Blockchain-based Multi-Party Authorization for Accessing IPFS
Encrypted Data

Ammar Battah !, Mohammad Madine !, Hamad Alzaabi !, Ibrar Yaqoob 2, Khaled Salah
! and Raja Jayaraman !

! Affiliation not available
2Khalifa University of Science and Technology

October 30, 2023

Abstract

Multi-party authorization (MPA) typically involves multiple parties to control and grant access to shared data. MPA is used
to solve the insider’s attack problem by ensuring that a single authority or party is not acting alone. Currently, almost all
existing implementations of MPA are centralized and fall short in providing logs and events related to provenance of granting
permissions in a trusted, secure, immutable, auditable, and decentralized manner. Moreover, for sharing data, proxy re-
encryption algorithms are often used to give secure access to encrypted shared data. These schemes and algorithms are also
centralized and cannot be trusted. In this paper, we propose a fully decentralized blockchain-based solution in which MPA is
implemented using Ethereum smart contracts, and proxy re-encryption algorithms (which are computationally expensive) are
implemented using multiple oracles to give access to encrypted shared data stored on a public and decentralized storage platform,
such as the Interplanetary File Systems (IPFS). The smart contracts help to validate results based on the majority of encrypted
results determined by the oracles. For this, we incorporate reputation mechanisms in the proposed smart contracts to rate
the oracles based on their malicious and non-malicious behaviors. We present algorithms along with their full implementation,
testing, and validation details. We evaluate the proposed system in terms of security, cost, and generalization to show its

reliability and practicality. We make the smart contract source code publicly available on Github.

Blockchain-based Multi-Party Authorization for
Accessing IPFS Encrypted Data

Ammar Battah, Mohammad Madine, Hamad Alzaabi, Ibrar Yaqoob, Khaled Salah, Raja Jayaraman

Abstract—Maulti-party authorization (MPA) typically involves
multiple parties to control and grant access to shared data.
MPA is used to solve the insider’s attack problem by ensuring
that a single authority or party is not acting alone. Currently,
almost all existing implementations of MPA are centralized and
fall short in providing logs and events related to provenance of
granting permissions in a trusted, secure, immutable, auditable,
and decentralized manner. Moreover, for sharing data, proxy re-
encryption algorithms are often used to give secure access to
encrypted shared data. These schemes and algorithms are also
centralized and cannot be trusted. In this paper, we propose
a fully decentralized blockchain-based solution in which MPA
is implemented using Ethereum smart contracts, and proxy re-
encryption algorithms (which are computationally expensive)
are implemented using multiple oracles to give access to en-
crypted shared data stored on a public and decentralized storage
platform, such as the Interplanetary File Systems (IPFS). The
smart contracts help to validate results based on the major-
ity of encrypted results determined by the oracles. For this,
we incorporate reputation mechanisms in the proposed smart
contracts to rate the oracles based on their malicious and non-
malicious behaviors. We present algorithms along with their full
implementation, testing, and validation details. We evaluate the
proposed system in terms of security, cost, and generalization to
show its reliability and practicality. We make the smart contract
source code publicly available on Github.

Index Terms—Blockchain, Access Control, Authentication,
Ethereum, Encrypted files, Multi-Party Authority.

I. INTRODUCTION

Recent years have witnessed unprecedented increase in
identity theft, data loss, and security breaches. It has been
reported that 3,813 data breaches occurred that led to ex-
pose 4.1 billion records in the first 6 months of 2019 [1].
Unauthorized access or intentional breach has become one
of the major threats that is presented due to the improper
implementation and maintenance of access control systems [2].
Access controls help to perform authentication and authoriza-
tion of individuals. They serve as the first and most important
line of defense against potential data access breaches. In the
cybersecurity world, getting unauthorized access to the “root
user” is often considered as game over. Gaining access to the
most important user gives the attacker privileges to exploit and
manipulate a system by executing further attacks without any
constrictions. For example, unauthorized access made Edward
Snowden, a former national security agent, has enabled to steal

Ammar Battah, Mohammad Madine, Hamad Alzaabi, Ibrar Yaqoob, and
Khaled Salah are with the Department of Electrical Engineering and Computer
Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates.

Raja Jayaraman is with the Department of Industrial and Systems Engi-
neering, Khalifa University, Abu Dhabi 127788, United Arab Emirates.

approximately 1.7 million documents containing secret data
from the national security agency (NSA) and delivered them
to news agencies [3]. This security breach has led to expose
NSA’s confidential data to the general public. Snowden used
an NSA civilian’s public key infrastructure (PKI) certificate to
gain access to classified information on the NSANET [3].

Ensuring confidentiality of sensitive data is one of the pri-
mary requirements of today’s systems. Access control policies
play a vital role in terms of system security. Implementation
and maintenance systems of access control policies must be
secured enough because if they get compromised, then the
internal and external defense systems are no longer be useful.
Unauthorized access is mostly caused by users’ negligence,
which leads to fail the purpose of other implemented defense
systems. In simpler terms, improper and insecure privileged
access management can pose serious security threats. In ad-
dition, access controls can act as single point of compromise
in the system. This problem can be addressed through multi-
party authorization (MPA), which uses multiple authorities
to perform authentication and authorization. Specifically, the
MPA technology can be used to secure the most sensitive
data against insider attacks that are mostly carried out by the
insider acting alone [4]. It is somewhat similar to weapons
systems, wherein two individuals are required to enable a
system using two different keys [4]. Another example of the
MPA is like accessing to a lockbox in a bank that usually
requires multiple parties, such as the lockbox owner and a
bank official to gain access [4]. In a simpler term, MPA
acts as a second authority that helps to review and approve
any activity before its commencement. Leveraging MPA for
access controls can help to grant permissions in a reliable
manner. However, MPA is a centralized solution and often
falls short in providing provenance of log events related to
access/permissions in a manner that is immutable, auditable,
decentralized, and trustful. On the other hand, most of the ex-
isting proxy re-encryption schemes used to give secure access
to shared encrypted data are centralized and cannot be trusted.
In this paper. we propose a fully decentralized blockchain-
based solution to address the aforementioned problems. Also,
storing all the transactions related to MPA and access to files
on the blockchain can lead to create and maintain a trusted,
immutable, and secure audit trail that could be verified by
anyone.

II. RELATED WORKS AND CONTRIBUTIONS

Blockchain technology can be used to efficiently manage
access controls. However, its potential has not been widely

explored in this regard, and thus very limited literature is
available on this topic. For example, the authors in [5] have
proposed a solution called “FairAccess” that utilizes smart
contracts to enforce access control policies. This solution is
designed for the Internet of things (IoT) devices, wherein a
transaction processing is based on tokens that are generated
through a ”GrantAccess” function that is called by a resource
owner. Subsequently, a requester uses the GetAccess function
to consume the token and obtain access to a certain resource
or it can delegate the token to a new owner under certain
conditions using a “DelegateAccess” function. Access to the
resource can also be revoked by the owner if some misbehavior
is detected through a "RevokeAccess” function. Each token is
encrypted through the public key of the receiver, which is
extracted from the user address. This system is designed for
IoT devices to give their owners full access and control over
their data. Another study conducted in [6] proposes an access
control policy for an electronic health record (EHR) system.
The data which needs to be shared is initially encrypted with
symmetric keys. A proxy acts as a mediator between the
sender and receiver that helps to fetch and send the data.
The owner combines the private key with the receiver’s public
key to create a re-encrypted key that is sent to the proxy.
The proxy downloads the encrypted files and re-encrypts them
with the new key and pushes the data to the receiver that is
decrypted with the private keys. Through this approach, each
new user always requires a new re-encryption key that makes
it inefficient. Also, the re-encryption is performed using a
centralized server that can not be trusted in most of the cases.

PriWatt is a token-based solution built on top of blockchain
[7] for energy trading. The system uses the concept of multi-
signature technology to verify the validity of transactions. The
multi-signature requires a minimum of m of n keys to sign
the transaction before a token is spent. This methodology
requires that m is the minimum number of signatures that
need to match a public key, and n represents the number of
keys provided. A minimum of t keys, which are less than n,
should be provided to proceed with the transaction. This helps
to decentralize the transaction execution process. However,
in the token-based systems, it is hard to verify whether or
not the token is being spent by an authorized user. In [8],
a blockchain and trusted oracles based decentralized access
control solution for the IoT data has been proposed. The
trusted oracles are used to fetch data from the IoT devices. The
proposed solution consists of admins and smart contracts (IoT
data access, reputation, and aggregator), wherein the former
is responsible to manage, control, and delegate access to the
IoT devices, and latter enables the communication between
users and oracles. The IoT Data Access contract forwards
requests to Aggregator contract that sends requests to a pool
of oracles, where hashing is performed against the data and
subsequently send them back. The Aggregator contract helps
to compare the hashes. The Reputation contract updates the
reputation scores and helps to choose the one with the highest
reputation before generating an access token for the end-user
to access the IoT device through that oracle. One of the major
limitations of this solution is that it fetches all the data that
is not fully used in one turn. Moreover, it is expensive as

it requires multiple oracles. Besides, the whole process of
fetching data and comparing the hashes before granting access
is time-consuming.

In the past, the concept of multiparty access control has been
employed in online social networks (OSNs), wherein it aims
at protecting shared data associated with multiple users [9].
Another study conducted in [10] has formulated a collaborative
multi-party access control model to allow all individuals
in OSNs related to a resource to collectively participate in
defining access control policies. Despite many advantages of
multiparty access control in OSNs, it poses certain limita-
tions in terms of centralization, log provenance information,
immutability, audit trial, trust, and security that hinder its
wide-level adoption. For coping with such limitations, a multi-
authority attribute-based access control approach using smart
contracts has been proposed in [11]. The proposed approach
is tested on the Rinkeby Ethereum Testnet. The proposed
approach employs smart contracts to define and enable inter-
actions between the data owner (DO), data user, and multiple
attribute authorities. The approach is based on the concept
of attribute tokens. After collecting attribute tokens, a smart
contract allows issuing secret keys to particular users to give
them access to certain resources. Unlike this approach, in our
proposed solution, tokens are not exclusive to MPA but they
are used to perform authentication between different partici-
pants. Besides, our proposed solution is significantly different
from this existing approach. Our solution is fully decentralized
in which MPA is implemented using the Ethereum smart
contracts, and proxy re-encryption algorithms are implemented
using multiple oracles to give access to encrypted shared data
stored on a public and decentralized storage platform, such as
the Interplanetary File Systems (IPFS).

Our key contributions are summarized below:

« We propose a fully decentralized blockchain-based MPA
solution to provide provenance of log events related
to access/permissions in a manner that is immutable,
auditable, trustful, and secure.

« We develop smart contracts to define and enable interac-
tions between DO, data requester (DR), MPA, proxy re-
encryption oracles, and IPFS. The implementation code
is made publicly available on GitHub!.

« We implement the solution of giving access to encrypted
shared data stored on IPFS using multiple oracles that
report their results to the proposed smart contracts.

« We introduce and incorporate reputation mechanisms in
the proposed smart contracts to rate the oracles based on
their malicious and non-malicious behaviors.

« We evaluate the proposed approach against various met-
rics, such as security, cost, generalization to find out the
limitations, reliability, and practicality of the proposed
solution.

o Our proposed solution can be customized and imple-
mented on both public and private blockchain networks
based on the needs and preferences of industries.

"https://github.com/multipartyauthority/
MPA-access—control

v ¥ ¥
Public ? Private ? 5?

Data Owner Key Set

Data
Owner

Symmetric Re-encryption Key
2. Submit file TTESIlT T = = = = _ 1. Upload file
S ~ - -~
\‘ 8. Provide re- S e
encryption key .
\4 v
3. Share requirements 6. Dispatch request 2 E
_— D — 7. Retrieve file

'-‘ 5. Validate request
“—>

Multi-Party Authority Smart Contract

4. Request access

Public Private

9. Rate oracles

Ii? Data Requester Key Set -

Data

==

Re-encryption Oracles IPFS

I

’
¢ 10. Deliver file
4

(__—

@ IPFS Files

Encrypted
Symmetric Key

Encrypted File

Requester

Figure 1: Architecture overview of the different participants.

The organization of the paper is as follows. In Section II, we
review the existing literature. Sectionlll presents the proposed
solution along with its architectural components and shows
sequential interactions between them. SectionlV discusses full
implementation details. In SectionV, we provide security and
cost analysis to show the reliability of the proposed solution
along with important open challenges. Finally, a conclusion is
given in SectionVI.

III. PROPOSED APPROACH

With the rapid technological advancements, risks have come
as part of the bargain. While technology is advancing, security
threats are also advancing. For any organization, a policy
is what holds it together and governs the environment, and
that is exactly what access control does. It defines digital
policies to avoid threats and give role-based privilege to ensure
authentication and authorization. In this section, we present the
proposed Ethereum blockchain-based approach along with our
system architecture components that include DO, DR, IPFS,
proxy re-encryption oracles, and MPA.

A. Etheruem Blockchain

Blockchain has been a breakthrough in 2009 introduced
by Sakatoshi Nakamoto to develop Bitcoin, a cryptocurrency
that utilizes blockchain, as means of handling the decentral-
ization of ownership and consensus over the cryptocurrency.
Blockchain is a chain of blocks considered as a distributed
ledger containing transaction records that are replicated across
various computers assembled in a peer-to-peer (P2P) network.

It contains information about the data of the transactions, time,
value, hash, and encryption codes. It has hash functions that
convert any input into fixed value output of each block so that
each block will have the hash information of the previous one
to provide integrity of the chain [12]. Moreover, it encrypts
transactions using public and private keys to achieve confiden-
tiality. In addition to that, it employs consensus algorithms,
such as proof-of-work (PoW), proof-of-stake (PoS), proof-
of-capacity (PoC) to name a few, to ensure that all entities
involved in the system are agreed on a single source of truth.

Ethereum is a public and open-source blockchain platform
that allows developers to create and deploy decentralized
applications (Dapps) [13]. The Etheruem blockchain boasts
attributes, such as modularity, simplicity, and universality.
Ethereum virtual machine (EVM) is used to execute smart
contracts to add application-specific logic to the Blockchain.
The Ethereum-based smart contracts can help to form a closed
network that consists of validators and participants that are
responsible to perform actions and validation of the processes,
and make important decisions. Moreover, through smart con-
tracts, all the transactions can be monitored and controlled
in a transparent, immutable, auditable, traceable, and secure
manner. In summary, defining and implementing important
properties (i.e., the access time of participants to confidential
information, the extent of authorization, and the number of
participants needed to satisfy the access policy) through the
Ethereum blockchain can lead to offer a reliable, highly secure,
trusted solution. The Ethereum-based permissioned blockchain
is also gaining immense popularity in recent times. Such
examples include Hyperledger Besu and Qourom [14] [15].

B. Architecture

The proposed system architecture is depicted in Figure 1. It
consists of entities that communicate with the smart contracts
to govern the access control of the encrypted data stored on
the IPFS. Such entities include DO, DR, proxy servers/proxy
re-encryption oracles, and IPFS. Each entity has a unique
Ethereum address (EA) for communication purposes on the
blockchain through Ethereum clients.

« Data Owner (DO): It is an initiation point of the system.
The DO is responsible to upload data for sharing, perform
communication, agree upon access requirements posed by
the MPA, and register the address of the data (which is
the hash of the data) on the blockchain. Also, it helps
to encrypt the data using a symmetric key algorithm and
send it to the P2P decentralized database along with the
other key encrypted by the public key of a shared wallet
between MPA and DO using multi-signature. Further-
more, the DO creates a smart contract that contains the
hash of the mentioned components to act as the address
of the data. Finally, the DO creates a re-encryption key
from the public key of the DR and its own private key to
send to the proxy servers.

« Data Requester (DR): The requester contacts the smart
contract using its EA asking for access to the encrypted
data provided by the DO. After the requester is validated,
it waits to get an access token from the smart contract
for the suitable proxy to receive the data. Once the data
is downloaded from the proxy, the requester downloads
encrypted data, encrypted symmetric key, and the hash
of the file. Subsequently, it proceeds to decrypting the
symmetric key along with the data using its private key
and decrypting the data again with that symmetric key.

o IPFS: It is a P2P decentralized database that holds the
data to be shared across multiple users [16]. The DO
uploads the data encrypted with a symmetric key that
is further encrypted with the DO’s public key. Once the
database is requested for the data (based on the hash
of the file), it provides the proxy with the encrypted
symmetric key and encrypted data.

« Proxy re-encryption servers: In our proposed solution,
we use proxy re-encryption servers/oracles because per-
forming encryption is a compute-intensive task. Note that
implementing compute-intensive operations/functions us-
ing the Ethereum-based smart contract is a very expensive
approach. Proxy re-encryption servers or oracles are used
to fetch data and execute complex functions. They act
as a medium to share data mainly between the DO and
DR. The proxy servers have a reputation system managed
by the proposed smart contracts. The reputation of a
proxy fluctuates based on the response to the queries of
the smart contract. If most proxies give the same hash
results while others give different, then their reputation
goes down. The proxy server has its own unique address
that is sent within the access token, which is shared with
the requester. On the other hand, the proxy server also
receives a token with the requester address to perform
validation. Once the proxy server receives the task of

sharing the data to that requester, it ensures confiden-
tiality, integrity, and privacy. The proxy server first gets
the re-encryption key from the DO, then downloads the
data from the decentralized database that includes the
encrypted symmetric key and the encrypted data. Once
the proxy server has the key and the data, it re-encrypts
the symmetric key which is sent to the requester.

« MPA: It acts as a co-owner, which is included in each
step of the access control mechanism. The MPA manages
access to a shared wallet (with the DO) to avoid mali-
cious acts. Using the multi-signature technology, the DO
requires the keys of the MPA. It requires m of n (2 keys
out of a total 3 keys) keys to use it. Note that m and n are
adjustable based on a use case scenario. Although all the
MPA entities do not need to be involved in this process,
they must be qualified enough to verify the requirements
needed to give access to the data requested by the DR. For
example, lets assume that there is a highly confidential
organization with an agent that wants to share a sensitive
report. The agent would be the DO, but it does not make
sense for him to have full sole control of the data, that is
why it should be under the supervision of multiple people
in the upper echelons. Some of them are given keys
to access the account’s wallet, wherein the supervisors
would have the authority and knowledge of who has
the right to access the file within the organization. In
this way, the MPA technology can be used to secure the
most sensitive data against insider attacks that are mostly
carried out by the insider acting alone [4].

C. System Interactions

Figure 2 shows a sequential workflow between the entities
involved in the proposed system. The dotted lines indicate an
off-chain event; whereas, the solid lines are used to represent
on-chain events. In the first stage, the DO needs to be
registered to upload the needed data to the database with
the symmetric key used for encryption. The symmetric key
is encrypted with the public key of the owner. The owner
creates a smart contract that contains the hash of the data, the
address of the owner, and the access requirements that need
to be shared with the authorities responsible to perform MPA.

« After the initial registration and setup, the smart contract
shares the access requirements with the authorities that
perform MPA.

« After that, the smart contract initiates a request made by
the DR. The request gets validated by the MPA, which
consists of authorized entities having enough knowledge
to determine whether or not the user meets the specific re-
quirements. Subsequently, the MPA sends the verification
results to the smart contract.

o If the verification is succeeded, the smart contract asks
the proxies/oracles to fetch the hash of the requested
data. Based on the fetched results, the smart contract
determines the suitable proxy. It proceeds to create a
token with the address of the proxy to be sent to the
DR and address of DR for the proxy. In this way, both
of them are connected together to validate each other.

3 dé; ddy 5 E ¢

| Data Owner | ‘ Data Requester DataOwner Files SC MPA SC | Oracles SC | ‘ Re-encryption Oracle | ‘ IPFS |

[
Upload Encrypted Data with Symmetric Key

Deploy Data Owner SC

__ Share Requirements of Access

Request Access

Validate Request

———e e @ — = ———

T

|

|

|

|

f

I I
| I
} I
| I
| I
I I
I I
| I
| I
| I
| I
i > 1
| Access Denied i i |
| I l I
: : L Deny Access : }
| | [1 |
| | | 1 |
| | Deny Access | | I
| M- - m e e e e 4 I |
| I I 1 I
| | | | I
= : : :
| | 1 |
: : L Grant Access : }
I I I 1 I
| i Grant Access i i]
| I<_-______EEEEA__A_-_-___EEE-_-_I 1 |
: : : : Request Hash }
| | | L I |
| I I l I I
: : : : } Request File |
| I I l I I
i | | I] ! Retrieve File !
| I I l I | I
: : L : Send Hash } : }
| I [~ T T 1 I
I I I l I I I
| | | Rate Oracles 1 I 1 I
| I l I I I
| I | I | I
| I I 1 I I I
! : ! Share Suitable Oracle J !]
| | | [l gl 1 I
: : Send Access token : : } : }
| [T | ! 1 | 1
| | | Send Access token I 1 I
| | P CoTTTT T T g 1
: I I Request File |] ! }
| I | 1 I gl I
: ! ! | Generate Re-encryption Key | !]
| I I I I I I
| | | = | | |
| | | 1 Send Re-encryption Ke! [|
| | : oo S g :
| I I l I I o I
: : : : } LL_elEncrypt Data }
I I I 1 I I I
: L : Send Re-Encrypted Symmetric Key with Data } : }
| ™~ T T T 1 |
| | I l I I I
: | Decrypt using Private Key : : } : }
I I I I I I
I I I l I I I
: | Decrypt Data using Symmetric Key | !] !]
| I I l I I I
| | | | | | :
: I | Provide Oracle Rating ! | : }
i i i i g i |
: : : : I Amend Reputation : }
I I I I [I I
I I I [I [I
| T T T T T T
I I I I I I I
! ! ! ! ! ! !

Figure 2: Sequence diagram of a file exchange between DataOwner and DataRequester.

« After that, the proxy server starts the process of fetching ¢ Once the DR receives the needed data, it computes the
data while simultaneously getting the re-encryption key hash of the data and compares it with that available on the
from the DO. The DO uses its private key and the public blockchain to check its validity. After that, the symmetric
key of the DR to create the re-encryption key using key is decrypted using the DR’s private key, and the data
the AFGH algorithm. The proxy server re-encrypts the is decrypted using that symmetric key.

symmetric key through atomic encryption, so it becomes
invisible to the proxy server.

Oracle Token

- exists: bool
N - dataRequesterAddress:
address

Request

MPA - dataRequester: address

- requestTime: uint256
- minOracleCount: uint8
- maxOracleCount: uint8
N - MPAAuthCount: uint8
- oracleRatings: mapping
- oraclesEvaluated: bool
- granted: bool

- registered: bool
- claim: bytes

Oracle
- registered: bool
- tokens: mapping N
- tractRating: uint16 s
conEe e e L N 1 Controller Smart Contract DataOwnerFiles Smart
- contractRatingCount: uint16 N
- dataRequesterRating: uint16 - owner: address Contract
- DRRatingCount: uint16 - dataowner: DataOwner 1 dataOwner: addi
- dataRequester: DataRequester) ﬁlaej- mv:ne?na ress
- oracle: Oracles - cont.rollepr[')Cogntroller
- mpa: MPA ;
i 1—N - addFile()
DataRequester addDataOwner() - requestFile()
- addDataRequester() - respondRequest()
- registered: bool - addMPA() ddpo | S (
- tokens: mapping -addOracle() :etM;ZcAit::{Zor;?reeéCount()
- mpaAuthCount: uint8 -~ N———— 1 —| - getOracleReputations () q
- mpaAddresses: address [] - authenticateDataRequester () :
- claims: bytes [] - setMPAAuthCount () l
- submitDROracleRating () 1 1
1 1
1 N 1
Record
DatoR ror Tok N DataOwner 1] - bundleHash: bytes32
N atarequester Joken - registered: bool - requests: mapping
- exists: bool - files: mapping -MPARequiredAuthCount: uint8
- oracleAddress: address

Figure 3: Entity relation diagram displaying the different entities along with their corresponding associations of interaction.

IV. IMPLEMENTATION AND VALIDATION

For the implementation, we use Remix Solidity IDE to
write, run, and debug smart contracts [17]. The smart contracts
allow to implement access controls for encrypted data stored
on the IPFS. Also, the smart contract based reputation system
is proposed to identify and mitigate malicious activities and
threats by giving ratings to oracles or requesters. Figure 3 gives
a simplified overview of the acting entities that are discussed
in the following subsection.

A. Implementation

The first phase of the implementation is the registration and
initialization of the network. The DO and its associated files,
DR, oracles, and MPA are get registered with the variables set
to the default states. The process gets started when the owner
uploads file/s to the IPFS and subsequently submits its hash
on the Ethereum-based blockchain. The owner only provides
the hash of the data bundle containing the file encrypted by
the symmetric key (Kj), which is further encrypted by a public
key (Kp) of the MPA. Once the file is added, the MPA and
the requesters are notified, as shown in the Algorithm 1. The
events sent out are important and they enable the MPA to
provide the access requirements to the smart contract.

Once the MPA gets a notification about the file, it sets the
access requirements for that file. At this stage, the number

Algorithm 1 Add File

: Input: H(uploaded bundle)

: Require: (DataOwnerOnly)

: Emit: file was uploaded to MPA and requesters

: add to bundle of hashes [] « H (uploaded bundle)
: create and add a new file with an empty request list

L L S B N R

Algorithm 2 Request File

1: Input: FileIndex, DRPublicKey, OracleCountMin, Oracle-
CountMax

2: Require: (DataRequesterOnly and ValidPublicKey and
ValidOracleRange)

3: create new request(DRAddress, RequestTime, Oracle-
CountMin, OracleCountMax)

4: add request to list of requests of the file

5: Emit: request submitted to DR and DRPublicKey to DO

of authorities are also assembled. After that, the MPA shares
this information with the smart contract of the DO. Such
information helps to validate/verify whether the requester is
eligible for this data access or not. The requester requires
to meet all the requirements set by the MPA to get the data
access. This can be seen in Algorithm 2.

Algorithm 3 Authenticate Request

1: Input: File, Request, GrantBool

2: Require: (MPAOnly and !File.Granted)

3: if (GrantBool) then

4 Request. MPAAuthCount < Request. MPAAuthCount + 1

5: Emit: inform DR and DO of new MPAAuthCount

6: end if

7: if (Request. MPAAuthCount >= File. MPA AuthRequiredCount) then
8: Emit: broadcase Request to oracles

9: File.Granted « true

10: end if

The MPA handles the authentication process by enabling
each authority to verify each claim made by the requester. If
the number and validity of the data are legitimate, then the
request is entertained, as shown in Algorithm 3. The method
for calculating the rating of oracles is to map the latency,
whose value varies in a range between 1 second - 1 hout/3,600
seconds, to 65,535 - 1. Note that ”65,535” is the maximum
value that can be stored in the uint16 data type.

Algorithm 2 shows the procedure for accessing the file,
when the DR initiates a request. The DR needs to state its
address, file information, and the number of oracles required to
be queried. The higher number of oracles ensure high quality;
however, they also impose extra costs. The lower you set
the range of oracles, it leads to degrading the quality. It is
important to note that in this scenario quality is referring
to the throughput/latency of the oracle and its reputation.
The said request is responded to DR through the DO smart
contract, after ensuring that the requester and the file have
the corresponding authentication according to Algorithm 3.
Subsequently, an event is triggered and sent out for oracles so
they can register to retrieve the file.

Algorithm 4 presents respond of oracles with their encrypted
results. The hash retrieved is compared to the original, and
the latency is computed based on the time it took to respond.
Based on the certain number of oracles specified by the DR, a
certain threshold is set for time delay, where if the maximum
is not reached, it would stop accepting results at that time. If
the timestamp is passed and the minimum number of oracles
are not satisfied, the time period is further extended until the
minimum is achieved. A rating is then given based on the
latency and correctness of results. Later on, the oracles are
evaluated based on the given rating that leads to find their
reputation scores. Note that the oracles having less reputations
are eliminated from the system after some time. In a simpler
term, the oracle having the best score is chosen. Tokens are
then created and sent to the chosen oracle and the DR.

Tokens contain a unique identifier and the address of the
counterpart. Once the DR gets the token, it knows the address
of the chosen oracle and thus the DR can contact it. Token
ID is generated from hashing the requester address, oracle
address, and the timestamp information. After the DR gets
the data, it submits a rating based on the parameters defined
in Algorithm 5. The old reputation ranking is updated based
on the rating of the DR, rating of the smart contract, and the
old reputation.

Algorithm 4 Add Oracle Response

1: Input: File, Request, Hash
2: Require: (OracleOnly and File.Granted)
3: Latency « Now - Request.Time
4: if (OracleCount < OracleMin) or (OracleCount >=
OracleMin and OracleCount < OracleMax and
notTimeoutBool) then
HashResultBool « File.Hash == Hash
: Rating = HashResultBool X map(Latency, From:
[1,3600 seconds], To: [65535,1])
7: add oracle to list of oracles of the request
8: end if
9: if (OracleCount >= OracleMin and TimeoutBool)
10: or (OracleCount == OracleMax) then Reputations[]
«— Reputations(Oracles)
11: Ratings[] « []
12: BestOracleAddress < 0x0

13: BestOracleScore « 0

14: for i < O ...OraclesCount do

15: OracleScore = Ratings[Oracle] x (Reputa-
tions[Oracles] + 1)2

16: if OracleScore >= BestOracleScore then

17: BestOracleScore < OracleScore

18: BestOracleAddress <« OracleAddress

19: end if

20: end for

21: SubmitContractOracleRatings(Oracles, Ratings)

22: TokenID « keccak256(Doctor || Oracle || Now)

23: Emit: Token(TokenID, BestOracleAddress) to Doctor
and Token(TokenID, Doctor) to Oracle

24: Evaluated < true

25: end if

Algorithm 5 Submit DR Oracle Rating

1: Input: oracleAddress, tokenID, rating

2: Require: (valid tokenID and valid oracleAddress)

3: averageDRRequesterRating «— contractRatingCount * av-
erageContractRating + rating / contractRatingCount + 1

4: DRRatingCount«—DRRatingCount+1

B. Validation

Let us take a sample example with different test cases to
better understand the functioning of the system and validate

o [vm] from:@x@el...9%76a to:Controller.addDataluner() ©x3bl...B8fede value:d wei

data:0xb47...1e259 logs:@ hash:0x4a7...1bbf8
transact to Controller.addDataOwner pending ...

0 [vm] from:@x@el...9276a to:Controller.addDataOwner() @x8bl...0fede value:@ wei

data:0xb47...1e259 logs:@ hash:0x85a...16946
Figure 4: Registering a DataOwner to an existing
DataOwnerFile smart contract, but failed.

o [vm] from:0x364...c5765 to:Controller.addDataRequester(bytes1[]) exsbl...efede value:@ wei data:@xebs...e00e0
logs:@ hash:ex913...9c8co

transact to Controller.addDataRequester pending ...

o [vm] from:ex364...c5765 to:Controller.addDataRequester(bytes1[]) exsbl...efede value:@ wei data:exebs...e0ee0
logs:@ hash:exs2e...93e3d

Figure 5: Registering a DataRequester twice using the same
address, but failed.

) [vm] from:exsea...2bce to:Controller.addOracle() @x8bl...ofede value:@ wei data:ox3e3...58418 logs:@
hash:0x7d2...74d78

transact to Controller.addoracle pending ...

o [vm] from:exsea...2bc9e to:Controller.addoracle() @x8bl...efede value:0 wei data:ex3e3...58418 logs:@
hash:exé6fd. ..8f8ec

Figure 6: Oracle tries to register twice with same address,
but failed.

transact to Controller.addDataRequester pending ...

0 [vm] from:0x364...c5765 to:Controller.addDataRequester(bytes1[]) ©x02b...b187a
value:0 wei data:0@x6b5...00000 logs:0 hash:0x631...f66ba

transact to Controller.addMPA pending ...

o [vm] from:0x364...c5765 to:Controller.addMPA() 0x@2b...bl87a value:® wei
data:0x412...86blc logs:0 hash:0x925...7094f
Figure 7: DataRequester tries to pose as an MPA to exploit
the system, but failed.

that the design goals are met. The testing environment to
execute such an example is designed in the following way:
The DO and the DR are the main entities providing the basis
for all the interactions. The MPA process is managed by three
authorities. Three re-encryption oracles are involved in our
system architecture. The DO uses two files to explore the
different test routes. Such two files require different privileges
to be accessed. The addresses of the participants are shown
in each of the provided figures across the validation section
to follow through and fully understand the interaction process
between the different entities.

Before starting this scenario, we first look at the enrollment
of the actors into the system. The smart contract deployed by
the DO is exclusive to him/her. The smart contract associates
the “owner” of the contract to the address of the deployer, so
no other DO can have the same “DataOwnerSC”, as shown
in Figure 4. The DO can add several files to be accessed
through the smart contract, when doing so the owner adds
the corresponding privileges of each file given to the DR of
the specified attributes.

It is important to note that the validation is required for
the DR as well as for getting access to each file. This is
important as each file could have different access privileges
and requirements. Therefore, the first phase of the validation

[vm] from:ex833...9cccd
0 to:Controller.authenticateDataRequester(address) ox8bl...efede
value:0 wei data:©x44a...c5765 logs:0 hash:0x137...898d3
status @x1 Transaction mined and execution succeed
transaction hash @x1379d427a25bedf2651b9682d96ab55@b19c52b805039a9bbeco94

65398898d3 @

from 0x833707d@4f5b191F5652d563793015572a79cccd [

to Controller.authenticateDataRequester(address) @x8b119d25

35d1d5294db978F714c5d54F08%0Fede [
gas 3000000 gas [0

transaction cost 57772 gas 18]

execution cost 35092 gas 18]
hash B8x1379d427a25bedf2651b9682d96ab558b19c52b805839a9bbec694

65398898d3 @

input Ox44a...c5765 [0

decoded input {
"address _dataRequesterAddress™: "@x364d5997696d
@872cc9df1c20822D0aBalAc5765"

Figure 8: Authenticating DR using an MPA.

would be for the DR that has the minimum requirements to
access the files of DO. It uses “authenticateDataRequester”
function to perform the validation, as shown in Figure 8. The
second phase is responsible for checking whether or not the
DR meets the requirements defined to access a certain file.
This would be in the response to a request as shown in Figure
9. The DO can not be any of the other participants to avoid
conflict of interest and to ensure separation of concerns. The
same goes for other participants where they can not pose as
different participants. They also can not take a role more than
once; for example, an oracle can not register itself twice.
Something similar can also be seen for other participants,
an example can be seen in Figure 5 and Figure 7. Another
example of an oracle trying to register twice with the same
address is stopped preventing a whitewash of reputation and
potential DoS attack from that channel, as can be seen in
Figure 6.

As mentioned previously, the DR is authenticated by fulfill-
ing the minimum requirements, so the concerned MPA entities
submit an authenticateDataRequester() function with the
address of the DR, as shown in Figure 8. Before a request
is initiated, it is important to ensure that the files have an
associated number of each MPA member to verify attributes
to access the file, as shown by the helper function in Figure
10. Now, when the DO initiates a request to access the file,
the MPA sends a response through the smart contract (i.e.,
either grants or denies the access), as shown in Figure 9.
The DR does not require to pass the verification procedure
as this is something variable that is set by the MPA and
the DO. Two claims out of three might be enough and some
claims could be mandatory while others can be used in place
of other claims. Figure 11 shows several responses from the
MPA, which need to be directed towards the smart contract.
Also, Figure 11 shows that file 1 gets only one permission;
however, it requires permission from two entities. Thus, no

[vm] from:@xbf@...7c5ba
Q to:DatalwnerFiles.respondRequest(uintl6,uintl6,bool) @xded...7bdd4 value:@ wei
data:0x87b...00000 logs:2 hash:0x220...3a7ea

status @x1 Transaction mined and execution succeed

transaction hash ©@x220d7b153506b4e3cbda3772e91945924179b7e357741051Fa738c3d2216aa7ea

©
from oxbfaf2295bacfe5ad92812665300977baff47cSba [
to DataOwnerfiles. respondRequest(uintls,uintls,bool) @xded8825f37edcofede

cc2d34e4017e5f7b27hdd4
gas 3000000 gas [0
transaction cost

32844 gas [

execution cost 11188 gas [@

hash 9x220d7b18506b4e3cbda3772e91945924F7907e357741051 Fa738c 3d22186zaTea
©

input ox87b...00000 [0

decoded input i

"uint1s fileIndex": @,
"uintls _requestIndex”: @,
"bool _grant”: false

} 0

Figure 9: Authenticating file access eligibility of DR.

decoded input {
"uintl6é _fileIndex™: @,
“"uint8 _MPAAuthRequiredCount™: 3

@

Figure 10: Number of claim verification needed to access a
particular file.

[vm] from:@xf31...a4830
to:DatalwnerFiles.respondRequest(uintlé,uintlé,bool) @xded...7bdd4 value:0 wei
data:@x87b...00001 logs:2 hash:8x1c5...96bee

transact to DataOwnerFiles.respondRequest pending ...

[vm] from:0x833...9cccd
o to:DatalunerFiles.respondRequest(uintl6,uintl6,bool) @xded...7bdd4 value:d® wei
data:@x87b...00000Q logs:2 hash:@xbd6...12951

transact to DataOwnerFiles.respondRequest pending ...

[vm] from:@xbf@...7c5ba
o to:DataOunerFiles.respondRequest{uint16,uintl6,bool) @xde@...7bdd4d value:® wei
data:@x87b...00000 logs:2 hash:@x228...aa7ea

transact to DataOwnerFiles.addOracleResponse pending ...

[vm] from:@x02@...ablbl
o to:DatalwnerFiles.addOracleResponse (uint16,uint16,bytes32) @xded...7bdd4
value:@ wei data:@x2ec...ad@cl logs:@ hash:0x26b...38aed

Figure 11: Denying Oracle participation for a rejected
request.

operation can be performed. In the second case, file 2 gets
multiple permissions, and thus the process continues to be
executed. The DR also employs proxy re-encryption oracles
in this process to encrypt the files. In this way, the DR is given
a choice to keep the balance between cost, quality, and time.

The concerned entities are notified through certain events.
When the grant is done, an event is sent to DO, DR, and
oracles, as shown in Figure 12. After that, the oracles start
informing the smart contract that they want to participate in
fulfilling a certain request. The oracles are mainly chosen
based on the accuracy of the retrieved hash, latency, and
reputation scores. After the best oracle is chosen and it

“from": "@xde@E828T3Tedc9Tefecc2d34e4817e5T7b27bdd4" ,
“topic": “@x4acdS544c287d9d1136T6e77del@S1e27b39alela
a41389411f58fef551c792",
“event”: "regquestRespondedDataRequester”,
“args": {
“length": @

1
J

e

“"from": "@xde@8828T37edcoTedecc2d3424817e5T7b27bdda”,
"topic": "@x3dddcc27d5628bT195det9859eb0bd5cf@479394dd
997285e64b2c@8d6c3ef33",
"event": "requestRespondedDataOwner"”,
“args": {
"length”: @

1
i

e

"from": "@xde@8828f37e4c9fefecc2d34e4017e5f7b27bdda",
“topic”: "@xde5e33c6e6007e66615T43e7d50b304Cc89653T8bac
cc93bb8p54ce3acs84a3ta",
“event”: "requestRespondedOracles”,
“args": {
“length": @
}
1
)

1o @

Figure 12: Sharing events once the request is granted access
so DR and DO are notified.

transact to Controller. subnitDataRequesterOracleRating pending

© Lvm] from:ox36a...c5765 to:Controller. subnitDataRequesterOraciaating(bytes32, address, uintis) Oxg5L...0fede value:0 el dataiOx3dc. 00001 logs:0
hash:0x1d7. .. bbaff

transact to Controller. submitDataRequesterOracleRating errored: VM error: revert
re he transact: n reverted Tal state

Debug th

ting pending

© L] fromoxe00. . abibi torController. submitDatafequesterOracleRating (bytes32, address, uint16) 0x3b1..Ofede valuei0 el datarOxiSc....00091 logs:0
hash:xdfL. .. 74692

transact to Controller. submitDataRequesterOracleRating errored
revert The transaction has been reverted to the initial state
Reason provided by the contract: "Valid token required”.

WM error: revert.

Debug the transaction to get more information

Figure 13: Invalid doctor rating submissions.

transact to Controller. subnitDataRequesterOracleRating pending ...

[vm] from:6x364. ..c5765 to:Controller. subnitDataRequesterOracleRating(bytes32, address,uint1s) @xBbl...0fede value:d wei data:0x3oc. ..0eas0 logs:0
hazh:0xco3. . .basba

Figure 14: Success submitting a valid rating token.

fulfills its service, the DR requires to finish the interaction
by submitting back a rating regarding the service received.
To avoid illegitimate ratings, the DR is asked to provide the
token for the oracle and is checked if it is a valid token or
not. There is also a second case, where the token exists, but
it is not linked to the right oracle in which it is being rejected
by the smart contract, as shown in Figure 13. When the token
does exist and matches the right oracle, it is being accepted, as
can be seen in Figure 14. Subsequently, the reputation score
is updated and the interaction gets finished.

V. ANALYSIS AND DISCUSSION

In this section, we evaluate our proposed system using
various performance measuring parameters including cost,
security, and generalization. Besides, we present several lim-
itations of our proposed solution acting as open research
challenges.

Table I: Gas costs of smart contract functions.

Function Executor Transaction Cost Execution Cost USD

Deploy: Controller Mediator 1,109,478 797,250 $ 3.55
Deploy: DataOwnerFiles DO 1,317,140 956,324 $ 421
addDataOwner() DO 44,192 22,920 $0.14
addDataRequester() DR 49,628 28,036 $0.16
addMPA() MPA 55,014 28,742 $0.18
addOracle() DOF 87,955 66,683 $0.28
addFile() DO 82,353 58,713 $0.26
setMPA AuthReqCount() MPA 47,182 25,590 $0.15
authenticateDR() MPA 66,463 51,343 $0.21
requestFile() DR 143,612 121,316 $ 0.46
requestResponse() DOF 42,557 20,858 $0.14
addOracleResponse() Oracle 77,217 53,513 $0.25
addOracleResponse() Oracle 103,549 94,845 $0.33
submitOracleToken() DOF 92,095 65,895 $ 0.29
SubmitDROracleRating() DR 49,640 24656 $0.16

A. Cost Analysis

In the Ethereum blockchain, smart contracts are executed on
EVMs. The EVM is paid in return for its services. Ethereum
gas is a unit used to measure the price for running or executing
certain operations. Table I shows both the transactions and
their execution costs. The transaction costs were those for
establishing the transactions on the blockchain; whereas, the
execution costs were compensation for the EVM execution
of the operations. The major costs were imposed by the
deployment functions as can be seen in Table I. The smart
contracts are deployed once for each DO, so this is not a
recurring cost, unlike the functions. The functions were mostly
priced at below $ 0.3; however, the requestFile() function was
priced at $ 0.46 that it is relatively higher in price when
compared to other functions (excluding deployment functions).
The presented gas price is set at 20 Gwei, which is safely
above the current price that fluctuates between 10 and 15
Gwei.

B. Security Analysis

Herein, we present the security analysis of our proposed
approach using important parameters, as discussed below.

« Integrity and traceability: The distributed ledger of the
proposed blockchain-based solution acts as an immutable
evidence for all the transactions recorded on it. It provides
traceability features for access control related events. The
proposed solution assures users that the data stored on it
can not be modified or tampered with, thereby enforcing
trust. Our blockchain-based solution maintains a chain of
hashes, wherein each block uses the hash of the previous
block. Therefore, altering one bit in a block leads to
invalidating all the blocks that follow it.

« Privacy: The users in our proposed system can interact
without compromising on their privacy. Although the EA
is used to mask the identity in the Ethereum network,
we further extend it in our implementation by only
exposing needed data without breaching the privacy of
users. There is no direct communication between the
DO and DR. Early interactions are performed through
the smart contract and logged on the chain. The later
interactions are mediated through tokens that share the

public addresses of the entities. The whole process of
encryption and decryption only requires the public keys
and the decryption is done at the DR’s endpoint using the
private key.

« Authenticity: Two-way authentication method is used to
perform additional authentication. The EA acts as the
identifier for each participant on the network. However,
still the data remains visible to third parties most of
the times for authentication purposes. Thus, a link is
required to establish for off-chain interactions, and this
can be achieved using tokens. Even if there are off-chain
interactions that the blockchain do not mediate, tokens
are sent to the entities so that they can authenticate each
other. This helps to avoid potential impersonation attacks.
On the other hand, reputation systems are also vulnerable
to certain types of security attacks including ballot stung
and bad-mouthing attacks [18]. Such attacks can be miti-
gated by the use of tokens, where each DR only submits
one rating for one oracle. There is no real incentive for
an oracle to carry out a Sybil attack as only one oracle is
chosen and it mainly relies on the latency of that oracle.
A denial of service (DoS) attack is one of the hardest
to tackle. One of the possible ways to mitigate it is that
there is a limit to the maximum number of oracles that
would respond, but for a network with a large number of
nodes it would be very challenging to completely prevent
this type of attack. In the case of unreliable oracles that
do not provide the required services, the DR can use the
token to inform the network about such a case. After that,
the reputation score of the oracle will go down due to its
malicious action. In this way, it will be eliminated from
the system after some time.

C. Generalization

Even though the starting point was examining organizations
that prioritize the confidentiality of data; however, the im-
plemented solution can be seen as a general template that
encompasses all kinds of confidential data exchange. Any
entity that values confidentiality and privacy can incorporate
our solution regardless of the application domains.

The proposed framework can be seen as a foundation that
dictates the exchange of data policy of a larger system. The

proposed solution can be used for different intelligence agen-
cies that need solid access control governance. To incorporate
the different use cases and generalize them in a solution,
different concerns should be taken into account. Performance,
cost, privacy, integrity, and authenticity are all parameters that
concern a user and should be adjustable to match their needs.
To achieve a general solution, it might be a good initiative
to make components of the system optional, where if there is
an interaction between users that know each others’ attributes,
then they should be able to exclude the MPA to decrease cost
and increase performance. This might prove to be useful in a
system of a modest size where the participants are static, such
as start-up businesses. Choosing who does the encryption, who
acts as the MPA, how much power is given to the DO are all
important aspects that must be studied if such a solution needs
to be incorporated. One of the major things to be adjusted
might be the hierarchical access policy, which dictates the
privileges based on the already established hierarchy in the
system.

D. Open Challenges

o The oracles were implemented to alleviate the overload
on the blockchain in terms of cost and size. They help
to increase the performance with their off-chain actions.
They also incorporate a reputation system to mitigate
the effects of centralization and make decentralization a
viable option, which might be seen as making the system
more complex.

« Some security concerns are not fully mitigated as they
are very challenging. For example, the DoS attack for
a large network would be challenging to prevent. Even
though whitewashing is slightly mitigated by being given
an average reputation; however, it is still something that
might be exploited.

« To completely deploy a solution, it would be favorable to
fully incorporate the re-encryption proxies and analyze
the behavior of the system as a whole to be assessed in a
better manner that would reflect the feasibility of shipping
such a solution.

« A multi-signature wallet was not implemented but doing
so would also decentralize the authority power at the
endpoint. This would prove useful in cases where the DO
does not have enough power to claim a file for himself.
To ensure that nothing happens without the supervision of
those entities they would be involved in a multi-signature
wallet that would be needed to do any action with the
file.

o The development and deployment of such a large scale
solution would need a comprehensive study and analysis.
It would be a challenge to fully assess how the solution
can be generalized for the different use cases unless
it is tested in the different domains, which would take
extensive efforts.

« The blockchain network with the different entities inter-
acting on it has been implemented as a software; however,
the re-encryption oracles as physical entities have not
been fully integrated with the solution. This could be
something to be added in the future.

VI. CONCLUSION

In this paper, we have proposed a fully decentralized
blockchain-based multi-party authorization (MPA) solution to
provide provenance of log events related to access/permissions
in a manner that is immutable, auditable, trustful, and secure.
We proposed implementing proxy re-encryption using multiple
oracles to give access to encrypted shared data stored on a
public and decentralized storage platform, such as the IPFS.
We incorporated reputation mechanisms in the proposed smart
contracts to give ratings to the oracles based on their malicious
and non-malicious behaviors. We developed Ethereum-based
smart contracts to implement the functions, modifiers, and trig-
ger events. Our smart contract code is made publicly available
on GitHub, and it generic enough as it can be implemented
on both types of permissioned and permissionless blockchain
networks with minimal modifications based on the specific
needs of industries. We presented the proposed algorithms and
the system components along with their full implementation,
testing, and validation details. We presented the cost analysis
to verify the affordability and practicality of the proposed
solution. We conducted a security analysis to verify the
reliability of the proposed approach. As a future work, we aim
to implement our solution using private blockchain platforms,
such as Hyperledger Fabric and Hyperledger Besu. In addi-
tion, we plan to develop frontend decentralized applications
(DApps) for the end-users.

VII. ACKNOWLEDGEMENT

This publication is based upon work supported by the
Khalifa University of Science and Technology under Award
No. CIRA-2019-001.

REFERENCES
[1] [Accessed on: April 08, 2020]. [Online].
Available: https://pages.riskbasedsecurity.com/hubfs/Reports/2019/

2019MidYearDataBreachQuick ViewReport.pdf

[2] R. S. Sandhu and P. Samarati, “Access control: principle and practice,”
IEEE communications magazine, vol. 32, no. 9, pp. 4048, 1994.

[3] J. Verble, “The nsa and edward snowden: surveillance in the 21st
century,” ACM SIGCAS Computers and Society, vol. 44, no. 3, pp. 14—
20, 2014.

[4] WIKIPEDIA, “Multi-party authorization,” 2019, [Accessed on: 05
August 2020]. [Online]. Available: https://en.wikipedia.org/wiki/
Multi-party_authorization

[5] A. Ouaddah, A. Abou Elkalam, and A. Ait Ouahman, “Fairaccess: a new
blockchain-based access control framework for the internet of things,”
Security and Communication Networks, vol. 9, no. 18, pp. 5943-5964,
2016.

[6] D. Tith, J.-S. Lee, H. Suzuki, W. Wijesundara, N. Taira, T. Obi,
and N. Ohyama, “Application of blockchain to maintaining patient
records in electronic health record for enhanced privacy, scalability, and
availability,” Healthcare Informatics Research, vol. 26, no. 1, pp. 3-12,
2020.

[71 N. Aitzhan and D. Svetinovic, “Security and privacy in decentralized
energy trading through multi-signatures, blockchain and anonymous
messaging streams,” [EEE Transactions on Dependable and Secure
Computing, vol. PP, pp. 1-1, 10 2016.

[8] H. Al Breiki, L. Al Qassem, K. Salah, M. H. U. Rehman, and D. Sevti-
novic, “Decentralized access control for iot data using blockchain and
trusted oracles,” pp. 248-257, Orlando, FL, USA, 2019.

[91 H. Hu, G.-J. Ahn, and J. Jorgensen, “Multiparty access control for
online social networks: model and mechanisms,” IEEE Transactions on
Knowledge and Data Engineering, vol. 25, no. 7, pp. 1614-1627, 2012.

[10]

(11]

[12]

[13]
[14]

[15]

[16]

(17]

[18]

P. Ilia, B. Carminati, E. Ferrari, P. Fragopoulou, and S. Ioannidis,
“Sampac: Socially-aware collaborative multi-party access control,” in
Proceedings of the Seventh ACM on Conference on Data and Application
Security and Privacy, Scottsdale Arizona, USA, 2017, pp. 71-82.

H. Guo, E. Meamari, and C.-C. Shen, “Multi-authority attribute-based
access control with smart contract,” in Proceedings of the International
Conference on Blockchain Technology, Honolulu HI USA, 2019, pp.
6-11.

C. Chinchilla, “A Next-Generation Smart Contract and Decentralized
Application Platform,” 2019, [Accessed on: 23 April 2020]. [Online].
Available: https://github.com/ethereum/wiki/wiki/White-Paper/

D. Bryson, D. Penny, D. Goldberg, and G. Serrao, “Blockchain technol-
ogy for government,” Montgomery, AL: The MITRE Corporation, 2017.
“Besu Enterprise Ethereum Client,” 2020, [Accessed on: 23 March
2020]. [Online]. Available: https://besu.hyperledger.org/en/stable/
“Quorum Whitepaper,” 2018, [Accessed on: 23 March 2020]. [Online].
Available: https://github.com/jpmorganchase/quorum/blob/master/docs/
Quorum\ %20Whitepaper\ %20v0.2.pdf

J. Benet, “IPFS - Content Addressed, Versioned, P2P File System,”
2014, [Accessed on: 23 March 2020]. [Online]. Available: https://github.
conm/ipfs/ipfs/blob/master/papers/ipfs-cap2pfs/ipfs-p2p-file- system.pdf
“Remix Docs description,” [Accessed on: 03 April 2020]. [Online].
Available: https://remix-ide.readthedocs.io/en/latest/#

K. Hoffman, D. Zage, and C. Nita-Rotaru, “A survey of attack
and defense techniques for reputation systems,” ACM Comput.
Surv., vol. 42, no. 1, Dec. 2009. [Online]. Available: https:
//doi.org/10.1145/1592451.1592452

