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Abstract

Job shops are an important production environment for low-volume high-variety manufacturing. Its scheduling has recently

been formulated as an Integer Linear Programming (ILP) problem to take advantages of popular Mixed-Integer Linear Pro-

gramming (MILP) methods, e.g., branch-and-cut. When considering a large number of parts, MILP methods may experience

difficulties. To address this, a critical but much overlooked issue is formulation tightening. The idea is that if problem con-

straints can be transformed to directly delineate the problem convex hull in the data pre-processing stage, then a solution

can be obtained by using linear programming methods without much difficulty. The tightening process, however, is NP hard

because of the existence of integer variables. In this paper, an innovative and systematic approach is established for the first

time to tighten the formulations of individual parts, each with multiple operations, in the data pre-processing stage. It is

a major extension from our previous work on problems with binary and continuous variables to integer variables. The idea

is to first link integer variables to binary variables by innovatively combining constraints so that the integer variables are

uniquely determined by binary variables. With binary variables and continuous only, the vertices of the convex hull can be

obtained based on the vertices of the linear problem after relaxing binary requirements with proved tightness. These vertices

are then converted to tight constraints for general use. This approach significantly improves and extends our previous results

on tightening single-operation parts without actually achieving tightness. Numerical results demonstrate significant benefits

on solution quality and computational efficiency. This approach also applies to other ILP problems with similar characteristics

and fundamentally changes the way how such problems are formulated and solved.
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Abstract – Job shops are an important production environment 

for low-volume high-variety manufacturing. Its scheduling has 

recently been formulated as an Integer Linear Programming (ILP) 

problem to take advantages of popular Mixed-Integer Linear 

Programming (MILP) methods, e.g., branch-and-cut. When 

considering a large number of parts, MILP methods may 

experience difficulties. To address this, a critical but much 

overlooked issue is formulation tightening. The idea is that if 

problem constraints can be transformed to directly delineate the 

problem convex hull in the data pre-processing stage, then a 

solution can be obtained by using linear programming methods 

without much difficulty. The tightening process, however, is NP 

hard because of the existence of integer variables. In this paper, an 

innovative and systematic approach is established for the first time 

to tighten the formulations of individual parts, each with multiple 

operations, in the data pre-processing stage. It is a major extension 

from our previous work on problems with binary and continuous 

variables to integer variables. The idea is to first link integer 

variables to binary variables by innovatively combining 

constraints so that the integer variables are uniquely determined 

by binary variables. With binary variables and continuous only, 

the vertices of the convex hull can be obtained based on the vertices 

of the linear problem after relaxing binary requirements with 

proved tightness. These vertices are then converted to tight 

constraints for general use. This approach significantly improves 

and extends our previous results on tightening single-operation 

parts without actually achieving tightness. Numerical results 

demonstrate significant benefits on solution quality and 

computational efficiency. This approach also applies to other ILP 

problems with similar characteristics and fundamentally changes 

the way how such problems are formulated and solved.   

 

Note to practitioners – Scheduling is an important but difficult 

problem in planning and operation of job shops. The problem has 

been recently formulated in an integer linear programming (ILP) 

form to take advantage of popular mixed-integer linear 

programming methods. Given an ILP problem, there must exit a 

linear programming (LP) formulation so that all of its vertices are 

also the vertices to the ILP problem. If such an LP problem can be 

found in the data preprocess stage, then the corresponding ILP 

problem is tight and can be solved by using an LP method without 

much difficulty. In this paper, an innovative and systematic 

approach is established to tighten the formulations of individual 

parts, each with one or multiple operations. It is a major extension 

from our previous work on problems with binary and continuous 

variables by novel exploitation of the relationship between integer 

and binary variables in job-shop scheduling. The resulting 

tightened constraints are characterized by part parameters and 

can be easily adjusted for other data sets. Results demonstrate 

significant benefits on solution quality and computational 
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efficiency. This approach also applies to other ILP problems with 

similar characteristics and fundamentally changes the way how 

such problems are formulated and solved.   

 
Index terms–Manufacturing, job-shop scheduling, mixed-

integer linear programming, formulation tightening 

I. INTRODUCTION 

ob shops are an important production environment  for low-

volume high-variety manufacturing.  In a job shop, 

machines are usually categorized into different types based 

on their functions.  With these machines, multiple parts with 

different due dates are processed, and each part needs a 

sequence of operations to be completed [1].  To meet on-time 

deliveries, scheduling of parts is critical.  The problem is to 

minimize the required objective, e.g., the total weighted 

tardiness and the total cycle time, by assigning parts to 

machines while satisfying part processing time requirements, 

and operation precedence and machine capacity constraints.   

As reviewed in Section II, some nonlinear job-shop 

scheduling formulations were established and efficiently 

exploited by decomposition and coordination methods.  To take 

advantage of popular mixed-integer linear programming 

(MILP) methods, e.g., branch-and-cut, the problem is recently 

formulated in an integer linear programming (ILP) form.  

Branch-and-cut first solves the linear programming (LP) 

problem without integrality requirements.  If the solution is 

feasible to the original MILP problem, it is optimal.  If not, valid 

cuts are performed around the solution of the LP problem on 

the fly to get solutions to the MILP problem.  If such solutions 

are obtained, the problem is directly solved.  If not, the method 

replies on time-consuming branching operations.  

When considering a large number of parts, MILP methods 

may experience convergence and quality difficulties.  To obtain 

near-optimal job-shop schedules fast, a critical but much 

overlooked issue is formulation transformation.  The idea is to 

transform problem constraints to directly delineate the convex 

hull (the smallest convex set that contains all feasible solutions 

[2]) in the data pre-processing stage.  If this can be done (i.e., 

the formulation is “tight”), then a solution can be obtained by 

using an LP method without combinatorial difficulties.  The 

tightening process, however, is fundamentally challenging for 

job-shop scheduling problems because of the existence of 

integer variables (e.g., beginning time) in addition to binary 

variables and interactions among multiple operations.  In the 
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literature, a few tightened single-part formulations were 

reported without a systematic approach.  They were shown 

computationally efficient for overall problems.  

In this paper, the job-shop scheduling problem is first 

formulated in an integer programming form in Section III, and 

the objective is to minimize the total weighted tardiness and the 

total cycle time.  Since tardiness is a nonlinear function of due 

dates, it is linearized by introducing new binary and continuous 

variables and the corresponding constraints to make effective 

use of MILP methods.  After linearization, the problem 

becomes an MILP problem. To tighten the formulations of 

individual parts with multiple operations in the data pre-

processing stage, an innovative and systematic approach is 

established for the first time in Section IV.  It is a major 

extension from our previous work on unit commitment 

problems in power systems with binary and continuous 

variables to integer variables.  The idea is to first link integer 

variables (e.g., beginning time) to binary variables (e.g., part 

statues) by innovatively combining constraints so that the 

integer variables are uniquely determined by the binary 

variables.  With binary variables and continuous only, the 

vertices of the convex hull can be obtained by simply 

eliminating the vertices of its integer-relaxed problem with 

factional values for binary variables with proved tightness [3, 

4].  These vertices are then converted to tight constraints.  The 

number of resulting tight constraints, the number of variables 

involved, and constraint coefficients depend on part parameters.  

Since all parts must be processed within the scheduling horizon, 

the above also depends the length of the horizon.  For general 

use purposes, these tight constraints are characterized by 

analyzing constraint structures and relationships between 

coefficients and part parameters as well as the scheduling 

horizon.  The resulting tightened constraints can be easily 

adjusted for other data sets.  This approach significantly 

improves and extends our previous results on tightening single-

operation parts without actually achieving tightness [5].   

Three examples are considered in Section IV.  The first is to 

tighten formulations for single-parts with one and two 

operations to illustrate the tightening idea and present insights.  

Robustness of formulation tightening is shown in the second 

example.  The last example is to demonstrate the performance 

of tightened single-part formulations when solving overall job-

shop scheduling problems.  Results demonstrate significant 

benefits on solution quality and computational efficiency.   

Beyond MILP job-shop scheduling problems under 

consideration, this approach also applies to the other MILP 

problems with unique relationships between integer and binary 

variables. It fundamentally changes the way how such problems 

are formulated and solved.  This approach goes naturally with 

decomposition and coordination approaches, a subject worthy 

of further exploration.   

II. LITERATURE REVIEW 

Existing job-shop formulations are reviewed in Subsection 

A.  Tightened constraints are reviewed in Subsection B.   

A. Problem formulations  

With large numbers of decision variables and constraints in 

job-shop scheduling, developing efficient formulations is 

complex [6].  “Separable” and nonlinear formulations were 

established and efficiently exploited by the decomposition and 

coordination Lagrangian relaxation method in [7-12].  ILP 

models were developed in [13-18].  Considering sequence-

dependent setups, an ILP model was established in [13].  With 

additional variables, job successors and predecessors were 

modeled.  In our previous work on high-volume and low-

variety manufacturing [19], an ILP model was developed.  

However, by using those models, large-scale problems cannot 

be effectively solved.   

Branch-and-cut has also been widely used.  The method 

solves the linear program problem without integer constraints 

using by LP methods first.  If the solution has integer values for 

all integer decision variables, it is optimal with respect to the 

original problem.  If not, the method tries to obtain the convex 

hull by adding valid cuts to cut off regions outside the convex 

hull without cutting off feasible solutions.  If successful, the 

problem is directly solved.  If not, time-consuming branching 

operations are performed, resulting in very slow convergence.  

In [14] and [16], the problems were solved by branch-and-cut 

implemented in commercial software CPLEX.  For a problem 

with 10 parts and 8 machines, the Mixed-Integer Programming 

(MIP) gap is still 26.7% after one hour in [13].  In [14], for 

problems with 6 parts and 3 to 5 machines, no good solutions 

are found even after 72 hours.  For branch-and-cut, it is a major 

challenge to enhance computation efficiency.   

B. Tightened constraints 

Obtaining a tight formulation is fundamentally difficult and 

NP hard without clear ways.  In the literature, few tightening 

studies exist on general problems.  For traveling salesman 

problems, a tightened formulation was obtained based on 

subtour elimination [20].  For knapsack problems, tight 

formulations were obtained through the use of “structural” 

disjunctive cuts based on the problem structure [21].   

For manufacturing scheduling, a few tightened constraints 

were presented for single parts without explaining how they 

were generated.   

For traditional job shop scheduling, a few valid cuts were 

developed by analyzing problem structures in [14].  The major 

idea is to find a ceiling for inventory shortage, and the longest 

working procedure sequence till completion for parts.  Testing 

results based on randomly generated data for 325 instances with 

3 to 5 machines and 4 to 6 parts demonstrate computational 

efficiency of the cuts.  For flow-shop scheduling, subtour 

elimination constraints and lower/upper bound mixed-integer 

inequalities were developed by analyzing formulation 

structures in [13], and some of them are facet-defining cuts.  

Testing results based on randomly generated data for problems 

with 2 to 6 machines and 7 to 10 parts show that the 

computational time is much reduced with these tightened 

constraints.  For both studies, testing results demonstrate 

computational efficiency of these tightened constraints.   

In our previous work [5], a few processing time-related 

constraints were tightened for single parts based on integration 

of “constraint-and-vertex conversion” and “vertex projection” 

where non-integer values in vertices are rounded up or down to 

nearest feasible integers.  For unit commitment problems in 

power systems, a systematic method was developed based on 

novel integration of “constraint-and-vertex conversion,” 

“vertex elimination” and “parameterization” processes to 
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tighten single-unit formulations in the data pre-processing stage 

for the first time [3, 4].  Results show that our formulation 

tightening is effective in terms of solution quality and 

computational efficiency.   

III. JOB-SHOP SCHEDULING FORMULATION  

Consider a job shop with multiple machines categorized into 

M types based on their functions.  With these machines, I parts 

with different due dates need to be processed, and the part index 

is i.  Part i requires Ji operations, and the operation index is j.  It 

is assumed that the scheduling horizon is long enough so that 

all parts can be processed.  Discretize the horizon into K time 

slots and let k denote the time index.  Assuming system-level 

machine capacity constraints are relaxed, a single-part 

scheduling problem is formulated based on our previous work 

[5] in Subsection A.  Machine capacity constraints and the 

objective function are briefly described in Subsection B.   

A. Single-part formulation 

For a part with J operations, the main decision variables are 

beginning time bj and completion time cj for each operation j.  

To capture the status of j at time k, i.e., active (processed) or not, 

binary variables jk with operation and time indices is 

considered as follows: 

1, if  is active at time ;

0, otherwise.
jk

j k



 


 

Part-level constraints are processing time requirements and 

operation precedence constraints.  Modeling of linearized 

tardiness is also included.  

a) Processing time requirements  

Because of “non-preemptive,” a contiguous time period 

with length of pj is needed to process operation j, i.e.,   

1, , , .j j j j jc b p j b c Z                  (1) 

Since  represents the status of the part, jk must be 1 within 

[bj, cj], and 0 otherwise, i.e.,    

1, if  ;

0, otherwise.

j j

jk

b k c


 
 


                 (2) 

Logical Eq. (2) is linearized as follows:  

 1 , , , ;j jkk c N j k B                    (3) 

 1 , , , ;j jkk b N j k B                    (4) 

 , ,jk j
k

p j                      (5) 

where N is a larger number.  It can be seen Eqs. (3-5) guarantee 

that jk = 1 iff bj ≤ k ≤ cj; and jk = 0 when k < bj or k > cj.   

b) Operation precedence constraints 

It is assumed that the operation sequence of the part is fixed, 

and operation j+1 cannot start until j is finished, i.e., 

1 1, .j jb c j                       (6) 

Also, the part cannot start the process of operation j until it 

is arrived at time aj, i.e., 

, .j jb a j                      (7) 

c) Linearized tardiness 

Tardiness T is formulated as follows, 

max( ,0),Jc d                     (8) 

where d is the due date.  To represent this, a piecewise-linear 

function is used shown in Fig. 1 below. 
 

 
cJ - d jpj - d K - d 

K- d 

0 

T 

 
Figure 1. Tardiness function 

 

As shown in the figure, the upper and lower bounds of cJ - 

d are jpj - d and K - d, and the corresponding tardiness is 0 and 

K - d.  The three break points of this function on the x-axis are 

jpj - d, 0 and K - d (if jpj - d < 0 < K - d), and the corresponding 

values at the y-axis are 0, 0 and K - d.  This piecewise-linear 

function is linearized by special ordered set techniques [22].  

Three continuous variables w1, w2, and w3 (0 ≤ w1, w2, w3 ≤ 1) 

are considered to represent weights of the three points.  In 

addition, three binary variables 1, 2 and 3
 are used to set up 

upper bounds for these weights.  The constraints are as follows,  

   1 2 30 ;
J j i

j

c d p d K d                (9) 

 1 2 30 ;T o K d                  (10)
 

,1 3;l l l                    (11) 
1 3 1;                     (12) 

1;l

l

                     (13) 

2.l

l

                     (14) 

For simplicity, instead of jpj - d and T - d, two break points -K 

and 2K are used for all parts (d could be negative).   

B. Machine capacity constraints and objective function 

For completeness, machine capacity constraints and the 

objective function are briefly described in this subsection. 

a) Machine capacity constraints 

For each machine type m, the total number of active parts 

cannot exceed its capacity Mm at any time slot, i.e.,  

( , )

, , .
m

ijt m
i j O

M m t
 

              (15) 

In the above, (i, j) denotes operation j of part i, and Om denotes 

the set of (i, j) that can be processed by machine type m.   

b) Objective function 

The objective function to minimize the weighted sum of 

total tardiness and total cycle time, i.e.,  

   ,1max( ,0) (1 ) ,
i i

T
i iJ i iJ i

i i

c d c a           (16) 

where  is the weight for total tardiness, and i
T is for part i.  

The job-shop scheduling problem with Eqs. (1), (3)-(7), and 

(9-16) established above is an MILP problem.  Most of the 

decision variables are binary (e.g., ).  There are also a few 

integer variables (e.g., b and c), and continuous variables (i.e., 

w).  The machine capacity constraints and objective function 

are linear but irrelevant for tightening.    

IV. FORMULATION TIGHTENING 

Building upon our previous work [3-5], an innovative and 

systematic method is established to tighten the above single-

part formulation in Subsection A.  A numerical example is also 
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presented to illustrate the tightening idea.  Tightness is proved 

in Subsection B.   

A. Formulation tightening 

In our previous work on unit commitment in power systems, 

a systematic approach is developed to tighten Mixed-Binary 

Linear Programming (MBLP) problems [3, 4].  To illustrate the 

idea, consider a simple Binary Linear Programming (BLP) 

problem in Fig. 2 with two binary variables x1 and x2, and x1 + 

x2 ≥ 0.5.  After relaxing integrality requirements, the vertices 

(blue dots in Fig. 2b) of the convex hull (blue lines in Fig. 2b) 

to the integer-relaxed problem are obtained.  Then the vertices 

(red dots in Fig. 2a) of the original convex hull (red lines in Fig. 

2a) can be obtained by simply eliminating the vertices with 

factional values for binary variables (open blue dots in Fig. 2b) 

[3-4].  These vertices are then converted to tight constraints for 

general use.  The idea to tighten MBLP problems is the same.  
 

 
Figure 2(a). Convex hull of a BLP 

problem with binary variables x1, x2 
Figure 2(b). Convex hull of its 

integer-relaxed problem 

 

For the ease of presentation, the following terms are defined.  

Definition 1. For an MBLP problem, if the integrality 

requirements are relaxed, the resulting convex hull is defined as 

the “integer-relaxed convex hull.”  In terms of the simple 

example above, the integer-relaxed convex hulls is defined by 

blue lines in Fig. 2b.  

Definition 2. For an integer-relaxed convex hull, a vertex 

consists of integral and real components.  If all integral 

components have integer values, then it is called an “integral 

vertex.”  Otherwise, it is called a “fractional vertex.” In terms 

of the simple example above, integral and fractional vertices are 

denoted by solid and open blue dots respectively in Fig. 2b.   

The above definitions can apply to an MILP problem.   

To tighten the formulation of parts with multiple operations, 

the idea is to start with parts which have one operation.  To 

apply the MBLP tightening idea to tighten the MILP problem 

under consideration, the unique relationship between integer 

variables (e.g., beginning time b) and binary variables (e.g., part 

status ) are innovatively established where integer values of b 

uniquely determine binary values of , and vice versa.  

Therefore, the MBLP principle of eliminating fractional 

vertices with respect to  described above can be applied.  Then 

the same method is applied to tighten parts with two operations 

to explore tightened constraints across two operations.  The 

process can be repeated for parts with more operations.   

a) One operation 

For a single-operation part, given part parameters (due date 

d, processing time p, and arrival time a) and the length of the 

scheduling horizon (K) in numerical values, tightened 

constraints are established by an innovative and systematic 

method through four steps as shown in Fig. 3.   

Step 1. Constraint-to-vertex conversion.  After relaxing 

integrality requirements, the vertices of the integer-relaxed 

convex hull are generated from constraints.  The conversion is 

done by algebraic manipulation of part parameters and the  

 
Figure 3. Flow chart of formulation tightening 

 

scheduling horizon length with algorithms [23] well established 

in existing software Porta [24].  With constraints as input, the 

software outputs vertices in numerical values.   

Step 2. Vertex elimination.  If all vertices obtained in Step 1 

are integral, the formulation is tight.  If not, fractional vertices 

are projected onto the original convex hull.  For this particular 

problem, all integral vertices of the integer-relaxed problems 

are the same as the vertices of the original convex hull and vice 

versa, as will be proved in Subsection B.  Thus vertex projection 

can be done by eliminating factional vertices.   

Step 3. Vertex-to-constraint conversion.  In this step, vertices 

obtained in Step 2 are converted back to tight constraints by 

using Porta as a reverse process of that in Step 1.  The resulting 

formulation with those constraints should be tight.   

Step 4. Parameterization.  Constraints obtained above have 

coefficients in numerical values.  To make them reusable for 

other parts, the idea is to convert numerical coefficients to part 

parameters (e.g., processing time) and the total number of time 

slots in the scheduling horizon.  This parameterization is done 

by analyzing constraints and relationships between numerical 

coefficients and part parameters and the scheduling horizon 

length.  It is verified by checking physical meanings of the 

resulting constraints with coefficients in part parameters and the 

scheduling horizon length under all possible combinations of 

binary variables.  The resulting tightened constraints can be 

easily adjusted for problems with other data sets. 

For a single-operation part, the number of tight constraints, 

the number of variables involved, and constraint coefficients 

depend on part parameters and the length of the scheduling 

horizon.  For example, consider a part with p = 3 and K = 5.  

Because of “non-preemptive,” a contiguous time period with 

length of 3 is needed to process this operation.  If the first time 

block is taken, then the contiguous time period cannot go 

beyond time block 3, otherwise, the process is disjunctive.  

Therefore 1 + 4 ≤ 1 and 2 + 5 ≤ 1.  Since the assumption 

is that the scheduling horizon is long enough so that the part can 

be processed, 1 + 4 = 1 and 2 + 5 = 1.  For the same part with 

K = 6, there is one more similar constraint.  Note that after 

parameterization, the resulting tightened constraints can be 

used for individual operations of parts with multiple operations.  

Numerical Example.  To illustrate the approach, a numerical 

example is presented.  Consider a single-operation part problem 

with p = 3 and K = 8.  Decision variables include part status k, 

beginning time b, and completion time c.  Constraints are 

processing time requirements Eq. (1), and Eqs. (3) - (5).  

Without integrality requirements, the constraints to Porta are 

shown in Fig. 4 (x1: b; x2: c; x3 - x10: 1 - 8).   
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x2-x1+1=3  

x3+x4+x5+x6+x7+x8+x9+x10=3 

x2+8-8x3>=1  

x1-8+8x3<=1 

x2+8-8x4>=2  

x1-8+8x4<=2 

x2+8-8x5>=3 

x1-8+8x5<=3 

x2+8-8x6>=4 

x1-8+8x6<=4 

x2+8-8x7>=5 

x1-8+8x7<=5 

x2+8-8x8>=6  

x1-8+8x8<=6 

x2+8-8x9>=7 

x1-8+8x9<=7 

x2+8-8x10>=8 

x1-8+8x10<=8 
 

Figure 4. Original constraints of a single part problem 

 

By constraint-to-vertex conversion, 1234 vertices are 

obtained and the last 10 are shown in Fig. 5.  Six integral 

vertices remain after eliminating factional vertices as shown in 

Fig. 6.  By vertex-to-constraint conversion, tight constraints are 

generated by Porta in Fig. 7. 
 

(1225)    1    3     1     1      0  7/ 8  1/ 8      0      0      0 

(1226)    1    3     1     1  1/ 8      0      0      0  1/ 2  3/ 8 

(1227)    1    3     1     1  1/ 8  7/ 8      0      0      0      0 

(1228)    1    3     1     1  1/ 4      0  3/ 4      0      0      0 

(1229)    1    3     1     1  3/ 8      0      0  5/ 8      0      0 

(1230)    1    3     1     1  1/ 2      0      0      0  1/ 2      0 

(1231)    1    3     1     1  5/ 8      0      0      0      0  3/ 8 

(1232)    3    5     0     0      1      1      1      0      0      0 

(1233)    2    4     0     1      1      1      0      0      0      0 

(1234)    1    3     1     1      1      0      0      0      0      0 
 

Figure 5. Vertices of the linear programming problem 

 

(1)    1    3     1     1      1      0      0      0      0      0 

(2)    2    4     0     1      1      1      0      0      0      0 

(3)    3    5     0     0      1      1      1      0      0      0 

(4)    4    6     0     0      0      1      1      1      0      0 

(5)    5    7     0     0      0      0      1      1      1      0 

(6)    6    8     0     0      0      0      0      1      1      1 
 

Figure 6. Integral vertices 

 

(   1) +x2+2x3+2x4-7x5+x6+x7-8x8=0; 

(   2) -x3+x5-x6+x8-x9=0; 

(   3) -x4+x5-x7+x8-x10=0; 

(   4) -4x1+3x2-2x3-2x4-x5-x6-x7=0; 

(   5) +x5+x8=1;  

(   6) -x10<=0; 

(   7) -x9+x10<=0; 

(   8) -x8+x9<=0;  

(   9) -x7+x8-x10<=0; 

( 10) -x6+x7-x9+x10<=0; 

( 11) +x6+x9<=1;  

( 12) +x9<=1; 
 

Figure 7. Tightened constraints 

 

Equalities (2), (3), and (5) in Fig. 7 are converted to a set of 

processing time-related tightened constraints as follows,   

1 4 7
1,                      (17a) 

2 5 8
1,                      (17b) 

3 6
1.                      (17c) 

Because of “non-preemptive,” a contiguous time period 

with length of 3 is needed to process this operation.  If the first 

time block is taken, then the contiguous time period cannot go 

beyond time block 3, otherwise, the process is disjunctive.  

Therefore 1 + 4 + 7 ≤ 1.  Since the assumption is that the 

scheduling horizon is long enough so that the part can be 

processed, 1 + 4 + 7 = 1 as shown in Eq. (17a).  Similarly, 

one  from time slots 2, 5 and 8 must be 1 as shown in Eq. (17b), 

and one  from time slots 3 and 6 must be 1 as shown in Eq. 

(17c).  Given Eq. (17), inequality (11) in Fig. 7 is redundant.  

This constraint set has been reported in our previous work [5].   

The above set of tightened constraints can be generalized for 

all operations with different processing time as follows,  
/ :

0

1, [1, ].
K p p k K

k p
k p

 





    




              (18) 

b) Two operations 

Now consider a part with two operations, given part 

parameters (due date d, processing time p1 and p2, and arrival 

time a) and the scheduling horizon length in numerical values, 

tightened constraints are established as follows.  

For the first and second operations, they have their own 

constraints such as processing time requirements.  There is also 

an operation precedence constraint that couples the two 

operations together.  Denote the operation-level constraints for 

the first and second operations as C1 and C2, respectively, and 

the coupling constraint as C1-2.  Apply the tightened constraints 

obtained by tightening single-operation parts to C1 and C2, and 

obtain TC1 and TC2, respectively.  With the constraint set {TC1, 

TC2, C1-2}, tighten the two-operation formulation through the 

four steps presented in the above subsubsection, and obtain 

tightened constraints across two operations as TC1-2.  Note that 

after parameterization, TC1-2 can be used for every two 

consecutive operations of parts with multiple operations. 

Similar to the tightened constraints for every operation, the 

tightened constraints across two operations also depend on part 

parameters and the length of the scheduling horizon.  For 

example, consider a part with p1 = 3 and p2 = 1, and K = 5.  

Because the part must be processed in the scheduling horizon, 

the latest completion time of operation one is 4 as operation two 

needs one time slot after it, thus 1,5 = 0.  Similarly, the earliest 

beginning time of operation two is 4 as operation one needs 

three time slots before it, thus 2,1 = 2,2 = 2,3 = 0.   

c) Multiple operations 

With tightened constraints for individual operations and 

every two consecutive operations, the tightening process is 

repeated for parts with more operations.  Since the number of 

vertices increases exponentially in constraint-and-vertex 

conversion and so does the number of constraints, it is difficult 

to obtain a tight formulation.  Our goal is thus to obtain “near-

tight” formulations by analyzing parts with few operations.   

B. Tightness proof 

Tightness proof is established in the following Theorem 1.   

Theorem 1. For the formulation of single-operation parts 

described by Eqs. (1), (3-5) and (9-14), the integral vertices 

(Definition 2) of its integer-relaxed convex hull (Definition 1) 

Conv(PMILP-IR) are the vertices original convex hull 

Conv(PMILP), and vice versa.  

Proof.  The proof will be conducted in two steps.  The first is 

to show that the values of integer decision variables can be 

uniquely determined by the values of binary variables, and vice 

versa.  The second step is to prove that integral vertices of the 
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integer-relaxed convex hull Conv(PMILP-IR) are the vertices of 

the original convex hull Conv(PMILP) based on the theorems 

developed for MBLP problems in our previous work [4].   

Step 1. Integer variables can be uniquely determined by 

binary variables and vice versa  

Binary to Integer.  Given an integral vertex of the integer-

relaxed convex hull, it is feasible to the original MILP problem.  

Since Eqs. (3-5) are all satisfied, a contiguous time period of 

length p should be assigned to process the part.  For any k0 such 

that 1 ≤ k0 ≤ T – p +1, it is assumed that the part is processed 

during  time interval [k0, k0 + p-1].  Thus k equals to 1 for k  

[k0, k0 + p-1] and 0 otherwise as required by the processing time 

requirements Eqs. (3-5).  After replacing c by b + p - 1 in Eqs. 

(3-4), the following inequalities are obtained:  

0 1;b k b p                   (19) 

0 1 1.b k p b p                  (20) 

Eq. (20) can be rewritten as b - p +1 ≤ k0 ≤ b.  Combining the 

rewritten Eq. (20) and Eq. (19), obtain k0 ≤ b ≤ k0, which 

implies b = k0.  Thus c = b + p – 1 = k0 + p – 1.  Therefore the 

values of  uniquely determine the values of b and c. 

Integer to binary.  Assume b and c equal to k0 and k0 + p - 1, 

respectively, and Eqs. (3-4) become the following,  

 0 ,1 1 kk k p N                 (21) 

 0 1 .kk k N                    (22) 

Rewrite Eqs. (21) and Eq. (22) as,   

  01 ( ,1)kN pk k                  (23) 

  01 .kN k k                   (24) 

When k < k0, it can be seen that k < k0 + p-1.  Thus the right-

hand sides of Eqs. (24) and (23) are positive and negative, 

respectively.  Therefore, k must be 0 to satisfy both constraints.  

Similar analysis applies when k > k0 + p-1, and k must be 0.  

When k0 ≤  k ≤ k0 + p-1, the right hand sides of Eqs. (23) and 

(24) are both non-positive, so k could be 0 or 1.  However, 

because of Eq. (5), kk = p, k can only be 1.  In summary, the 

values k must be 1 for k  [k0, k0 + p-1] and 0 otherwise.  Thus 

the values of b and c uniquely determine the values of . 

The above implies that when s are binary and Eqs. (3-5) 

are all satisfied, the values of integer decision variables b and c 

can be uniquely determined by the values of s, and vice versa.  

Therefore, given a vertex of integer-relaxed convex hull 

Conv(PMILP-LR), if all the binary variables have binary values, 

then the integer variables have integral values, and vice versa.  

Thus the MILP problem under consideration can be treated as 

an MBLP problem for the tightening process. 

Step 2. Tightness of MILP problems 

For an MBLP, it has been proved that, the integral vertices 

(Definition 2) of its integer-relaxed convex hull are all vertices 

of the original convex hull in our previous work [4], and vice 

versa.  Since the MILP under consideration can be treated as 

MBLP in the tightening process, integral vertices of its integer-

relaxed convex hull Conv(PMILP-LPR) are the vertices original 

convex hull Conv(PMILP), and vice versa.  End.  

Based on Theorem 1, vertex projection can be simply done 

by eliminating factional vertices in Step 2 to tighten the single-

operation part formulation.  For parts with multiple operations, 

since the relations between b and  within individual operations 

still hold, the values of b and c can be uniquely determined by 

the values of s.  Thus the formulation is still tight by applying 

the same idea as that for the single-operation parts.   

Generalization.  Beyond MILP job-shop scheduling 

problems under consideration, this approach also applies to 

other MILP problems with unique relationships between integer 

and binary variables.  

V. NUMERICAL RESULTS 

The above tightening method is implemented by using Porta 

[24].  The job-shop scheduling problems are solved by using 

IBM ILOG CPLEX Optimization Studio V 12.8.0.0 [25] on a 

PC with 2.40GHz Intel Xeon E-2286M CPU and 32G RAM.  

Three examples are presented.  The first is to tighten 

formulations of single-parts with one and two operations to 

illustrate the idea and present the insights.  Robustness of 

formulation tightening is shown in the second example.  The 

last is to demonstrate performance of tightened single-part 

formulations when solving overall problems.   

Example 1: Single part   

a) One operation  

Consider the scheduling problem with a single-operation 

part with p = 3 and K = 8 in used in Subsection III-C.  

Constraints (2), (3), (5) and (11) in Fig. 7 have been explored 

in Subsection III-C, and inequality (12) is redundant given the 

binary requirements of .  Therefore the focus is on exploring 

inequalities (6) to (10) and equalities (1) and (4) in Fig. 7. 

1) Inequality constraints  

Inequality (9) in Fig. 7 is converted to a set of processing 

time-related tightened constraints as follows,   

 2 3 1 4
2                     (25a) 

 3 4 2 5
2 ,                     (25b) 

 4 5 3 6
2 ,                     (25c) 

 5 6 4 7
2 ,                     (25d) 

 6 7 5 8
2 .                     (25e) 

Eq. (25a) implies that if 2 and 3 are both 1, either 1 or 4 

must be 1 because of “non-preemptive” processing time 

requirements, similar for Eqs. (25b) - (25e).  This set of 

constraints has been reported in our previous work [5].   

The above set of tightened constraints can be generalized for 

all operations with different processing time as follows,  

 
1

1

( 1) , [1, ].
k p

k k p
k

p k K p




  
 


 

            (26) 

Eq. (26) implies that if  are all 1, either k or k+p must be 1.  

When examining inequalities (6) to (10) in Fig. 7 as a group, 

they can be put together in the matrix form in Eq. (27) below, 

4

5

6

7

8

0 0 0 0 1

0 0 0 1 1

0.0 0 1 1 0

0 1 1 0 1

1 1 0 1 1











   
  

   
   
  

    
     

         (27) 

It is noted that 1 to 3 do not show up in the above equation.  
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The reason is that if 4 to 8 are properly regulated to satisfy the 

“non-preemptive” processing time requirements by Eq. (27), 

then 1 to 3 are expected to satisfy the requirements too because 

of the processing time related tightened constraint Eq. (17).  In 

addition, although the first row of Eq. (27), denoted as Eq. (27-

1), is redundant given the binary requirements of , it helps put 

the constraints together in a square matrix form.  Physical 

meanings of Eqs. (27-2)-(27-5) are analyzed one by one below.  

Physical meanings of Eq. (27-2) under all combinations of 

binary variables involved are shown in Table I below.   
 

TABLE I. CONSTRAINT ANALYSIS FOR EQ.(27-2) 

Case  7 8 Eq. (25-2) Satisfy or not 

1 0 0 -0 + 0 ≤ 0  Yes 

2 0 1 -0 + 1 ≤ 0  No 

3 1 0 -1 + 0 ≤ 0  Yes 

4 1 1 -1 + 1 ≤ 0  Yes 

 

It can be seen Eq. (27-2) guarantees that if 8 is 1, 7 must 

be 1 as implied by the 2nd row of Table I.  This is reasonable 

because the last possible three time slots to process the part is 

6, 7, and 8 given the processing time is 3.  If the 8th time slot is 

taken, then the 7th must be taken too, otherwise the part cannot 

be completed within the scheduling horizon.  The physical 

meaning of Eq. (27-3) is similar, if 7 is 1, 6 must be 1.   

Physical meanings of Eq. (27-4) under all combinations of 

binary variables involved are shown in Table II below.   
 

TABLE II. CONSTRAINT ANALYSIS FOR EQ.(27-4) 

Case  5 6 7 8 Eq. (24-4) Satisfy or not 

1 0 0 - 0 -0 + 0 -0 ≤ 0  Yes 

2 0 0 - 1 -0 + 0 -1 ≤ 0 Yes 

3 0 1 - 0 -0 + 1 -0 ≤ 0 No 

4 0 1 - 1 -0 + 1 -1 ≤ 0 Yes 

5 1 0 - 0 -1 + 0 -0 ≤ 0  Yes 

6 1 0 - 1 -1 + 0 -1 ≤ 0 Yes 

7 1 1 - 0 -1 + 1 -0 ≤ 0 Yes 

8 1 1 - 1 -1 + 1 -1 ≤ 0 Yes 

 

It can be seen Eq. (27-4) guarantees that 6 cannot be 1 when 

5 and 8 are both 0 as implied by the 3rd row of Table II.  In 

other words, if 6 is 1, one of 5 and 8 has to be 1.  This is 

reasonable because if neither of the 5th time slot or the 8th is 

taken, then the 6th cannot be taken based on the processing time 

requirement.  Note that Case 8 is not feasible because 5 and 8 

cannot be 1 at the same time as guaranteed by Eq. (17b).  

Physical meanings of Eq. (27-5) under all combinations of 

binary variables involved are shown in Table V in the appendix, 

as well as the analysis.  The physical meanings of Eq. (27) can 

be intuitively shown in Fig. 8 below.   

As shown in the figure: (a) if 8 is 1, then 7 must be 1; (b) 

if 7 is 1, then 6 must be 1; (c) if 6 is 1, then one of 5 and 8 

has to be 1; and (d) if 5 is 1, then one of 4 and 7 has to be 1.  

Eq. (27) with the processing time related tightened constraint 

Eq. (17) guarantee a contiguous time period with length of 3 to 

process the part.  For example, if 6 is 1, there are two 

possibilities: (1) 8 is 1; or (2) 5 is 1.  The first situation is 

simple since 7 will be 1 when 8 is 1, thus time slots 6, 7 and 8 

are used to process the part.  For the second situation, 5 is 1, 

and there are two possibilities again: (2.1) 4 is 1; or (2.2) 7 is 

1.  Time slots 4, 5 and 6 are used to process the part in the first 

situation, and time slots 5, 6 and 7 are used for the second 

situation.  Among all situations described above, a contiguous 

time period with length of 3 is guaranteed to process the part.  

Similar analysis can be performed for other s.   
 

 
Figure 8. Intuitive description of Eq. (27) 

 

With further analysis on the meanings of Eq. (27), it can be 

extended to a set of tightened constraints Eq. (28) for problems 

with longer time periods as follows,  

... 0 0 0 0 0 0 0 0 1

... 0 0 0 0 0 0 0 1 1

... 0 0 0 0 0 0 1 1 0

... 0 0 0 0 0 1 1 0 1

... 0 0 0 0 1 1 0 1 1

... 0 0 0 1 1 0 1 1 0

... 0 0 1 1 0 1 1 0 1

... 0 1 1 0 1 1 0 1 1

... 1 1 0 1 1 0 1 1 0

... 1 0 1 1 0 1 1 0 1

... ... ... ... ... ... ... ... ... ...

 
 

 
 
 

  
  
 

  
   

   


  
   

 

4

5

6

7

8

9

10

11

0.

...

K



















 
 
 
 
 
 
 
  
 
 
 
 
 
 
  

(28) 

The entries xnh of the matrix are presented below. 
Let 4 ,

0,     0

1,   0 and  mod 3 =1

1,     0 and  mod 3 =2

0,    0 and  mod 3 =0

nh

n h K y y Z

y

y y
x

y y

y y

    



 

 


 

          (29) 

The meaning of Eq. (28) is similar to Eq. (27).  For example, 

when k is 1, it is intuitively shown in Fig. 9.   

For example, if k is 1, there are two possibilities: (1) k-1 is 

1; or (2) k+2 is 1.  For Case (1), there are two possibilities again: 

(1.1) k-2 is 1; or (1.2) k+1 is 1.  For each of them, a contiguous 

time period with length of 3 is guaranteed to process the part.  

For Case (2),  k+2 is 1, and there are two possibilities again: 

(2.1) k+1 is 1; or (2.2) k+4 is 1.  For Case (2.1), a contiguous 

time period with length of 3 is guaranteed to process the part.  

For Case (2.2), according to Eq. (18), one of k+3 and k+6 has to 

be 1, which is contradictory with the current set up where both 

of k+3 and k+6 are zero.  Among all the situations described 

above, a contiguous time period with length of 3 is guaranteed.  

Similar analysis can be performed for other s.   
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Figure 9. Intuitive description of Eq. (28) 

 

When the process time is 2 and 4, the corresponding sets of 

tightened constraints for problems with longer time periods are 

shown in Eqs. (30) and (32), respectively.  The entries of these 

two matrices are presented in Eqs. (31) and (33), respectively. 

... 0 0 0 0 0 0 0 0 1

... 0 0 0 0 0 0 0 1 1

... 0 0 0 0 0 0 1 1 1

... 0 0 0 0 0 1 1 1 1

... 0 0 0 0 1 1 1 1 1

... 0 0 0 1 1 1 1 1 1

... 0 0 0 1 1 1 1 1 1

... 0 0 1 1 1 1 1 1 1

... 0 1 1 1 1 1 1 1 1

... 1 1 1 1 1 1 1 1 1

... ... ... ... ... ... ... ... ... ...

 
 

 
  


 
  


  
   

    


   
     

 

3

4

5

6

7

8

9

10

0,

...

K



















 
 
 
 
 
 
 
  
 
 
 
 
 
 
  

  (30) 

2, 3 ,

0,     0

1,   0 and  mod 3 =1

1,     0 and  mod 3 =0

nh

P n h K y y Z

y

x y y

y y

     




  
 

          (31) 

... 0 0 0 0 0 0 0 0 1

... 0 0 0 0 0 0 0 1 1

... 0 0 0 0 0 0 1 1 0

... 0 0 0 0 0 1 1 0 0

... 0 0 0 0 1 1 0 0 1

... 0 0 0 1 1 0 0 1 1

... 0 0 1 1 0 0 1 1 0

... 1 1 0 0 1 1 0 0

... 1 1 0 0 1 1 0 0 1

... 1 0 0 1 1 0 0 1 1

... ... ... ... ... ... ... ... ... ...

 
 

 
 
 

 
  
 

  
  
 
 
 

   
  
 
 

5

6

7

8

9

10

11

12

0.

...

K



















 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

  (32) 

4, 5 ,

0,     0

1,   0 and  mod 4 =1

1,     0 and  mod 4 =2

0,    0 and  mod 4 =3

0,    0 and  mod 4 =0

nh

P n h K y y Z

y

y y

x y y

y y

y y

     



 


 
 




          (33) 

2) Equality constraints 

With further analysis on the meanings of equalities (1) and 

(4) in Fig. 7 under all possible part statuses, i.e., active or not at 

each time slot, two new sets of beginning/completion time-

related tightened constraints are obtained as follows, 

1 2
1 2( )b K p        

3 4 5 6 7 8
( ) 0( ),                     (34) 

8 7 6 5 4
0( ) ( )c K           

3 2 1
( 1) 2( ).K                     (35) 

Since the processing time is p and the part must be completed 

within the scheduling horizon, the largest beginning time is K- 

p + 1 with 6, 7 and 8 as 1 as implied in Eq. (34).  When the 

starting of nonzero  moves earlier, b gets smaller.  The earlier 

the , the larger the impacts on b.  The meaning of Eq. (35) is 

similar.  The largest completion time is K with 6, 7 and 8 as 

1.  When the starting of nonzero  moves earlier, c gets smaller.  

The earlier the , the larger the impacts on c.  It can be verified 

that these constraints are meaningful under all possible part 

statuses of 1 - 8.   

The above two tightened constraints can be generalized for 

all operations with different processing time as follows,  

 
/ 1:

0 0

1
n K p p np K

K np
n

b K p n
 





      

 
 

               (36) 

  
/ 2: 1:

0 0 1

( ) .
n K p p np K np p K

K np K np p
n

c n K n
   

 
 

 
          

    
  

        (37) 

Eqs. (18), (26), (36) and (37) directly constrain 1 - 8, b, 

and c within one operation.  For the single-operation part  

problem with p = 3 and K = 8 under consideration, with Eqs. 

(17) and (25), the total number of vertices decreases from 1234 

to 250 in a major way.  With Eqs. (34) and (35), it is further 

reduced to 42.  Replace (25) by (27), the total number of 

vertices is 6, and all of the vertices are integral vertices, 

implying the formulation is tight.  For the single part and one 

operation scheduling problem with the processing time as 1, 2, 

3, and 4, tight formulations are obtained.   

b) Two operations  

Now add another operation with processing time of 3 to the 

problem in a), with additional operation precedence constraint 

Eq. (6).  Decision variables include two sets of k, b, and c for 

operations 1 and 2, respectively.  With the standard formulation 

established in Section III, after relaxing integrality 

requirements, 63,872 vertices are obtained by constraint-to-

vertex conversion.  With Eqs. (18) and (26) obtained in the one-

operation example, a total number of 23,206 vertices remain.  

With Eqs. (36) and (37), 333 vertices remain.  After eliminating 

factional vertices, there are 6 integral vertices.  After vertex-to-

constraint conversion, the resulting tight constraints are 

obtained as shown in Fig. 10 (x1: b1; x2: c1; x3 - x10: 1,1 - 1,8; 

x11: b2; x12: c2; x13 - x20: 2,1 - 2,8). 
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(   1) +x12+x16+x17-8x18=0; 

(   2) -x8=0;  

(   3) -x9=0; 

(   4) -x10=0;  

(   5) -x13=0; 

(   6) -x14=0;  

(   7) -x15=0; 

(   8) +2x5+x11-x12=0; 

(   9) -x3+x5-x6=0; 

( 10) -x4+x5-x7=0; 

( 11) -x16+x18-x19=0; 

( 12) -x17+x18-x20=0; 

( 13) -4x11+3x12-x16-x17=0; 

( 14) +x2+x3+x4-5x5=0; 

( 15)-5x1+3x2-2x3-2x4=0; 

( 16)+x18=1;  

( 17)-x7<=0; 

( 18)-x6+x7<=0;  

( 19)-x19+x20<=0; 

( 20)+x7-x20<=0;  

( 21)+x6-x19<=0; 

( 22)+x19<=1. 
 

Figure 10. Ex.1-b) Tightened constraints 

 

After analyzing the meanings of equalities (2) to (7) in Fig. 

10 under possible part statuses, two sets of operation 

precedence-related tightened constraints are obtained below, 

1, 2
0, [ 1, ];

k
k K p K                (38) 

2, 1
0, [1, ].

k
k p                  (39) 

Since the two operations of the part needs to be completed in 

the scheduling horizon, the largest completion time for 

operation 2 is K, with beginning time of K – p2 + 1.  Therefore 

operation 1 must be completed by that time, and 1 for period 

of [K - p2 + 1, K] must be 0 as implied in Eq. (38).  The meaning 

of Eq. (39) is similar.  The smallest beginning time of operation 

1 is 1, with completion time of p1.  Therefore operation 2 cannot 

start before p1, and 2 for period of [1, p1] must be 0.   

The above two tightened constraints can be generalized for 

all operations with different processing time as follows,  

,
1

0, [ 1, ], [1, 1],
J

j k g
g j

k K p K j J
 

            (40) 

1

,
1

0, [1, ], [2, ].
j

j k g
g

k p j J




              (41) 

Eqs. (40) and (41) directly constrain 1 - 8 across 

operations.  With them, the total number of vertices decreases 

to 14 from 333 in a major way.   

c) One operation with linearized tardiness 

Now add the constraints associated with tardiness to the 

problem in a), assuming due date d is 2.  Constraints under 

consideration are processing time requirements Eq. (1) and Eqs. 

(3) - (5), and tardiness constraints Eqs. (9) - (14).  Decision 

variables include a set of k, b, and c, a set of continuous 

variables w, a set of binary variables , and tardiness T.  With 

the standard formulation established in Section III, after 

relaxing integrality requirements, 6,170 vertices are obtained by 

constraint-to-vertex conversion.  With Eqs. (17), (25), (34) and 

(35) obtained in the one-operation example, a total number of 

210 vertices remain.  After eliminating factional vertices, there 

are 8 integral vertices.  After vertex-to-constraint conversion, 

the resulting tight constraints are shown in Fig. 11 (x1: b; x2: c; 

x3 - x10: 1 - 8; x11 - x13: w1 - w3; x14 - x16: 1 - 3; x17: T).  
  

 

(   1) +x2+2x3+2x4-7x5+x6+x7-8x8=0; 

(   2) +x6+x7+x8+2x9+2x10+x12-15x13=0; 

(   3) -x11=0;  

(   4) -x14=0; 

(   5) +16x13-x17=0; 

(   6) +x15-x16=0; 

(   7) +x12+x13-x15=0; 

(   8) -x3+x5-x6+x8-x9=0; 

(   9) -x4+x5-x7+x8-x10=0; 

( 10) +15x5-x6-x7+14x8-2x9-2x10-16x12=0; 

( 11) -4x1+3x2-2x3-2x4-x5-x6-x7=0; 

( 12) +x16=1; 

( 13) +2x7+x8+x9+3x10-x17<=-1; 

( 14) -x10<=0;  

( 15) -x8+x9<=0; 

( 16) -x9+x10<=0;  

( 17) -x7+x8-x10<=0; 

( 18) -x7-x8-x9-2x10+x17<=2. 
 

Figure 11. Ex.1-c) Tightened constraints 

 

By combining equalities (2), (5) and (10) in Fig. 11, the 

following constraint is obtained,  

3 4 5 6 7 8
2 2 2 .T                      (42) 

Since the processing time is 3 and the due date is 2, the 

smallest tardiness is 1 with 1, 2 and 3 as 1, and the largest 

tardiness is 6 with 6, 7 and 8 as 1 as implied in Eq. (42).  

When the starting of nonzero  moves earlier, T gets smaller.  

The earlier the , the smaller the impacts on T.   

After analyzing the physical meanings, Eq. (42) is converted 

to the following constraint in generic forms, 

 

 

( 1)/ 1 0: 1:

1 0 1

( 1)/ 1 : ( 1)

( 1)
1 1

( 1) ,

,

K P P pn K p pn K

pn pn
n

K d P p d p n K

d p n
n

p d n n p d

T

n p d

 

 
 






 



         

 
  

        

  
 

       
 
  


 

                        (43) 

Eq. (43) directly constrains 1 - 8 and tardiness T.  With it, 

the total number of vertices decreases to 84 from 210.   

The tightened constraints obtained in a), b), and c) tighten 

the formulation.  However, they can hardly be obtained 

manually without going through the above tightening process.  

The formulation with them is much tighter (not tight yet) than 

the original one.   Those tightened constraints can be extended 

to other parts with more operations and processing time other 

than 3, and whose due date is positive and less than K.   

Example 2: Medium-sized problems   

This medium-sized example is to demonstrate effectiveness 

and robustness of formulation tightening.  The instance is 

created based on the first 89 parts and all machines in [7].  

According to which parts/operations that machines can process, 

machines are categorized into 19 types, and each type has 1 to 

6 machines with the same function.  The number of time slots 

under consideration is 220 so that all the parts can be processed.  

Machines are assumed always available for simplicity.  There 

are three values for tardiness weights, 1, 10, and 100, and they 

are randomly assigned to parts with percentage of 50%, 40% 

and 10%, respectively.  The weight for the total tardiness is 0.95.  

Before and after adding tightened constraints, the overall job-

shop scheduling problems are solved by using branch-and-cut.  

Results with different formulations are presented in Table III 

bellow: (a) the original formulation; (b) adding Eq. (18) and 

(26); (c) adding Eqs. (36) and (37); (d) adding Eqs. (40) and 

(41); (e) adding Eq. (43); and (f) replacing Eq. (26) in (e) by 
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Eqs. (28), (30) and (32) for operations with processing time of 

2, 3, and 4 time slots.  From (a) to (e), the process is 

accumulative.  Eq. (43) is applied to operations with processing 

time of 1, 2, and 3 time slots.  Stopping criteria are 600 second 

(s) CPU time or 0.01% MIP gap.  CPU time consists of three 

parts, data and model loading, solving, and solution outputting.   
 

TABLE III. COMPARISON OF FORMULATIONS: MEDIUM-SIZED 

Formulation 
Total 

tardiness 

Total cycle 

time 

MIP 

gap (%) 

CPU 

 (s) 

Solve 

(s) 

Cut  

(s) 

Branch 

(s) 

(a): Original 35,288 826 1.33 607.7 606.3 38.8 

 

523.8 

(b): (a) + (18), (26) 35,243 766 0.94 59.4 57.8 8.0 

 

43.2 

(c): (b) + (36)-(37) 35,100 613 0.01 6.3 4.5 1.5 0 

(d): (c) + (40)-(41) 35,100 613 0.01 6.3 4.6 1.5 0 

(e): (d) + (43) 35,100 613 0.01 6.3 4.6 1.6 0 

(f): replace (26) in (e) 

by (28), (30), (32) 

35,100 617 0.01 8.5 6.5 2 0 

 

According to Table III, the CPU, solving, cutting and 

branching time is much reduced by adding new tightened 

constraints Eqs. (18), (26), (36), (37), (40), (41) and (43), while 

the solution quality is still high.  With the standard formulation, 

a feasible solution with the total weighted tardiness of 35,288 

and total cycle time of 826 is obtained in 10 minutes with a MIP 

gap of 1.3%, while the time on cutting and branching is 39s and 

524s, respectively.  By adding new tightened constraints, a 

feasible solution with a lower total weighted tardiness and cycle 

time is obtained in 6s, while the cutting time is 1.6s and there 

are no branching operations.   

When replacing Eq. (26) by Eqs. (28), (30) and (32) (the 

formulation becomes tighter), a similar solution is obtained in 

9 s, with cutting time as 2s.  The reason is that when solving the 

problem by using branch-and-cut, cuts are performed around 

the optimal solution to the LP relaxation problem [20], not on 

the entire feasible region as mentioned in Section I.  Therefore 

more tightened constraints may not guarantee better 

computational efficiency.  There is a trade-off between 

tightness and computational efficiency.   

The problem is also solved with randomly assigned part 

tardiness weights considering formulations (a), (e) and (f) 

presented above.  Cutting and branching time for problems with 

different sets of weights are compared in Fig. 12.  Then for each 

part, a random variable following U(-5, 5) is generated and 

added to the due date, while tardiness weights are the same as 

the original problem.  The results are shown in Fig. 13.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 12. Cutting, branching and other time under different weights 
 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 13. Cutting, branching and other time under different due dates 

 

For every instance, the same solution is obtained with and 

without tightened constraints.  By adding tightened constraints, 

the total cutting and branching time is significantly reduced, 

and the reduction is mainly from the reduction of branching 

time.  Results demonstrates effectiveness and robustness of our 

formulation tightening.   

Example 3: Large-sized problems   

This large-sized example is to demonstrate performance of 

tightened single-part formulations.  The instance is created 

based on all 127 parts and all machines in [7].  The number of 

time slots under consideration is 300 so that all the parts can be 

processed.  The other problem setup is the same as in Example 

2.  Before and after adding tightened constraints, the job-shop 

scheduling problems are solved by using branch-and-cut, and 

results are shown in Table IV.  Stopping criteria are 1200 

second (s) CPU time or 0.011% MIP gap. 
 

TABLE IV. COMPARISON OF FORMULATIONS: LARGE-SIZED  

Formulation 
Total 

tardiness 

Total cycle 

time 

MIP 

gap (%) 

CPU 

time (s) 

Solving 

time (s) 

(a): Original 18,198 1447 20.83 1204.2 1200.8 

(b): (a) + (18), (26) 14,568 891 1.45 1204.6 1201.3 

(c): (b) + (36)-(37) 14,543 762 0.01 14.93 12.27 

(d): (c) + (40)-(41) 14,543 762 0.01 14.79 12.01 

(e): (d) + (43) 14,543 763 0.01 13.74 11.03 

(f): replace (26) in (e) by 

(28), (30), (32) 14,543 762 0.01 19.67 15.91 

 

According to Table IV, both the solution quality and 

computational efficiency is significantly improved by adding 

new tightened constraints.  With the standard formulation, a 

feasible solution with the total weighted tardiness of 37,633 and 

total cycle time of 613 is obtained in 20 minutes with a MIP gap 

of 21%.  By adding new tightened constraints Eqs. (18), (26), 

(36), (37), (40), (41) and (43), a feasible solution with lower 

tardiness and cycle time is obtained in 14s.  Similar to Example 

2, when replacing Eq. (26) by Eqs. (28), (30) and (32) (the 

formulation becomes tighter), the CPU and solving time both 

increases.  The results show that tightening single parts also 

improves solution quality and computational efficiency when 

solving overall problems.  Results demonstrate great potential 

of our formulation tightening method for complex MILP 

problems where the values of integer variables are uniquely 

determined by the values of binary variables. 

(a) (e) (f)

Instance 3

(a) (e) (f)

Instance 2

0

100

200

300

400

(a) (e) (f)

Instance 1

Cut

(a) (e) (f)

Instance 6

(a) (e) (f)

Instance 5

0

200

400

600

800

(a) (e) (f)

Instance 4

Cut

Branch
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VI. CONCLUSION 

In this paper, an innovative and systematic method is 

established for the first time to tighten the formulations of 

individual parts with multiple operations in the data pre-

processing stage.  The idea is to first link integer variables to 

binary variables by innovatively combining constraints so that 

the integer variables are uniquely determined by binary ones.  

With binary variables only, the vertices of the convex hull can 

be obtained based on the vertices of the linear problem after 

relaxing binary requirements with proved tightness.  These 

vertices are then converted back to tight constraints with 

coefficients characterized by part parameters and the length of 

the scheduling horizon.  This method significantly improves 

and extends our previous results on tightening single-operation 

parts without actually achieving tightness.  Numerical results 

demonstrate significant benefits on solution quality and 

computational efficiency.   

Beyond MILP job-shop scheduling problems under 

consideration, this approach also applies to other MILP 

problems unique relationships between integer and binary 

variables, such as job-shop scheduling problems with other 

features like machine-depend processing time and sequence-

dependent setups.  For practical applications, the idea is to 

obtain “near-tight” formulations by partially tightening.  The 

approach fundamentally changes the way how such problems 

are formulated and solved.  In addition, this method goes 

naturally with part-based decomposition and coordination 

approaches, a subject worthy of further exploration.   

VII. APPENDIX  

A. Physical meanings of tight constraints  

Physical meanings of Eq. (27-5) under all combinations of 

binary variables involved are shown in Table V below.   
 

TABLE V. CONSTRAINT ANALYSIS FOR EQ. (27-5) 

Case  4 5 6 7 8 Eq. (23-5) Satisfy or not 

1 0 0 - 0 0 -0 + 0 -0 +0 ≤ 0  Yes 

2 0 0 - 0 1 -0 + 0 -0 +1 ≤ 0 No 

3 0 0 - 1 0 -0 + 0 -1 +0 ≤ 0 Yes 

4 0 0 - 1 1 -0 + 0 -1 +1 ≤ 0 Yes 

5 0 1 - 0 0 -0 + 1 -0 +0 ≤ 0  No 

6 0 1 - 0 1 -0 -1 + 0 -1 ≤ 0 Yes 

7 0 1 - 1 0 -0 -1 + 1 -0 ≤ 0 Yes 

8 0 1 - 1 1 -0 + 1 -1 +1 ≤ 0  No 

9 1 0 - 0 0 -1 + 0 -0 +0 ≤ 0  Yes 

10 1 0 - 0 1 -1 + 0 -0 +1 ≤ 0 Yes 

11 1 0 - 1 0 -1 + 0 -1 +0 ≤ 0 Yes 

12 1 0 - 1 1 -1 + 0 -1 +1 ≤ 0 Yes 

13 1 1 - 0 0 -1 + 1 -0 +0 ≤ 0  Yes 

14 1 1 - 0 1 -1 -1 + 0 -1 ≤ 0 Yes 

15 1 1 - 1 0 -1 -1 + 1 -0 ≤ 0 Yes 

16 1 1 - 1 1 -1 + 1 -1 +1 ≤ 0  Yes 

 

It can be seen that Eq. (27-5) guarantees that 5 cannot be 1 

when 4 when 7 are both 0 as implied by the 5th row of Table 

V.  In other words, if 5 is 1, one of 4 and 7 has to be 1.  This 

is reasonable because if neither of the 4th time slot or the 7th is 

taken, the 5th cannot be taken based on the processing time 

requirement.  Note Cases 2 and 10 in Table III are not feasible 

because if 8 is 1, 7 must be 1 as guaranteed by Eq. (27-2).  

Cases 6, 8, 11, 12, 14, and 15 are not feasible guaranteed by Eq. 

(17).  For Case 3, since 6 cannot be 1 when 5 and 8 are both 

0 as guaranteed by Eq. (27-4), 6 has to be 0.  However, if 7 is 

1, 6 must be 1 as guaranteed by Eq. (27-3).  Therefore Case 3 

is infeasible too.   
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