An Innovative Formulation Tightening Approach for Job-Shop Scheduling

Bing Yan ${ }^{1}$, Mikhail Bragin ${ }^{2}$, and Peter Luh ${ }^{2}$
${ }^{1}$ Rochester Institute of Technology
${ }^{2}$ Affiliation not available

October 30, 2023

Abstract

Job shops are an important production environment for low-volume high-variety manufacturing. Its scheduling has recently been formulated as an Integer Linear Programming (ILP) problem to take advantages of popular Mixed-Integer Linear Programming (MILP) methods, e.g., branch-and-cut. When considering a large number of parts, MILP methods may experience difficulties. To address this, a critical but much overlooked issue is formulation tightening. The idea is that if problem constraints can be transformed to directly delineate the problem convex hull in the data pre-processing stage, then a solution can be obtained by using linear programming methods without much difficulty. The tightening process, however, is NP hard because of the existence of integer variables. In this paper, an innovative and systematic approach is established for the first time to tighten the formulations of individual parts, each with multiple operations, in the data pre-processing stage. It is a major extension from our previous work on problems with binary and continuous variables to integer variables. The idea is to first link integer variables to binary variables by innovatively combining constraints so that the integer variables are uniquely determined by binary variables. With binary variables and continuous only, the vertices of the convex hull can be obtained based on the vertices of the linear problem after relaxing binary requirements with proved tightness. These vertices are then converted to tight constraints for general use. This approach significantly improves and extends our previous results on tightening single-operation parts without actually achieving tightness. Numerical results demonstrate significant benefits on solution quality and computational efficiency. This approach also applies to other ILP problems with similar characteristics and fundamentally changes the way how such problems are formulated and solved.

An Innovative Formulation Tightening Approach for Job-Shop Scheduling

Bing Yan, Member, IEEE, Mikhail A. Bragin, Member, IEEE, Peter B. Luh, Life Fellow, IEEE

Abstract

Job shops are an important production environment for low-volume high-variety manufacturing. Its scheduling has recently been formulated as an Integer Linear Programming (ILP) problem to take advantages of popular Mixed-Integer Linear Programming (MILP) methods, e.g., branch-and-cut. When considering a large number of parts, MILP methods may experience difficulties. To address this, a critical but much overlooked issue is formulation tightening. The idea is that if problem constraints can be transformed to directly delineate the problem convex hull in the data pre-processing stage, then a solution can be obtained by using linear programming methods without much difficulty. The tightening process, however, is NP hard because of the existence of integer variables. In this paper, an innovative and systematic approach is established for the first time to tighten the formulations of individual parts, each with multiple operations, in the data pre-processing stage. It is a major extension from our previous work on problems with binary and continuous variables to integer variables. The idea is to first link integer variables to binary variables by innovatively combining constraints so that the integer variables are uniquely determined by binary variables. With binary variables and continuous only, the vertices of the convex hull can be obtained based on the vertices of the linear problem after relaxing binary requirements with proved tightness. These vertices are then converted to tight constraints for general use. This approach significantly improves and extends our previous results on tightening single-operation parts without actually achieving tightness. Numerical results demonstrate significant benefits on solution quality and computational efficiency. This approach also applies to other ILP problems with similar characteristics and fundamentally changes the way how such problems are formulated and solved.

Note to practitioners - Scheduling is an important but difficult problem in planning and operation of job shops. The problem has been recently formulated in an integer linear programming (ILP) form to take advantage of popular mixed-integer linear programming methods. Given an ILP problem, there must exit a linear programming (LP) formulation so that all of its vertices are also the vertices to the ILP problem. If such an LP problem can be found in the data preprocess stage, then the corresponding ILP problem is tight and can be solved by using an LP method without much difficulty. In this paper, an innovative and systematic approach is established to tighten the formulations of individual parts, each with one or multiple operations. It is a major extension from our previous work on problems with binary and continuous variables by novel exploitation of the relationship between integer and binary variables in job-shop scheduling. The resulting tightened constraints are characterized by part parameters and can be easily adjusted for other data sets. Results demonstrate significant benefits on solution quality and computational

Bing Yan is with the Department of Electrical and Microelectronic Engineering at Rochester Institute of Technology, Rochester, NY 14623, USA (e-mail: bxyeee@rit.edu).

Mikhail A. Bragin and Peter B. Luh with the Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT 06269-4157, USA (e-mail: mikhail.bragin@uconn.edu and peter.luh@uconn.edu).
efficiency. This approach also applies to other ILP problems with similar characteristics and fundamentally changes the way how such problems are formulated and solved.

Index terms-Manufacturing, job-shop scheduling, mixedinteger linear programming, formulation tightening

I. Introduction

Job shops are an important production environment for lowvolume high-variety manufacturing. In a job shop, machines are usually categorized into different types based on their functions. With these machines, multiple parts with different due dates are processed, and each part needs a sequence of operations to be completed [1]. To meet on-time deliveries, scheduling of parts is critical. The problem is to minimize the required objective, e.g., the total weighted tardiness and the total cycle time, by assigning parts to machines while satisfying part processing time requirements, and operation precedence and machine capacity constraints.

As reviewed in Section II, some nonlinear job-shop scheduling formulations were established and efficiently exploited by decomposition and coordination methods. To take advantage of popular mixed-integer linear programming (MILP) methods, e.g., branch-and-cut, the problem is recently formulated in an integer linear programming (ILP) form. Branch-and-cut first solves the linear programming (LP) problem without integrality requirements. If the solution is feasible to the original MILP problem, it is optimal. If not, valid cuts are performed around the solution of the LP problem on the fly to get solutions to the MILP problem. If such solutions are obtained, the problem is directly solved. If not, the method replies on time-consuming branching operations.

When considering a large number of parts, MILP methods may experience convergence and quality difficulties. To obtain near-optimal job-shop schedules fast, a critical but much overlooked issue is formulation transformation. The idea is to transform problem constraints to directly delineate the convex hull (the smallest convex set that contains all feasible solutions [2]) in the data pre-processing stage. If this can be done (i.e., the formulation is "tight"), then a solution can be obtained by using an LP method without combinatorial difficulties. The tightening process, however, is fundamentally challenging for job-shop scheduling problems because of the existence of integer variables (e.g., beginning time) in addition to binary variables and interactions among multiple operations. In the

This work is supported in part by the National Science Foundation (NSF) under the grant ECCS-1810108 and U.S. Department of Energy (DoE)'s Office of Energy Efficiency and Renewable Energy under the Advanced Manufacturing Office Award Number DE-EE0007613. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of NSF or DoE.
literature, a few tightened single-part formulations were reported without a systematic approach. They were shown computationally efficient for overall problems.

In this paper, the job-shop scheduling problem is first formulated in an integer programming form in Section III, and the objective is to minimize the total weighted tardiness and the total cycle time. Since tardiness is a nonlinear function of due dates, it is linearized by introducing new binary and continuous variables and the corresponding constraints to make effective use of MILP methods. After linearization, the problem becomes an MILP problem. To tighten the formulations of individual parts with multiple operations in the data preprocessing stage, an innovative and systematic approach is established for the first time in Section IV. It is a major extension from our previous work on unit commitment problems in power systems with binary and continuous variables to integer variables. The idea is to first link integer variables (e.g., beginning time) to binary variables (e.g., part statues) by innovatively combining constraints so that the integer variables are uniquely determined by the binary variables. With binary variables and continuous only, the vertices of the convex hull can be obtained by simply eliminating the vertices of its integer-relaxed problem with factional values for binary variables with proved tightness [3, 4]. These vertices are then converted to tight constraints. The number of resulting tight constraints, the number of variables involved, and constraint coefficients depend on part parameters. Since all parts must be processed within the scheduling horizon, the above also depends the length of the horizon. For general use purposes, these tight constraints are characterized by analyzing constraint structures and relationships between coefficients and part parameters as well as the scheduling horizon. The resulting tightened constraints can be easily adjusted for other data sets. This approach significantly improves and extends our previous results on tightening singleoperation parts without actually achieving tightness [5].

Three examples are considered in Section IV. The first is to tighten formulations for single-parts with one and two operations to illustrate the tightening idea and present insights. Robustness of formulation tightening is shown in the second example. The last example is to demonstrate the performance of tightened single-part formulations when solving overall jobshop scheduling problems. Results demonstrate significant benefits on solution quality and computational efficiency.

Beyond MILP job-shop scheduling problems under consideration, this approach also applies to the other MILP problems with unique relationships between integer and binary variables. It fundamentally changes the way how such problems are formulated and solved. This approach goes naturally with decomposition and coordination approaches, a subject worthy of further exploration.

II.LITERATURE REVIEW

Existing job-shop formulations are reviewed in Subsection A. Tightened constraints are reviewed in Subsection B.

A. Problem formulations

With large numbers of decision variables and constraints in job-shop scheduling, developing efficient formulations is complex [6]. "Separable" and nonlinear formulations were
established and efficiently exploited by the decomposition and coordination Lagrangian relaxation method in [7-12]. ILP models were developed in [13-18]. Considering sequencedependent setups, an ILP model was established in [13]. With additional variables, job successors and predecessors were modeled. In our previous work on high-volume and lowvariety manufacturing [19], an ILP model was developed. However, by using those models, large-scale problems cannot be effectively solved.

Branch-and-cut has also been widely used. The method solves the linear program problem without integer constraints using by LP methods first. If the solution has integer values for all integer decision variables, it is optimal with respect to the original problem. If not, the method tries to obtain the convex hull by adding valid cuts to cut off regions outside the convex hull without cutting off feasible solutions. If successful, the problem is directly solved. If not, time-consuming branching operations are performed, resulting in very slow convergence. In [14] and [16], the problems were solved by branch-and-cut implemented in commercial software CPLEX. For a problem with 10 parts and 8 machines, the Mixed-Integer Programming (MIP) gap is still 26.7% after one hour in [13]. In [14], for problems with 6 parts and 3 to 5 machines, no good solutions are found even after 72 hours. For branch-and-cut, it is a major challenge to enhance computation efficiency.

B. Tightened constraints

Obtaining a tight formulation is fundamentally difficult and NP hard without clear ways. In the literature, few tightening studies exist on general problems. For traveling salesman problems, a tightened formulation was obtained based on subtour elimination [20]. For knapsack problems, tight formulations were obtained through the use of "structural" disjunctive cuts based on the problem structure [21].

For manufacturing scheduling, a few tightened constraints were presented for single parts without explaining how they were generated.

For traditional job shop scheduling, a few valid cuts were developed by analyzing problem structures in [14]. The major idea is to find a ceiling for inventory shortage, and the longest working procedure sequence till completion for parts. Testing results based on randomly generated data for 325 instances with 3 to 5 machines and 4 to 6 parts demonstrate computational efficiency of the cuts. For flow-shop scheduling, subtour elimination constraints and lower/upper bound mixed-integer inequalities were developed by analyzing formulation structures in [13], and some of them are facet-defining cuts. Testing results based on randomly generated data for problems with 2 to 6 machines and 7 to 10 parts show that the computational time is much reduced with these tightened constraints. For both studies, testing results demonstrate computational efficiency of these tightened constraints.

In our previous work [5], a few processing time-related constraints were tightened for single parts based on integration of "constraint-and-vertex conversion" and "vertex projection" where non-integer values in vertices are rounded up or down to nearest feasible integers. For unit commitment problems in power systems, a systematic method was developed based on novel integration of "constraint-and-vertex conversion," "vertex elimination" and "parameterization" processes to
tighten single-unit formulations in the data pre-processing stage for the first time [3, 4]. Results show that our formulation tightening is effective in terms of solution quality and computational efficiency.

III. JOB-Shop Scheduling Formulation

Consider a job shop with multiple machines categorized into M types based on their functions. With these machines, I parts with different due dates need to be processed, and the part index is i. Part i requires J_{i} operations, and the operation index is j. It is assumed that the scheduling horizon is long enough so that all parts can be processed. Discretize the horizon into K time slots and let k denote the time index. Assuming system-level machine capacity constraints are relaxed, a single-part scheduling problem is formulated based on our previous work [5] in Subsection A. Machine capacity constraints and the objective function are briefly described in Subsection B.

A. Single-part formulation

For a part with J operations, the main decision variables are beginning time b_{j} and completion time c_{j} for each operation j. To capture the status of j at time k, i.e., active (processed) or not, binary variables $\delta_{j k}$ with operation and time indices is considered as follows:

$$
\delta_{j k}= \begin{cases}1, & \text { if } j \text { is active at time } k \\ 0, & \text { otherwise }\end{cases}
$$

Part-level constraints are processing time requirements and operation precedence constraints. Modeling of linearized tardiness is also included.

a) Processing time requirements

Because of "non-preemptive," a contiguous time period with length of p_{j} is needed to process operation j, i.e.,

$$
\begin{equation*}
c_{j}=b_{j}+p_{j}-1, \forall j, b_{j}, c_{j} \in Z \tag{1}
\end{equation*}
$$

Since δ represents the status of the part, $\delta_{j k}$ must be 1 within [b_{j}, c_{j}], and 0 otherwise, i.e.,

$$
\delta_{j k}=\left\{\begin{array}{lc}
1, & \text { if } b_{j} \leq k \leq c_{j} \tag{2}\\
0, & \text { otherwise }
\end{array}\right.
$$

Logical Eq. (2) is linearized as follows:

$$
\begin{align*}
& k \leq c_{j}+N\left(1-\delta_{j k}\right), \forall j, \forall k, \delta \in B ; \tag{3}\\
& k \geq b_{j}-N\left(1-\delta_{j k}\right), \forall j, \forall k, \delta \in B ; \tag{4}\\
& \sum_{k} \delta_{j k}=p_{j}, \forall j, \tag{5}
\end{align*}
$$

where N is a larger number. It can be seen Eqs. (3-5) guarantee that $\delta_{j k}=1$ iff $b_{j} \leqslant k \leqslant c_{j}$; and $\delta_{j k}=0$ when $k<b_{j}$ or $k>c_{j}$.

b) Operation precedence constraints

It is assumed that the operation sequence of the part is fixed, and operation $j+1$ cannot start until j is finished, i.e.,
$b_{j+1} \geq c_{j}+1, \forall j$.
Also, the part cannot start the process of operation j until it is arrived at time a_{j}, i.e.,
$b_{j} \geq a_{j}, \forall j$.
c) Linearized tardiness

Tardiness T is formulated as follows,
$\max \left(c_{J}-d, 0\right)$,
where d is the due date. To represent this, a piecewise-linear
function is used shown in Fig. 1 below.

Figure 1. Tardiness function
As shown in the figure, the upper and lower bounds of $c_{J}-$ d are $\Sigma_{j} p_{j}-d$ and $K-d$, and the corresponding tardiness is 0 and $K-d$. The three break points of this function on the x-axis are $\Sigma_{j} p_{j}-d, 0$ and $K-d\left(\right.$ if $\left.\Sigma_{j} p_{j}-d<0<K-d\right)$, and the corresponding values at the y-axis are 0,0 and $K-d$. This piecewise-linear function is linearized by special ordered set techniques [22]. Three continuous variables w^{1}, w^{2}, and $w^{3}\left(0 \leq w^{1}, w^{2}, w^{3} \leq 1\right)$ are considered to represent weights of the three points. In addition, three binary variables α^{1}, α^{2} and α^{3} are used to set up upper bounds for these weights. The constraints are as follows,

$$
\begin{align*}
& c_{J}-d=\left(\sum_{j} p_{j}-d\right) \omega^{1}+0 \omega^{2}+\left(K-d_{i}\right) \omega^{3} \tag{9}\\
& T=o \omega^{1}+0 \omega^{2}+(K-d) \omega^{3} \tag{10}\\
& \alpha^{l} \geq \omega^{l}, 1 \leq l \leq 3 \tag{11}\\
& \alpha^{1}+\alpha^{3} \leq 1 \tag{12}\\
& \sum_{l} \omega^{l}=1 \tag{13}\\
& \sum_{l} \alpha^{l}=2 \tag{14}
\end{align*}
$$

For simplicity, instead of $\Sigma_{j} p_{j}-d$ and $T-d$, two break points $-K$ and $2 K$ are used for all parts (d could be negative).

B. Machine capacity constraints and objective function

For completeness, machine capacity constraints and the objective function are briefly described in this subsection.
a) Machine capacity constraints

For each machine type m, the total number of active parts cannot exceed its capacity M_{m} at any time slot, i.e.,

$$
\begin{equation*}
\sum_{\forall(i, j) \in O_{m}} \delta_{i j t} \leq M_{m}, \forall m, \forall t . \tag{15}
\end{equation*}
$$

In the above, (i, j) denotes operation j of part i, and O_{m} denotes the set of (i, j) that can be processed by machine type m.
b) Objective function

The objective function to minimize the weighted sum of total tardiness and total cycle time, i.e.,

$$
\begin{equation*}
\omega \sum_{i}\left(\omega_{i}^{T} \max \left(c_{i J_{i}}-d_{i}, 0\right)\right)+(1-\omega) \sum_{i}\left(c_{i J_{i}}-a_{i, 1}\right) \tag{16}
\end{equation*}
$$

where ω is the weight for total tardiness, and ω_{i}^{T} is for part i.
The job-shop scheduling problem with Eqs. (1), (3)-(7), and (9-16) established above is an MILP problem. Most of the decision variables are binary (e.g., δ). There are also a few integer variables (e.g., b and c), and continuous variables (i.e., $w)$. The machine capacity constraints and objective function are linear but irrelevant for tightening.

IV. Formulation Tightening

Building upon our previous work [3-5], an innovative and systematic method is established to tighten the above singlepart formulation in Subsection A. A numerical example is also
presented to illustrate the tightening idea. Tightness is proved in Subsection B.

A. Formulation tightening

In our previous work on unit commitment in power systems, a systematic approach is developed to tighten Mixed-Binary Linear Programming (MBLP) problems [3, 4]. To illustrate the idea, consider a simple Binary Linear Programming (BLP) problem in Fig. 2 with two binary variables x_{1} and x_{2}, and $x_{1}+$ $x_{2} \geqslant 0.5$. After relaxing integrality requirements, the vertices (blue dots in Fig. 2b) of the convex hull (blue lines in Fig. 2b) to the integer-relaxed problem are obtained. Then the vertices (red dots in Fig. 2a) of the original convex hull (red lines in Fig. 2a) can be obtained by simply eliminating the vertices with factional values for binary variables (open blue dots in Fig. 2b) [3-4]. These vertices are then converted to tight constraints for general use. The idea to tighten MBLP problems is the same.

Figure 2(a). Convex hull of a BLP problem with binary variables x_{1}, x_{2}

Figure 2(b). Convex hull of its integer-relaxed problem

For the ease of presentation, the following terms are defined. Definition 1. For an MBLP problem, if the integrality requirements are relaxed, the resulting convex hull is defined as the "integer-relaxed convex hull." In terms of the simple example above, the integer-relaxed convex hulls is defined by blue lines in Fig. 2b.
Definition 2. For an integer-relaxed convex hull, a vertex consists of integral and real components. If all integral components have integer values, then it is called an "integral vertex." Otherwise, it is called a "fractional vertex." In terms of the simple example above, integral and fractional vertices are denoted by solid and open blue dots respectively in Fig. 2b.

The above definitions can apply to an MILP problem.
To tighten the formulation of parts with multiple operations, the idea is to start with parts which have one operation. To apply the MBLP tightening idea to tighten the MILP problem under consideration, the unique relationship between integer variables (e.g., beginning time b) and binary variables (e.g., part status δ) are innovatively established where integer values of b uniquely determine binary values of δ, and vice versa. Therefore, the MBLP principle of eliminating fractional vertices with respect to δ described above can be applied. Then the same method is applied to tighten parts with two operations to explore tightened constraints across two operations. The process can be repeated for parts with more operations.

a) One operation

For a single-operation part, given part parameters (due date d, processing time p, and arrival time a) and the length of the scheduling horizon (K) in numerical values, tightened constraints are established by an innovative and systematic method through four steps as shown in Fig. 3.
Step 1. Constraint-to-vertex conversion. After relaxing integrality requirements, the vertices of the integer-relaxed convex hull are generated from constraints. The conversion is done by algebraic manipulation of part parameters and the

Figure 3. Flow chart of formulation tightening
scheduling horizon length with algorithms [23] well established in existing software Porta [24]. With constraints as input, the software outputs vertices in numerical values.
Step 2. Vertex elimination. If all vertices obtained in Step 1 are integral, the formulation is tight. If not, fractional vertices are projected onto the original convex hull. For this particular problem, all integral vertices of the integer-relaxed problems are the same as the vertices of the original convex hull and vice versa, as will be proved in Subsection B. Thus vertex projection can be done by eliminating factional vertices.
Step 3. Vertex-to-constraint conversion. In this step, vertices obtained in Step 2 are converted back to tight constraints by using Porta as a reverse process of that in Step 1. The resulting formulation with those constraints should be tight.
Step 4. Parameterization. Constraints obtained above have coefficients in numerical values. To make them reusable for other parts, the idea is to convert numerical coefficients to part parameters (e.g., processing time) and the total number of time slots in the scheduling horizon. This parameterization is done by analyzing constraints and relationships between numerical coefficients and part parameters and the scheduling horizon length. It is verified by checking physical meanings of the resulting constraints with coefficients in part parameters and the scheduling horizon length under all possible combinations of binary variables. The resulting tightened constraints can be easily adjusted for problems with other data sets.

For a single-operation part, the number of tight constraints, the number of variables involved, and constraint coefficients depend on part parameters and the length of the scheduling horizon. For example, consider a part with $p=3$ and $K=5$. Because of "non-preemptive," a contiguous time period with length of 3 is needed to process this operation. If the first time block is taken, then the contiguous time period cannot go beyond time block 3 , otherwise, the process is disjunctive. Therefore $\delta_{1}+\delta_{4} \leqslant 1$ and $\delta_{2}+\delta_{5} \leqslant 1$. Since the assumption is that the scheduling horizon is long enough so that the part can be processed, $\delta_{1}+\delta_{4}=1$ and $\delta_{2}+\delta_{5}=1$. For the same part with $K=6$, there is one more similar constraint. Note that after parameterization, the resulting tightened constraints can be used for individual operations of parts with multiple operations. Numerical Example. To illustrate the approach, a numerical example is presented. Consider a single-operation part problem with $p=3$ and $K=8$. Decision variables include part status δ_{k}, beginning time b, and completion time c. Constraints are processing time requirements Eq. (1), and Eqs. (3) - (5). Without integrality requirements, the constraints to Porta are shown in Fig. 4 ($x_{1}: b ; x_{2}: c ; x_{3}-x_{10}: \delta_{1}-\delta_{8}$).

$\mathrm{x} 2-\mathrm{x} 1+1=3$
$\mathrm{x} 3+\mathrm{x} 4+\mathrm{x} 5+\mathrm{x} 6+\mathrm{x} 7+\mathrm{x} 8+\mathrm{x} 9+\mathrm{x} 10=3$
$\mathrm{x} 2+8-8 \times 3>=1$
$\mathrm{x} 1-8+8 \times 3<=1$
$\mathrm{x} 2+8-8 \mathrm{x} 4>=2$
$\mathrm{x} 1-8+8 \mathrm{x} 4<=2$
$\mathrm{x} 2+8-8 \times 5>=3$
$\mathrm{x} 1-8+8 \times 5<=3$
$\mathrm{x} 2+8-8 \times 6>=4$
$\mathrm{x} 1-8+8 \times 6<=4$
$\mathrm{x} 2+8-8 \times 7>=5$
$\mathrm{x} 1-8+8 \times 7<=5$
$\mathrm{x} 2+8-8 \times 8>=6$
$\mathrm{x} 1-8+8 \times 8<=6$
$\mathrm{x} 2+8-8 \times 9>=7$
$\mathrm{x} 1-8+8 \times 9<=7$
$\mathrm{x} 2+8-8 \times 10>=8$
$\mathrm{x} 1-8+8 \mathrm{x} 10<=8$

Figure 4. Original constraints of a single part problem
By constraint-to-vertex conversion, 1234 vertices are obtained and the last 10 are shown in Fig. 5. Six integral vertices remain after eliminating factional vertices as shown in Fig. 6. By vertex-to-constraint conversion, tight constraints are generated by Porta in Fig. 7.

(1225)	1	3	1	1	0	$7 / 8$	$1 / 8$	0	0	0
(1226)	1	3	1	1	$1 / 8$	0	0	0	$1 / 2$	$3 / 8$
(1227)	1	3	1	1	$1 / 8$	$7 / 8$	0	0	0	0
(1228)	1	3	1	1	$1 / 4$	0	$3 / 4$	0	0	0
(1229)	1	3	1	1	$3 / 8$	0	0	$5 / 8$	0	0
(1230)	1	3	1	1	$1 / 2$	0	0	0	$1 / 2$	0
(1231)	1	3	1	1	$5 / 8$	0	0	0	0	$3 / 8$
(1232)	3	5	0	0	1	1	1	0	0	0
(1233)	2	4	0	1	1	1	0	0	0	0
(1234)	1	3	1	1	1	0	0	0	0	0

Figure 5. Vertices of the linear programming problem

(1)	1	3	1	1	1	0	0	0	0	0
(2)	2	4	0	1	1	1	0	0	0	0
(3)	3	5	0	0	1	1	1	0	0	0
(4)	4	6	0	0	0	1	1	1	0	0
(5)	5	7	0	0	0	0	1	1	1	0
(6)	6	8	0	0	0	0	0	1	1	1

Figure 6. Integral vertices

Figure 7. Tightened constraints
Equalities (2), (3), and (5) in Fig. 7 are converted to a set of processing time-related tightened constraints as follows,

$$
\begin{align*}
& \delta_{1}+\delta_{4}+\delta_{7}=1, \tag{17a}\\
& \delta_{2}+\delta_{5}+\delta_{8}=1, \tag{17b}\\
& \delta_{3}+\delta_{6}=1 . \tag{17c}
\end{align*}
$$

Because of "non-preemptive," a contiguous time period with length of 3 is needed to process this operation. If the first time block is taken, then the contiguous time period cannot go
beyond time block 3, otherwise, the process is disjunctive. Therefore $\delta_{1}+\delta_{4}+\delta_{7} \leq 1$. Since the assumption is that the scheduling horizon is long enough so that the part can be processed, $\delta_{1}+\delta_{4}+\delta_{7}=1$ as shown in Eq. (17a). Similarly, one δ from time slots 2, 5 and 8 must be 1 as shown in Eq. (17b), and one δ from time slots 3 and 6 must be 1 as shown in Eq. (17c). Given Eq. (17), inequality (11) in Fig. 7 is redundant. This constraint set has been reported in our previous work [5].

The above set of tightened constraints can be generalized for all operations with different processing time as follows,

$$
\begin{equation*}
\sum_{\tau=0}^{\tau=[k / p \mid p r+k K} \delta_{k+p r}=1, k \in[1, p] . \tag{18}
\end{equation*}
$$

b) Two operations

Now consider a part with two operations, given part parameters (due date d, processing time p_{1} and p_{2}, and arrival time a) and the scheduling horizon length in numerical values, tightened constraints are established as follows.

For the first and second operations, they have their own constraints such as processing time requirements. There is also an operation precedence constraint that couples the two operations together. Denote the operation-level constraints for the first and second operations as C_{1} and C_{2}, respectively, and the coupling constraint as C_{1-2}. Apply the tightened constraints obtained by tightening single-operation parts to C_{1} and C_{2}, and obtain $T C_{1}$ and $T C_{2}$, respectively. With the constraint set $\left\{T C_{1}\right.$, $\left.T C_{2}, C_{1-2}\right\}$, tighten the two-operation formulation through the four steps presented in the above subsubsection, and obtain tightened constraints across two operations as $T C_{1-2}$. Note that after parameterization, $T C_{1-2}$ can be used for every two consecutive operations of parts with multiple operations.

Similar to the tightened constraints for every operation, the tightened constraints across two operations also depend on part parameters and the length of the scheduling horizon. For example, consider a part with $p_{1}=3$ and $p_{2}=1$, and $K=5$. Because the part must be processed in the scheduling horizon, the latest completion time of operation one is 4 as operation two needs one time slot after it, thus $\delta_{1,5}=0$. Similarly, the earliest beginning time of operation two is 4 as operation one needs three time slots before it, thus $\delta_{2,1}=\delta_{2,2}=\delta_{2,3}=0$.

c) Multiple operations

With tightened constraints for individual operations and every two consecutive operations, the tightening process is repeated for parts with more operations. Since the number of vertices increases exponentially in constraint-and-vertex conversion and so does the number of constraints, it is difficult to obtain a tight formulation. Our goal is thus to obtain "neartight" formulations by analyzing parts with few operations.

B. Tightness proof

Tightness proof is established in the following Theorem 1. Theorem 1. For the formulation of single-operation parts described by Eqs. (1), (3-5) and (9-14), the integral vertices (Definition 2) of its integer-relaxed convex hull (Definition 1) $\operatorname{Conv}\left(P_{\text {MLLP-IR }}\right)$ are the vertices original convex hull $\operatorname{Conv}\left(P_{M L P}\right)$, and vice versa.
Proof. The proof will be conducted in two steps. The first is to show that the values of integer decision variables can be uniquely determined by the values of binary variables, and vice versa. The second step is to prove that integral vertices of the
integer-relaxed convex hull $\operatorname{Conv}\left(P_{\text {MILP-IR }}\right)$ are the vertices of the original convex hull $\operatorname{Conv}\left(P_{M I L P}\right)$ based on the theorems developed for MBLP problems in our previous work [4].

Step 1. Integer variables can be uniquely determined by binary variables and vice versa

Binary to Integer. Given an integral vertex of the integerrelaxed convex hull, it is feasible to the original MILP problem. Since Eqs. (3-5) are all satisfied, a contiguous time period of length p should be assigned to process the part. For any k_{0} such that $1 \leq k_{0} \leq T-p+1$, it is assumed that the part is processed during time interval $\left[k_{0}, k_{0}+p-1\right]$. Thus δ_{k} equals to 1 for $k \in$ [$\left.k_{0}, k_{0}+p-1\right]$ and 0 otherwise as required by the processing time requirements Eqs. (3-5). After replacing c by $b+p-1$ in Eqs. (3-4), the following inequalities are obtained:

$$
\begin{align*}
& b \leq k_{0} \leq b+p-1 \tag{19}\\
& b \leq k_{0}+p-1 \leq b+p-1 \tag{20}
\end{align*}
$$

Eq. (20) can be rewritten as $b-p+1 \leqslant k_{0} \leqslant b$. Combining the rewritten Eq. (20) and Eq. (19), obtain $k_{0} \leqslant b \leqslant k_{0}$, which implies $b=k_{0}$. Thus $c=b+p-1=k_{0}+p-1$. Therefore the values of δ uniquely determine the values of b and c.
Integer to binary. Assume b and c equal to k_{0} and $k_{0}+p-1$, respectively, and Eqs. (3-4) become the following,

$$
\begin{align*}
& k \leq k_{0}+p-1+N\left(1-\delta_{k}\right) \tag{21}\\
& k \geq k_{0}-N\left(1-\delta_{k}\right) \tag{22}
\end{align*}
$$

Rewrite Eqs. (21) and Eq. (22) as,

$$
\begin{align*}
& N\left(1-\delta_{k}\right) \geq k-\left(k_{0}+p-1\right), \tag{23}\\
& N\left(1-\delta_{k}\right) \geq k_{0}-k . \tag{24}
\end{align*}
$$

When $k<k_{0}$, it can be seen that $k<k_{0}+p-1$. Thus the righthand sides of Eqs. (24) and (23) are positive and negative, respectively. Therefore, δ_{k} must be 0 to satisfy both constraints. Similar analysis applies when $k>k_{0}+p-1$, and δ_{k} must be 0 . When $k_{0} \leq k \leq k_{0}+p-1$, the right hand sides of Eqs. (23) and (24) are both non-positive, so δ_{k} could be 0 or 1 . However, because of Eq. (5), $\sum_{k} \delta_{k}=p, \delta_{k}$ can only be 1 . In summary, the values δ_{k} must be 1 for $k \in\left[k_{0}, k_{0}+p-1\right]$ and 0 otherwise. Thus the values of b and c uniquely determine the values of δ.

The above implies that when δs are binary and Eqs. (3-5) are all satisfied, the values of integer decision variables b and c can be uniquely determined by the values of δs, and vice versa. Therefore, given a vertex of integer-relaxed convex hull $\operatorname{Conv}\left(P_{M I L P-L R}\right)$, if all the binary variables have binary values, then the integer variables have integral values, and vice versa. Thus the MILP problem under consideration can be treated as an MBLP problem for the tightening process.

Step 2. Tightness of MILP problems

For an MBLP, it has been proved that, the integral vertices (Definition 2) of its integer-relaxed convex hull are all vertices of the original convex hull in our previous work [4], and vice versa. Since the MILP under consideration can be treated as MBLP in the tightening process, integral vertices of its integerrelaxed convex hull $\operatorname{Conv}\left(P_{M I L P-L P R}\right)$ are the vertices original convex hull $\operatorname{Conv}\left(P_{M I L P}\right)$, and vice versa. End.

Based on Theorem 1, vertex projection can be simply done by eliminating factional vertices in Step 2 to tighten the singleoperation part formulation. For parts with multiple operations,
since the relations between b and δ within individual operations still hold, the values of b and c can be uniquely determined by the values of δs. Thus the formulation is still tight by applying the same idea as that for the single-operation parts.

Generalization. Beyond MILP job-shop scheduling problems under consideration, this approach also applies to other MILP problems with unique relationships between integer and binary variables.

V.Numerical Results

The above tightening method is implemented by using Porta [24]. The job-shop scheduling problems are solved by using IBM ILOG CPLEX Optimization Studio V 12.8.0.0 [25] on a PC with 2.40 GHz Intel Xeon E-2286M CPU and 32G RAM. Three examples are presented. The first is to tighten formulations of single-parts with one and two operations to illustrate the idea and present the insights. Robustness of formulation tightening is shown in the second example. The last is to demonstrate performance of tightened single-part formulations when solving overall problems.
Example 1: Single part

a) One operation

Consider the scheduling problem with a single-operation part with $p=3$ and $K=8$ in used in Subsection III-C. Constraints (2), (3), (5) and (11) in Fig. 7 have been explored in Subsection III-C, and inequality (12) is redundant given the binary requirements of δ. Therefore the focus is on exploring inequalities (6) to (10) and equalities (1) and (4) in Fig. 7.

1) Inequality constraints

Inequality (9) in Fig. 7 is converted to a set of processing time-related tightened constraints as follows,

$$
\begin{align*}
& \delta_{2}+\delta_{3} \leq 2\left(\delta_{1}+\delta_{4}\right) \tag{25a}\\
& \delta_{3}+\delta_{4} \leq 2\left(\delta_{2}+\delta_{5}\right), \tag{25b}\\
& \delta_{4}+\delta_{5} \leq 2\left(\delta_{3}+\delta_{6}\right), \tag{25c}\\
& \delta_{5}+\delta_{6} \leq 2\left(\delta_{4}+\delta_{7}\right), \tag{25~d}\\
& \delta_{6}+\delta_{7} \leq 2\left(\delta_{5}+\delta_{8}\right) \tag{25e}
\end{align*}
$$

Eq. (25a) implies that if δ_{2} and δ_{3} are both 1, either δ_{1} or δ_{4} must be 1 because of "non-preemptive" processing time requirements, similar for Eqs. (25b) - (25e). This set of constraints has been reported in our previous work [5].

The above set of tightened constraints can be generalized for all operations with different processing time as follows,

$$
\begin{equation*}
\sum_{\tau=k+1}^{k+p-1} \delta_{\tau} \leq(p-1)\left(\delta_{k}+\delta_{k+p}\right), k \in[1, K-p] . \tag{26}
\end{equation*}
$$

Eq. (26) implies that if δ_{τ} are all 1 , either δ_{k} or δ_{k+p} must be 1.
When examining inequalities (6) to (10) in Fig. 7 as a group, they can be put together in the matrix form in Eq. (27) below,

$$
\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & -1 \tag{27}\\
0 & 0 & 0 & -1 & 1 \\
0 & 0 & -1 & 1 & 0 \\
0 & -1 & 1 & 0 & -1 \\
-1 & 1 & 0 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
\delta_{4} \\
\delta_{5} \\
\delta_{6} \\
\delta_{7} \\
\delta_{8}
\end{array}\right) \leq 0 .
$$

It is noted that δ_{1} to δ_{3} do not show up in the above equation.

The reason is that if δ_{4} to δ_{8} are properly regulated to satisfy the "non-preemptive" processing time requirements by Eq. (27), then δ_{1} to δ_{3} are expected to satisfy the requirements too because of the processing time related tightened constraint Eq. (17). In addition, although the first row of Eq. (27), denoted as Eq. (271), is redundant given the binary requirements of δ, it helps put the constraints together in a square matrix form. Physical meanings of Eqs. (27-2)-(27-5) are analyzed one by one below.

Physical meanings of Eq. (27-2) under all combinations of binary variables involved are shown in Table I below.
TABLE I. CONSTRAINT ANALYSIS FOR EQ.(27-2)

Case	δ_{7}	δ_{8}	Eq. $(25-2)$	Satisfy or not
1	0	0	$-0+0 \leq 0$	Yes
2	0	$\mathbf{1}$	$-0+1 \leqslant 0$	No
3	1	0	$-1+0 \leq 0$	Yes
4	1	1	$-1+1 \leq 0$	Yes

It can be seen Eq. (27-2) guarantees that if δ_{8} is $1, \delta_{7}$ must be 1 as implied by the $2^{\text {nd }}$ row of Table I. This is reasonable because the last possible three time slots to process the part is 6,7 , and 8 given the processing time is 3 . If the $8^{\text {th }}$ time slot is taken, then the $7^{\text {th }}$ must be taken too, otherwise the part cannot be completed within the scheduling horizon. The physical meaning of Eq. (27-3) is similar, if δ_{7} is $1, \delta_{6}$ must be 1 .

Physical meanings of Eq. (27-4) under all combinations of binary variables involved are shown in Table II below.

TABLE II. CONSTRAINT ANALYSIS FOR EQ.(27-4)

Case	δ_{5}	δ_{6}	δ_{7}	δ_{8}	Eq. $(24-4)$	Satisfy or not
1	0	0	-	0	$-0+0-0 \leqslant 0$	Yes
2	0	0	-	1	$-0+0-1 \leqslant 0$	Yes
$\mathbf{3}$	$\mathbf{0}$	$\mathbf{1}$	-	$\mathbf{0}$	$\mathbf{- 0}+\mathbf{1}-\mathbf{0} \leqslant \mathbf{0}$	No
4	0	1	-	1	$-0+1-1 \leqslant 0$	Yes
5	1	0	-	0	$-1+0-0 \leqslant 0$	Yes
6	1	0	-	1	$-1+0-1 \leqslant 0$	Yes
7	1	1	-	0	$-1+1-0 \leqslant 0$	Yes
8	1	1	-	1	$-1+1-1 \leqslant 0$	Yes

It can be seen Eq. (27-4) guarantees that δ_{6} cannot be 1 when δ_{5} and δ_{8} are both 0 as implied by the $3^{\text {rd }}$ row of Table II. In other words, if δ_{6} is 1 , one of δ_{5} and δ_{8} has to be 1 . This is reasonable because if neither of the $5^{\text {th }}$ time slot or the $8^{\text {th }}$ is taken, then the $6^{\text {th }}$ cannot be taken based on the processing time requirement. Note that Case 8 is not feasible because δ_{5} and δ_{8} cannot be 1 at the same time as guaranteed by Eq. (17b).

Physical meanings of Eq. (27-5) under all combinations of binary variables involved are shown in Table V in the appendix, as well as the analysis. The physical meanings of Eq. (27) can be intuitively shown in Fig. 8 below.

As shown in the figure: (a) if δ_{8} is 1 , then δ_{7} must be 1 ; (b) if δ_{7} is 1 , then δ_{6} must be 1 ; (c) if δ_{6} is 1 , then one of δ_{5} and δ_{8} has to be 1 ; and (d) if δ_{5} is 1 , then one of δ_{4} and δ_{7} has to be 1 . Eq. (27) with the processing time related tightened constraint Eq. (17) guarantee a contiguous time period with length of 3 to process the part. For example, if δ_{6} is 1 , there are two possibilities: (1) δ_{8} is 1 ; or (2) δ_{5} is 1 . The first situation is simple since δ_{7} will be 1 when δ_{8} is 1 , thus time slots 6,7 and 8 are used to process the part. For the second situation, δ_{5} is 1 , and there are two possibilities again: (2.1) δ_{4} is 1 ; or (2.2) δ_{7} is 1. Time slots 4,5 and 6 are used to process the part in the first
situation, and time slots 5,6 and 7 are used for the second situation. Among all situations described above, a contiguous time period with length of 3 is guaranteed to process the part. Similar analysis can be performed for other δ s.

Figure 8. Intuitive description of Eq. (27)
With further analysis on the meanings of Eq. (27), it can be extended to a set of tightened constraints Eq. (28) for problems with longer time periods as follows,
$\left(\begin{array}{cccccccccc}\cdots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ \ldots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \\ \ldots & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 \\ \ldots & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & -1 \\ \ldots & 0 & 0 & 0 & 0 & -1 & 1 & 0 & -1 & 1 \\ \ldots & 0 & 0 & 0 & -1 & 1 & 0 & -1 & 1 & 0 \\ \ldots & 0 & 0 & -1 & 1 & 0 & -1 & 1 & 0 & -1 \\ \ldots & 0 & -1 & 1 & 0 & -1 & 1 & 0 & -1 & 1 \\ \cdots & -1 & 1 & 0 & -1 & 1 & 0 & -1 & 1 & 0 \\ \cdots & 1 & 0 & -1 & 1 & 0 & -1 & 1 & 0 & -1 \\ \cdots & \cdots\end{array}\right)\left(\begin{array}{c}\delta_{4} \\ \delta_{5} \\ \delta_{6} \\ \delta_{7} \\ \delta_{8} \\ \delta_{9} \\ \delta_{10} \\ \delta_{11} \\ \cdots \\ \delta_{K}\end{array}\right) \leq 0 .(28)$

The entries $x_{n h}$ of the matrix are presented below.
Let $n+h=K-4+y, y \in Z$

$$
x_{n h}= \begin{cases}0, & y \leq 0 \tag{29}\\ -1, & y>0 \text { and } y \bmod 3=1 \\ 1, & y>0 \text { and } y \bmod 3=2 \\ 0, & y>0 \text { and } y \bmod 3=0\end{cases}
$$

The meaning of Eq. (28) is similar to Eq. (27). For example, when δ_{k} is 1 , it is intuitively shown in Fig. 9.

For example, if δ_{k} is 1 , there are two possibilities: (1) δ_{k-1} is 1 ; or (2) δ_{k+2} is 1 . For Case (1), there are two possibilities again: (1.1) δ_{k-2} is 1 ; or (1.2) δ_{k+1} is 1 . For each of them, a contiguous time period with length of 3 is guaranteed to process the part. For Case (2), δ_{k+2} is 1 , and there are two possibilities again: (2.1) δ_{k+1} is 1 ; or (2.2) δ_{k+4} is 1 . For Case (2.1), a contiguous time period with length of 3 is guaranteed to process the part. For Case (2.2), according to Eq. (18), one of δ_{k+3} and δ_{k+6} has to be 1 , which is contradictory with the current set up where both of δ_{k+3} and δ_{k+6} are zero. Among all the situations described above, a contiguous time period with length of 3 is guaranteed. Similar analysis can be performed for other δ s.

Figure 9. Intuitive description of Eq. (28)
When the process time is 2 and 4, the corresponding sets of tightened constraints for problems with longer time periods are shown in Eqs. (30) and (32), respectively. The entries of these two matrices are presented in Eqs. (31) and (33), respectively.
$\left(\begin{array}{cccccccccc}\ldots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ \ldots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \\ \ldots & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & -1 \\ \ldots & 0 & 0 & 0 & 0 & 0 & -1 & 1 & -1 & 1 \\ \ldots & 0 & 0 & 0 & 0 & 1 & 1 & -1 & 1 & -1 \\ \ldots & 0 & 0 & 0 & 1 & -1 & -1 & 1 & -1 & 1 \\ \ldots & 0 & 0 & 0 & -1 & 1 & 1 & -1 & 1 & -1 \\ \ldots & 0 & 0 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\ \ldots & 0 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 \\ \ldots & -1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\ \ldots & \ldots\end{array}\right)\left(\begin{array}{c}\delta_{3} \\ \delta_{4} \\ \delta_{5} \\ \delta_{6} \\ \delta_{7} \\ \delta_{8} \\ \delta_{9} \\ \delta_{10} \\ \end{array}\right.$

$$
x_{n h}= \begin{cases}0, & y \leq 0 \tag{31}\\ -1, & y>0 \text { and } y \bmod 3=1 \\ 1, & y>0 \text { and } y \bmod 3=0\end{cases}
$$

$$
\left(\begin{array}{cccccccccc}
\ldots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
\ldots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \\
\ldots & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 \\
\ldots & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\
\ldots & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & -1 \\
\ldots & 0 & 0 & 0 & -1 & 1 & 0 & 0 & -1 & 1 \\
\ldots & 0 & 0 & -1 & 1 & 0 & 0 & -1 & 1 & 0 \\
\ldots & & -1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
\ldots & -1 & 1 & 0 & 0 & -1 & 1 & 0 & 0 & -1 \\
\ldots & 1 & 0 & 0 & -1 & 1 & 0 & 0 & -1 & 1 \\
\ldots & \ldots
\end{array}\right)\left(\begin{array}{c}
\delta_{5} \\
\delta_{6} \\
\delta_{7} \\
\delta_{8} \\
\delta_{9} \\
\delta_{10} \\
\delta_{11} \\
\delta_{12} \\
\ldots \\
\delta_{K}
\end{array}\right) \leq 0 .
$$

$$
\begin{align*}
& P=4, n+h=K-5+y, y \in Z \\
& x_{n h}= \begin{cases}0, & y \leq 0 \\
-1, & y>0 \text { and } y \bmod 4=1 \\
1, & y>0 \text { and } y \bmod 4=2 \\
0, & y>0 \text { and } y \bmod 4=3 \\
0, & y>0 \text { and } y \bmod 4=0\end{cases} \tag{33}
\end{align*}
$$

2) Equality constraints

With further analysis on the meanings of equalities (1) and (4) in Fig. 7 under all possible part statuses, i.e., active or not at each time slot, two new sets of beginning/completion timerelated tightened constraints are obtained as follows,

$$
\begin{align*}
& b=K-p+1-2\left(\delta_{1}+\delta_{2}\right) \\
& -\left(\delta_{3}+\delta_{4}+\delta_{5}\right)-0\left(\delta_{6}+\delta_{7}+\delta_{8}\right) \tag{34}\\
& c=-0\left(\delta_{8}+\delta_{7}\right)+K \delta_{6}-\left(\delta_{5}+\delta_{4}\right) \\
& +(K-1) \delta_{3}-2\left(\delta_{2}+\delta_{1}\right) \tag{35}
\end{align*}
$$

Since the processing time is p and the part must be completed within the scheduling horizon, the largest beginning time is K $p+1$ with δ_{6}, δ_{7} and δ_{8} as 1 as implied in Eq. (34). When the starting of nonzero δ moves earlier, b gets smaller. The earlier the δ, the larger the impacts on b. The meaning of Eq. (35) is similar. The largest completion time is K with δ_{6}, δ_{7} and δ_{8} as 1. When the starting of nonzero δ moves earlier, c gets smaller. The earlier the δ, the larger the impacts on c. It can be verified that these constraints are meaningful under all possible part statuses of $\delta_{1}-\delta_{8}$.

The above two tightened constraints can be generalized for all operations with different processing time as follows,
$b=K-p+1-\sum_{n=0}^{n \neq K / p\rfloor} n\left(\sum_{\tau=0}^{\tau=p-1 n p+\tau<K} \delta_{K-n p-\tau}\right)$
$c=\sum_{n=0}^{n=\lfloor K / p\rfloor}\left(-n\left(\sum_{\tau=0}^{\tau=p-2 n p+\tau<K} \delta_{K-n p-\tau}\right)+(K-n) \sum_{\tau=1}^{\tau=1 n p+p-\tau<K} \delta_{K-n p-p+\tau}\right)$.
Eqs. (18), (26), (36) and (37) directly constrain $\delta_{1}-\delta_{8}, b$, and c within one operation. For the single-operation part problem with $p=3$ and $K=8$ under consideration, with Eqs. (17) and (25), the total number of vertices decreases from 1234 to 250 in a major way. With Eqs. (34) and (35), it is further reduced to 42 . Replace (25) by (27), the total number of vertices is 6 , and all of the vertices are integral vertices, implying the formulation is tight. For the single part and one operation scheduling problem with the processing time as 1,2 , 3 , and 4, tight formulations are obtained.
b) Two operations

Now add another operation with processing time of 3 to the problem in a, with additional operation precedence constraint Eq. (6). Decision variables include two sets of δ_{k}, b, and c for operations 1 and 2, respectively. With the standard formulation established in Section III, after relaxing integrality requirements, 63,872 vertices are obtained by constraint-tovertex conversion. With Eqs. (18) and (26) obtained in the oneoperation example, a total number of 23,206 vertices remain. With Eqs. (36) and (37), 333 vertices remain. After eliminating factional vertices, there are 6 integral vertices. After vertex-toconstraint conversion, the resulting tight constraints are obtained as shown in Fig. $10\left(x_{1}: b_{1} ; x_{2}: c_{1} ; x_{3}-x_{10}: \delta_{1,1}-\delta_{1,8}\right.$; $\left.x_{11}: b_{2} ; x_{12}: c_{2} ; x_{13}-x_{20}: \delta_{2,1}-\delta_{2,8}\right)$.

Figure 10. Ex.1-b) Tightened constraints
After analyzing the meanings of equalities (2) to (7) in Fig. 10 under possible part statuses, two sets of operation precedence-related tightened constraints are obtained below,

$$
\begin{align*}
& \delta_{1, k}=0, k \in\left[K-p_{2}+1, K\right] \tag{38}\\
& \delta_{2, k}=0, k \in\left[1, p_{1}\right] \tag{39}
\end{align*}
$$

Since the two operations of the part needs to be completed in the scheduling horizon, the largest completion time for operation 2 is K, with beginning time of $K-p_{2}+1$. Therefore operation 1 must be completed by that time, and δ_{1} for period of $\left[K-p_{2}+1, K\right]$ must be 0 as implied in Eq. (38). The meaning of Eq. (39) is similar. The smallest beginning time of operation 1 is 1 , with completion time of p_{1}. Therefore operation 2 cannot start before p_{1}, and δ_{2} for period of $\left[1, p_{1}\right]$ must be 0 .

The above two tightened constraints can be generalized for all operations with different processing time as follows,

$$
\begin{align*}
& \delta_{j, k}=0, k \in\left[K-\sum_{g=j+1}^{J} p_{g}+1, K\right], j \in[1, J-1], \tag{40}\\
& \delta_{j, k}=0, k \in\left[1, \sum_{g=1}^{j-1} p_{g}\right], j \in[2, J] . \tag{41}
\end{align*}
$$

Eqs. (40) and (41) directly constrain $\delta_{1}-\delta_{8}$ across operations. With them, the total number of vertices decreases to 14 from 333 in a major way.
c) One operation with linearized tardiness

Now add the constraints associated with tardiness to the problem in a), assuming due date d is 2 . Constraints under consideration are processing time requirements Eq. (1) and Eqs. (3) - (5), and tardiness constraints Eqs. (9) - (14). Decision variables include a set of δ_{k}, b, and c, a set of continuous variables w, a set of binary variables α, and tardiness T. With the standard formulation established in Section III, after relaxing integrality requirements, 6,170 vertices are obtained by constraint-to-vertex conversion. With Eqs. (17), (25), (34) and (35) obtained in the one-operation example, a total number of 210 vertices remain. After eliminating factional vertices, there are 8 integral vertices. After vertex-to-constraint conversion, the resulting tight constraints are shown in Fig. $11\left(x_{1}: b ; x_{2}: c\right.$; $\left.x_{3}-x_{10}: \delta_{1}-\delta_{8} ; x_{11}-x_{13}: w^{1}-w^{3} ; x_{14}-x_{16}: \alpha^{1}-\alpha^{3} ; x_{17}: T\right)$.

```
    (1) \(+\mathrm{x} 2+2 \times 3+2 \times 4-7 \times 5+\mathrm{x} 6+\mathrm{x} 7-8 \times 8=0\);
    ( 2) \(+x 6+x 7+x 8+2 \times 9+2 \times 10+\times 12-15 \times 13=0\);
    ( 3) \(-\times 11=0\);
    ( 4\()-\times 14=0\);
    (5) \(+16 \times 13-\times 17=0\);
    ( 6\()+\times 15-\times 16=0\);
    ( 7) \(+\times 12+\times 13-\times 15=0\);
    ( 8) \(-x 3+x 5-x 6+x 8-x 9=0\);
    ( 9\()-x 4+x 5-x 7+x 8-x 10=0\);
    (10) \(+15 \times 5-\mathrm{x} 6-\mathrm{x} 7+14 \times 8-2 \times 9-2 \times 10-16 \times 12=0\);
    ( 11) \(-4 \times 1+3 \times 2-2 \times 3-2 \times 4-x 5-x 6-x 7=0\);
    (12) \(+\times 16=1\);
    (13) \(+2 \times 7+x 8+x 9+3 \times 10-x 17<=-1\);
    (14) \(-x 10<=0\);
    ( 15) \(-x 8+x 9<=0\);
    (16) \(-x 9+\times 10<=0\);
    ( 17) \(-x 7+x 8-x 10<=0\);
    (18) \(-\mathrm{x} 7-\mathrm{x} 8-\mathrm{x} 9-2 \times 10+\mathrm{x} 17<=2\).
```

Figure 11. Ex.1-c) Tightened constraints
By combining equalities (2), (5) and (10) in Fig. 11, the following constraint is obtained,

$$
\begin{equation*}
T=\delta_{3}+\delta_{4}+\delta_{5}+2 \delta_{6}+2 \delta_{7}+2 \delta_{8} \tag{42}
\end{equation*}
$$

Since the processing time is 3 and the due date is 2 , the smallest tardiness is 1 with δ_{1}, δ_{2} and δ_{3} as 1 , and the largest tardiness is 6 with δ_{6}, δ_{7} and δ_{8} as 1 as implied in Eq. (42). When the starting of nonzero δ moves earlier, T gets smaller. The earlier the δ, the smaller the impacts on T.

After analyzing the physical meanings, Eq. (42) is converted to the following constraint in generic forms,
$T=\left\{\begin{array}{l}\sum_{n=1}^{\lfloor(K-P+1) / P\rfloor+1}\left((p-d+n-1) \sum_{\tau=0}^{0: p n+\tau \leq K} \delta_{p n+\tau}+n \sum_{\tau=1}^{p-1: p n+\tau \leq K} \delta_{p n+\tau}\right), p \geq d \\ \sum_{n=1}^{\lfloor(K-d+1) / P\rfloor+1}\left(n \sum_{\tau=1}^{p . d+p(n-1)+\tau \leq K} \delta_{d+p(n-1)+\tau}\right), p<d\end{array}\right.$
Eq. (43) directly constrains $\delta_{1}-\delta_{8}$ and tardiness T. With it, the total number of vertices decreases to 84 from 210.

The tightened constraints obtained in $a), b$), and c) tighten the formulation. However, they can hardly be obtained manually without going through the above tightening process. The formulation with them is much tighter (not tight yet) than the original one. Those tightened constraints can be extended to other parts with more operations and processing time other than 3, and whose due date is positive and less than K.

Example 2: Medium-sized problems

This medium-sized example is to demonstrate effectiveness and robustness of formulation tightening. The instance is created based on the first 89 parts and all machines in [7]. According to which parts/operations that machines can process, machines are categorized into 19 types, and each type has 1 to 6 machines with the same function. The number of time slots under consideration is 220 so that all the parts can be processed. Machines are assumed always available for simplicity. There are three values for tardiness weights, 1,10 , and 100 , and they are randomly assigned to parts with percentage of $50 \%, 40 \%$ and 10%, respectively. The weight for the total tardiness is 0.95 . Before and after adding tightened constraints, the overall jobshop scheduling problems are solved by using branch-and-cut. Results with different formulations are presented in Table III bellow: (a) the original formulation; (b) adding Eq. (18) and (26); (c) adding Eqs. (36) and (37); (d) adding Eqs. (40) and (41); (e) adding Eq. (43); and (f) replacing Eq. (26) in (e) by

Eqs. (28), (30) and (32) for operations with processing time of 2, 3, and 4 time slots. From (a) to (e), the process is accumulative. Eq. (43) is applied to operations with processing time of 1,2, and 3 time slots. Stopping criteria are 600 second (s) CPU time or 0.01% MIP gap. CPU time consists of three parts, data and model loading, solving, and solution outputting.

TABLE III. COMPARISON OF FORMULATIONS: MEDIUM-SIZED

Formulation	Total tardiness	Total cycle time	MIP gap (\%)	CPU (s)	Solve (s)	Cut (s)	Branch (s)
(a): Original	35,288	826	1.33	607.7	606.3	38.8	523.8
(b): (a) + (18), (26)	35,243	766	0.94	59.4	57.8	8.0	43.2
(c): (b) + (36)-(37)	35,100	613	0.01	6.3	4.5	1.5	0
(d): (c) + (40)-(41)	35,100	613	0.01	6.3	4.6	1.5	0
(e): (d) + (43)	35,100	613	0.01	6.3	4.6	1.6	0
(f): replace (26) in (e) by (28), (30), (32)	35,100	617	0.01	8.5	6.5	2	0

According to Table III, the CPU, solving, cutting and branching time is much reduced by adding new tightened constraints Eqs. (18), (26), (36), (37), (40), (41) and (43), while the solution quality is still high. With the standard formulation, a feasible solution with the total weighted tardiness of 35,288 and total cycle time of 826 is obtained in 10 minutes with a MIP gap of 1.3%, while the time on cutting and branching is 39 s and 524 s , respectively. By adding new tightened constraints, a feasible solution with a lower total weighted tardiness and cycle time is obtained in 6 s , while the cutting time is 1.6 s and there are no branching operations.

When replacing Eq. (26) by Eqs. (28), (30) and (32) (the formulation becomes tighter), a similar solution is obtained in 9 s , with cutting time as 2 s . The reason is that when solving the problem by using branch-and-cut, cuts are performed around the optimal solution to the LP relaxation problem [20], not on the entire feasible region as mentioned in Section I. Therefore more tightened constraints may not guarantee better computational efficiency. There is a trade-off between tightness and computational efficiency.

The problem is also solved with randomly assigned part tardiness weights considering formulations (a), (e) and (f) presented above. Cutting and branching time for problems with different sets of weights are compared in Fig. 12. Then for each part, a random variable following $U(-5,5)$ is generated and added to the due date, while tardiness weights are the same as the original problem. The results are shown in Fig. 13.

Figure 12. Cutting, branching and other time under different weights

Figure 13. Cutting, branching and other time under different due dates
For every instance, the same solution is obtained with and without tightened constraints. By adding tightened constraints, the total cutting and branching time is significantly reduced, and the reduction is mainly from the reduction of branching time. Results demonstrates effectiveness and robustness of our formulation tightening.

Example 3: Large-sized problems

This large-sized example is to demonstrate performance of tightened single-part formulations. The instance is created based on all 127 parts and all machines in [7]. The number of time slots under consideration is 300 so that all the parts can be processed. The other problem setup is the same as in Example 2. Before and after adding tightened constraints, the job-shop scheduling problems are solved by using branch-and-cut, and results are shown in Table IV. Stopping criteria are 1200 second (s) CPU time or 0.011% MIP gap.

TABLE IV. COMPARISON OF FORMULATIONS: LARGE-SIZED

Formulation	Total tardiness	Total cycle time	MIP gap (\%)	CPU (s)	Solving time (s)
(a): Original	18,198	1447	20.83	1204.2	1200.8
(b): (a) + (18), (26)	14,568	891	1.45	1204.6	1201.3
(c): (b) + (36)-(37)	14,543	762	0.01	14.93	12.27
(d): (c) + (40)-(41)	14,543	762	0.01	14.79	12.01
(e): (d) + (43)	14,543	763	0.01	13.74	11.03
(f): replace (26) in (e) by (28), (30), (32)	14,543	762	0.01	19.67	15.91

According to Table IV, both the solution quality and computational efficiency is significantly improved by adding new tightened constraints. With the standard formulation, a feasible solution with the total weighted tardiness of 37,633 and total cycle time of 613 is obtained in 20 minutes with a MIP gap of 21%. By adding new tightened constraints Eqs. (18), (26), (36), (37), (40), (41) and (43), a feasible solution with lower tardiness and cycle time is obtained in 14s. Similar to Example 2, when replacing Eq. (26) by Eqs. (28), (30) and (32) (the formulation becomes tighter), the CPU and solving time both increases. The results show that tightening single parts also improves solution quality and computational efficiency when solving overall problems. Results demonstrate great potential of our formulation tightening method for complex MILP problems where the values of integer variables are uniquely determined by the values of binary variables.

VI. Conclusion

In this paper, an innovative and systematic method is established for the first time to tighten the formulations of individual parts with multiple operations in the data preprocessing stage. The idea is to first link integer variables to binary variables by innovatively combining constraints so that the integer variables are uniquely determined by binary ones. With binary variables only, the vertices of the convex hull can be obtained based on the vertices of the linear problem after relaxing binary requirements with proved tightness. These vertices are then converted back to tight constraints with coefficients characterized by part parameters and the length of the scheduling horizon. This method significantly improves and extends our previous results on tightening single-operation parts without actually achieving tightness. Numerical results demonstrate significant benefits on solution quality and computational efficiency.

Beyond MILP job-shop scheduling problems under consideration, this approach also applies to other MILP problems unique relationships between integer and binary variables, such as job-shop scheduling problems with other features like machine-depend processing time and sequencedependent setups. For practical applications, the idea is to obtain "near-tight" formulations by partially tightening. The approach fundamentally changes the way how such problems are formulated and solved. In addition, this method goes naturally with part-based decomposition and coordination approaches, a subject worthy of further exploration.

VII. Appendix

A. Physical meanings of tight constraints

Physical meanings of Eq. (27-5) under all combinations of binary variables involved are shown in Table V below.

TABLE V. CONSTRAINT ANALYSIS FOR EQ. (27-5)							
Case	δ_{4}	δ_{5}	δ_{6}	δ_{7}	δ_{8}	Eq. $23-5)$	Satisfy or not
1	0	0	-	0	0	$-0+0-0+0 \leqslant 0$	Yes
2	0	0	-	0	1	$-0+0-0+1 \leqslant 0$	No
3	0	0	-	1	0	$-0+0-1+0 \leqslant 0$	Yes
4	0	0	-	1	1	$-0+0-1+1 \leqslant 0$	Yes
$\mathbf{5}$	$\mathbf{0}$	$\mathbf{1}$	-	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{- 0 + 1 - 0 + 0} \leqslant \mathbf{0}$	No
6	0	1	-	0	1	$-0-1+0-1 \leqslant 0$	Yes
7	0	1	-	1	0	$-0-1+1-0 \leqslant 0$	Yes
8	0	1	-	1	1	$-0+1-1+1 \leqslant 0$	No
9	1	0	-	0	0	$-1+0-0+0 \leq 0$	Yes
10	1	0	-	0	1	$-1+0-0+1 \leqslant 0$	Yes
11	1	0	-	1	0	$-1+0-1+0 \leqslant 0$	Yes
12	1	0	-	1	1	$-1+0-1+1 \leqslant 0$	Yes
13	1	1	-	0	0	$-1+1-0+0 \leq 0$	Yes
14	1	1	-	0	1	$-1-1+0-1 \leqslant 0$	Yes
15	1	1	-	1	0	$-1-1+1-0 \leq 0$	Yes
16	1	1	-	1	1	$-1+1-1+1 \leqslant 0$	Yes

It can be seen that Eq. (27-5) guarantees that δ_{5} cannot be 1 when δ_{4} when δ_{7} are both 0 as implied by the $5^{\text {th }}$ row of Table V. In other words, if δ_{5} is 1 , one of δ_{4} and δ_{7} has to be 1 . This is reasonable because if neither of the $4^{\text {th }}$ time slot or the $7^{\text {th }}$ is taken, the $5^{\text {th }}$ cannot be taken based on the processing time requirement. Note Cases 2 and 10 in Table III are not feasible because if δ_{8} is $1, \delta_{7}$ must be 1 as guaranteed by Eq. (27-2). Cases 6, 8, 11, 12, 14, and 15 are not feasible guaranteed by Eq.
(17). For Case 3, since δ_{6} cannot be 1 when δ_{5} and δ_{8} are both 0 as guaranteed by Eq. (27-4), δ_{6} has to be 0 . However, if δ_{7} is 1 , δ_{6} must be 1 as guaranteed by Eq. (27-3). Therefore Case 3 is infeasible too.

REFERENCES

[1] P. Brucker, Scheduling Algorithms, 5th edition, Springer-Verlag, Berlin, 2006.
[2] D. P. Bertsekas, Nonlinear programming, $3^{\text {rd }}$ ed, Athena scientific, 2016.
[3] B. Yan, P. B. Luh, E. Litvinov, T. Zheng, D. Schiro, M. A. Bragin, F. Zhao, J. Zhao, and I. Lelic "A Systematical Approach to Tighten Unit Commitment Formulations," in Proceeding of 2018 IEEE Power and Energy Society General Meeting.
[4] B. Yan, P. B. Luh, T. Zheng, D. Schiro, M. A. Bragin, F. Zhao, J. Zhao, and I. Lelic "A Systematic Formulation Tightening Approach for Unit Commitment Problems," IEEE Transactions on Power Systems, Vol. 35, Issue 1, pp. 782-794, 2019.
[5] B. Yan, M. A. Bragin, and P. B. Luh, "Novel Formulation and Resolution of Job-Shop Scheduling Problems," IEEE Robotics and Automation Letters, Vol. 3, Issue 4, pp. 3387-3393, 2018.
[6] T. Yamada, and N. Ryohei Nakano, "Job shop scheduling," IEE control Engineering series 55, pp. 134-134, 1997.
[7] D. J. Hoitomt, P. B. Luh, K. R. Pattipati, "A practical approach to job shop scheduling problems," IEEE Transactions on Robotics and Automation, Vol. 9, No. 1, pp. 1-13, 1993.
[8] C. A. Kaskavelis and M. C. Caramanis, "Efficient Lagrangian relaxation algorithms for industry size job-shop scheduling problems," IIE Transactions, Vol. 30, No. 11, pp.1085-1097, 1998.
[9] T. Sun, P. B. Luh, and L. Min, "Lagrangian relaxation for complex job shop scheduling," in Proceedings 2006 IEEE International Conference on Robotics and Automation, pp. 1432-1437, 2006.
[10] T. Nishi, Y. Hiranaka, and M. Inuiguchi, "Lagrangian relaxation with cut generation for hybrid flowshop scheduling problems to minimize the total weighted tardiness," Computers \& Operations Research, Vol. 37, Issue 1, pp. 189-198, 2010.
[11] K. Mao, Q. K. Pan, X. Pang, and T. Chai, "A novel Lagrangian relaxation approach for a hybrid flowshop scheduling problem in the steelmakingcontinuous casting process," European Journal of Operational Research, Vol. 236, Issue 1, pp. 51-60, 2014.
[12] E. Asadi-Gangraj, "Lagrangian relaxation approach to minimize makespan for hybrid flow shop scheduling problem with unrelated parallel machines," Scientia Iranica, Vol. 25, Issue 6, pp. 3765-3775, 2018.
[13] R. Z. Ríos-Mercado, and J. F. Bard, "Computational experience with a branch-and-cut algorithm for flowshop scheduling with setups," Computers \& Operations Research, Vol. 25, No. 5, pp. 351-366, 1998.
[14] M. Karimi-Nasab, and M. Modarres, "Lot sizing and job shop scheduling with compressible process times: a cut and branch approach," Computers \& Industrial Engineering, Vol. 85, pp. 196-205, 2015.
[15] M. Karimi-Nasab and S. M. Seyedhoseini, "Multi-Level Lot Sizing and Job Shop Scheduling with Compressible Process Times: A Cutting Plane Approach", European Journal of Operational Research, vol. 231, pp. 598-616, 2013
[16] J. C. H. Pan, and J. S. Chen, "Mixed binary integer programming formulations for the reentrant job shop scheduling problem," Computers \& Operations Research, Vol. 32, Issue 5, pp.1197-1212, 2005.
[17] C. Özgüven, Z. Yavuz, and L. Özbakır, "Mixed integer goal programming models for the flexible job-shop scheduling problems with separable and non-separable sequence dependent setup times," Applied Mathematical Modelling, Vol. 36, Issue 2, pp.846-858, 2012.
[18] L. Meng, C. Zhang, B. Zhang, and Y. Ren, "Mathematical modeling and optimization of energy-conscious flexible job shop scheduling problem with worker flexibility," IEEE Access, Vol,7, pp. 68043-68059, 2019.
[19] B. Yan, H. Y. Chen, P. B. Luh, S. Wang, and J. Chang, "Litho machine scheduling with convex hull analyses," IEEE Transactions on Automation Science and Engineering, Vol.10, No. 4, pp. 928-937, 2013.
[20] H. D. Sherali, and P. J. Driscoll, "On tightening the relaxations of Miller-Tucker-Zemlin formulations for asymmetric traveling salesman problems," Oper. Res., Vol. 50, pp. 656-669, 2002.
[21] D. Bienstock, and B. McClosky, "Tightening simple mixed-integer sets with guaranteed bounds," Math. Program., Vol. 133, pp. 337-363, 2012.
[22] E. M. L. Beale and J. J. H. Forrest, "Global optimization using special ordered sets," Mathematical Programming, Vol. 10, No. 1, pp. 52-69, 1976.
[23] G. B. Dantzig, and B. Curtis Eaves, "Fourier-Motzkin elimination and its dual," J Comb Theory A, Vol.14, no. 3, pp. 288-297, 1973.
[24] Heidelberg University, http://www.iwr.uniheidelberg.de/groups/comopt/software/PORTA/
[25] IBM ILG CPLEX V 12.1 User's Manual.

Bing Yan (S'11-M'17) received her B.S. degree from Renmin University of China in 2010, M.S. and Ph.D. degrees from University of Connecticut in 2012 and 2016, respectively. She is currently an Assistant Professor in the Department of Electrical and Microelectronic Engineering, Rochester Institute of Technology. Before joining Rochester Institute of Technology, she was an Assistant Research Professor in the Department of Electrical and Computer Engineering, University of Connecticut. Her research interests include manufacturing system scheduling, power system optimization, mathematical optimization, formulation tightening, and operation optimization of microgrids and distributed energy systems.

Mikhail A. Bragin (S'11-M'17) received his B.S. and M.S. degrees in Mathematics from the Voronezh State University, Russia, in 2004, the M.S. degree in Physics and Astronomy from the University of Nebraska-Lincoln, USA, in 2006, and the M.S. and Ph.D. degree in Electrical and Computer Engineering from the University of Connecticut, USA, in 2014 and 2016, respectively. He is an Assistant Research Professor in electrical and computer engineering at the University of Connecticut. His research interests include operations research, mathematical optimization, including power system optimization, grid integration of renewables (wind and solar), energy-based operation optimization of distributed energy systems, scheduling of manufacturing systems and machine learning through deep neural networks.

Peter B. Luh (S'77-M'80-SM'91-F'95-LF'16) received
 his B.S. degree from National Taiwan University, M.S. degree from M.I.T., and Ph.D. degree from Harvard University. He has been with the University of Connecticut since 1980, and is a Board of Trustees Distinguished Professor and the SNET Professor of communications \& information technologies. His interests include intelligent manufacturing, energy smart buildings, and smart grid. He is a life fellow of IEEE, the Chair of IEEE TAB Periodicals Review and Advisory Committee 2020-21, the Chair of IEEE TAB Periodicals Committee 2018-19, and the Founding Editor-in-Chief of IEEE Transactions on Automation Science and Engineering.

