 No

6 0 1 - 0 1 -0 -1 + 0 -1 ≤ 0 Yes

7 0 1 - 1 0 -0 -1 + 1 -0 ≤ 0 Yes

8 0 1 - 1 1 -0 + 1 -1 +1 ≤ 0 No

9 1 0 - 0 0 -1 + 0 -0 +0 ≤ 0 Yes

10 1 0 - 0 1 -1 + 0 -0 +1 ≤ 0 Yes

11 1 0 - 1 0 -1 + 0 -1 +0 ≤ 0 Yes

12 1 0 - 1 1 -1 + 0 -1 +1 ≤ 0 Yes

13 1 1 - 0 0 -1 + 1 -0 +0 ≤ 0 Yes

14 1 1 - 0 1 -1 -1 + 0 -1 ≤ 0 Yes

15 1 1 - 1 0 -1 -1 + 1 -0 ≤ 0 Yes

16 1 1 - 1 1 -1 + 1 -1 +1 ≤ 0 Yes

It can be seen that Eq. (27-5) guarantees that 5 cannot be 1

when 4 when 7 are both 0 as implied by the 5th row of Table

V. In other words, if 5 is 1, one of 4 and 7 has to be 1. This

is reasonable because if neither of the 4th time slot or the 7th is

taken, the 5th cannot be taken based on the processing time

requirement. Note Cases 2 and 10 in Table III are not feasible

because if 8 is 1, 7 must be 1 as guaranteed by Eq. (27-2).

Cases 6, 8, 11, 12, 14, and 15 are not feasible guaranteed by Eq.

(17). For Case 3, since 6 cannot be 1 when 5 and 8 are both

0 as guaranteed by Eq. (27-4), 6 has to be 0. However, if 7 is

1, 6 must be 1 as guaranteed by Eq. (27-3). Therefore Case 3

is infeasible too.

REFERENCES

[1] P. Brucker, Scheduling Algorithms, 5th edition, Springer-Verlag, Berlin,

2006.

[2] D. P. Bertsekas, Nonlinear programming, 3rd ed, Athena scientific, 2016.

[3] B. Yan, P. B. Luh, E. Litvinov, T. Zheng, D. Schiro, M. A. Bragin, F.

Zhao, J. Zhao, and I. Lelic “A Systematical Approach to Tighten Unit

Commitment Formulations,” in Proceeding of 2018 IEEE Power and

Energy Society General Meeting.

[4] B. Yan, P. B. Luh, T. Zheng, D. Schiro, M. A. Bragin, F. Zhao, J. Zhao,

and I. Lelic “A Systematic Formulation Tightening Approach for Unit

Commitment Problems,” IEEE Transactions on Power Systems, Vol. 35,

Issue 1, pp. 782 - 794, 2019.

[5] B. Yan, M. A. Bragin, and P. B. Luh, “Novel Formulation and Resolution

of Job-Shop Scheduling Problems,” IEEE Robotics and Automation

Letters, Vol. 3, Issue 4, pp. 3387 - 3393, 2018.

[6] T. Yamada, and N. Ryohei Nakano, “Job shop scheduling,” IEE control

Engineering series 55, pp. 134-134, 1997.

[7] D. J. Hoitomt, P. B. Luh, K. R. Pattipati, “A practical approach to job shop

scheduling problems,” IEEE Transactions on Robotics and Automation,

Vol. 9, No. 1, pp. 1-13, 1993.

[8] C. A. Kaskavelis and M. C. Caramanis, “Efficient Lagrangian relaxation

algorithms for industry size job-shop scheduling problems,” IIE

Transactions, Vol. 30, No. 11, pp.1085-1097, 1998.

[9] T. Sun, P. B. Luh, and L. Min, “Lagrangian relaxation for complex job

shop scheduling,” in Proceedings 2006 IEEE International Conference

on Robotics and Automation, pp. 1432 - 1437, 2006.

[10] T. Nishi, Y. Hiranaka, and M. Inuiguchi, “Lagrangian relaxation with cut

generation for hybrid flowshop scheduling problems to minimize the total

weighted tardiness,” Computers & Operations Research, Vol. 37, Issue 1,

pp. 189-198, 2010.

[11] K. Mao, Q. K. Pan, X. Pang, and T. Chai, “A novel Lagrangian relaxation

approach for a hybrid flowshop scheduling problem in the steelmaking-

continuous casting process,” European Journal of Operational Research,

Vol. 236, Issue 1, pp. 51-60, 2014.

[12] E. Asadi-Gangraj, “Lagrangian relaxation approach to minimize

makespan for hybrid flow shop scheduling problem with unrelated

parallel machines,” Scientia Iranica, Vol. 25, Issue 6, pp. 3765-3775,

2018.

[13] R. Z. Ríos-Mercado, and J. F. Bard, “Computational experience with a

branch-and-cut algorithm for flowshop scheduling with setups,”

Computers & Operations Research, Vol. 25, No. 5, pp. 351-366, 1998.

[14] M. Karimi-Nasab, and M. Modarres, “Lot sizing and job shop scheduling

with compressible process times: a cut and branch approach,” Computers

& Industrial Engineering, Vol. 85, pp. 196-205, 2015.

[15] M. Karimi-Nasab and S. M. Seyedhoseini, "Multi-Level Lot Sizing and

Job Shop Scheduling with Compressible Process Times: A Cutting Plane

Approach", European Journal of Operational Research, vol. 231, pp.

598-616, 2013

[16] J. C. H. Pan, and J. S. Chen, “Mixed binary integer programming

formulations for the reentrant job shop scheduling problem,” Computers

& Operations Research, Vol. 32, Issue 5, pp.1197-1212, 2005.

[17] C. Özgüven, Z. Yavuz, and L. Özbakır, “Mixed integer goal programming

models for the flexible job-shop scheduling problems with separable and

non-separable sequence dependent setup times,” Applied Mathematical

Modelling, Vol. 36, Issue 2, pp.846-858, 2012.

[18] L. Meng, C. Zhang, B. Zhang, and Y. Ren, “Mathematical modeling and

optimization of energy-conscious flexible job shop scheduling problem

with worker flexibility,” IEEE Access, Vol,7, pp. 68043-68059, 2019.

[19] B. Yan, H. Y. Chen, P. B. Luh, S. Wang, and J. Chang, “Litho machine

scheduling with convex hull analyses,” IEEE Transactions on Automation

Science and Engineering, Vol.10, No. 4, pp. 928-937, 2013.

[20] H. D. Sherali, and P. J. Driscoll, “On tightening the relaxations of Miller–

Tucker–Zemlin formulations for asymmetric traveling salesman

problems,” Oper. Res., Vol. 50, pp. 656–669, 2002.

[21] D. Bienstock, and B. McClosky, “Tightening simple mixed-integer sets

with guaranteed bounds,” Math. Program., Vol. 133, pp. 337-363, 2012.

12

[22] E. M. L. Beale and J. J. H. Forrest, “Global optimization using special

ordered sets,” Mathematical Programming, Vol. 10, No. 1, pp. 52-69,

1976.

[23] G. B. Dantzig, and B. Curtis Eaves, “Fourier-Motzkin elimination and its

dual,” J Comb Theory A, Vol.14, no. 3, pp. 288-297, 1973.

[24] Heidelberg University, http://www.iwr.uni-

heidelberg.de/groups/comopt/software/PORTA/

[25] IBM ILG CPLEX V 12.1 User’s Manual.

Bing Yan (S’11-M’17) received her B.S. degree from

Renmin University of China in 2010, M.S. and Ph.D.

degrees from University of Connecticut in 2012 and 2016,

respectively. She is currently an Assistant Professor in the

Department of Electrical and Microelectronic

Engineering, Rochester Institute of Technology. Before

joining Rochester Institute of Technology, she was an

Assistant Research Professor in the Department of

Electrical and Computer Engineering, University of Connecticut. Her research

interests include manufacturing system scheduling, power system optimization,

mathematical optimization, formulation tightening, and operation optimization

of microgrids and distributed energy systems.

Mikhail A. Bragin (S’11-M’17) received his B.S. and

M.S. degrees in Mathematics from the Voronezh State

University, Russia, in 2004, the M.S. degree in Physics and

Astronomy from the University of Nebraska-Lincoln,

USA, in 2006, and the M.S. and Ph.D. degree in Electrical

and Computer Engineering from the University of

Connecticut, USA, in 2014 and 2016, respectively. He is

an Assistant Research Professor in electrical and computer

engineering at the University of Connecticut. His research interests include

operations research, mathematical optimization, including power system

optimization, grid integration of renewables (wind and solar), energy-based

operation optimization of distributed energy systems, scheduling of

manufacturing systems and machine learning through deep neural networks.

Peter B. Luh (S’77–M’80–SM’91–F’95-LF’16) received

his B.S. degree from National Taiwan University, M.S.

degree from M.I.T., and Ph.D. degree from Harvard

University. He has been with the University of Connecticut

since 1980, and is a Board of Trustees Distinguished

Professor and the SNET Professor of communications &

information technologies. His interests include intelligent

manufacturing, energy smart buildings, and smart grid. He

is a life fellow of IEEE, the Chair of IEEE TAB Periodicals

Review and Advisory Committee 2020-21, the Chair of IEEE TAB Periodicals

Committee 2018-19, and the Founding Editor-in-Chief of IEEE Transactions

on Automation Science and Engineering.

http://www.iwr.uni-heidelberg.de/groups/comopt/software/PORTA/
http://www.iwr.uni-heidelberg.de/groups/comopt/software/PORTA/

