
P
os
te
d
on

11
A
u
g
20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
27
89
20
3
.v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
ot

b
..
.

Looking For Novelty in Search-based Software Product Line Testing

Xiang Yi 1

1South China University of Technology

October 30, 2023

Abstract

This paper show how the novelty search (NS) algorithm can be used for similarity-based software product line testing

1

1

Looking For Novelty in Search-based Software
Product Line Testing

Yi Xiang, Han Huang Senior Member, IEEE, Miqing Li, Sizhe Li, and Xiaowei Yang

Abstract—Testing software product lines (SPLs) is difficult due to a huge number of possible products to be tested. Recently, there
has been a growing interest in similarity-based testing of SPLs, where similarity is used as a surrogate metric for the t-wise coverage.
In this context, one of the primary goals is to sample, by using search-based algorithms, a subset of test cases (i.e., products) as
dissimilar as possible, thus potentially making more t-wise combinations covered. Prior works have shown, by means of empirical
studies, the great potential of current similarity-based testing approaches. However, the rationale of this testing technique deserves a
more rigorous exploration. To this end, we perform a correlation analysis to investigate the internal relationship between similarity
metrics and the t-wise coverage. We find that similarity metrics generally have a significantly positive correlation with the t-wise
coverage. This well explains why similarity-based testing works, as the improvement on similarity metrics will potentially increase the
t-wise coverage. Moreover, we explore, for the first time, the use of the novelty search (NS) algorithm for similarity-based SPL testing.
The algorithm rewards “novel” individuals, i.e., those being different from individuals discovered previously, and this perfectly matches
the goal of similarity-based SPL testing. We demonstrate that the novelty score in NS has a (much) stronger positive correlation with
the t-wise coverage than the widely used fitness function employed in the genetic algorithm (GA). Empirical results on 31 software
product lines, either realistic or artificial, validate the superiority of NS over GA, as well as other state-of-the-art approaches. Finally, we
investigate how the performance of NS is affected by the ways of generating new products, and by its key parameters. In summary,
looking for novelty provides an alternative way of generating test cases for SPL testing.

Index Terms—Software product line testing, novelty search, similarity-based testing, t-wise coverage, correlation analysis

F

1 INTRODUCTION

A Software product line (SPL) is a family of related
products that are built from a set of features, with a

feature being some aspect of the system functionality [1],
and a product being a set of selected/deselected features.
These products, which share some common features (i.e.,
commonality), are distinguished by specific features they
provide (i.e., variability). The commonality and variability
of an SPL are often organized by a feature model (FM)
[2], [3] which defines all the possible software products by
expressing relationships and constraints among features [4].
The adoption of SPLs can benefit the industry in different
respects such as decreasing implementation costs, reducing
time to market, and improving product quality [5]. There
is evidence of numerous companies such as Bosch, Philips,
Siemens, Boeing and Toshiba applying SPLs to develop
softwares [6], [7], [8].

Despite the benefits that SPLs bring, it raises new chal-
lenges with respect to how to ensure the reliability of an
SPL. In this regard, testing software product lines becomes
crucial to avoid fault propagation to the derived products
[9]. Indeed, a defect in a single feature may exist in thou-
sands or even millions of products [7]. Nevertheless, SPL
testing is an inherently difficult task because the number

• Yi Xiang, Han Huang, Sizhe Li and Xiaowei Yang are with the School of
Software Engineering, South China University of Technology, Guangzhou
510006, China
E-mail: xiangyi@scut.edu.cn (Y. Xiang), xwyang@scut.edu.cn (X. Yang)

• Miqing Li is with the Centre of Excellence for Research in Computational
Intelligence and Applications, School of Computer Science, University of
Birmingham, Birmingham, B15 2TT, UK.
E-mail: m.li.8@cs.bham.ac.uk

Manuscript received XX, 2020; revised XX, 2020.

of possible products induced by a given FM potentially
grows exponentially with the number of features. Ideally,
one would like to test all of the valid products, but it
is rarely possible in practice due to a huge number of
possible products to be tested. Moreover, even if one could
test all valid products (for small-scale FMs), it is likely to
be inefficient because software testers often have a limited
amount of test resources [8], like time and budgets.

Therefore, software testers are seeking sampling ap-
proaches to reduce the size of products under test so as to
meet the release deadline or resource constraints [10]. The
combinatorial interaction testing (CIT) [11], among others,
is a prominent approach that has been introduced to re-
duce the size of the test suites while achieving a certain
coverage of feature combinations [12], [13]. This approach
systematically samples from a large domain of test data.
It is based on the observation that most faults are caused
by interactions among a small number of features [14]. For
example, Kuhn et al. [14] have shown, using empirical data,
that the interactions between two features are capable of dis-
closing 93% bugs for a large distributed system developed
at NASA Goddard Space Flight Center. In particular, the t-
wise CIT requires to find a minimal subset of products that
cover all the possible interactions between t features by at
least one product under test [15]. Since this is an NP-hard
problem, several greedy or metaheuristic approaches have
been proposed to conduct t-wise sampling, such as MoSo-
PoLiTe [16], CASA [17], Chvatal [12], [18], ICPL [19], ACTS
[20], IncLing [21], and those proposed in [22], [23], [24]. A
review of product sampling tools for SPLs can be found in
a recent survey [10].

However, existing t-wise sampling techniques face the

2

scalability issue [25]. For large real-world SPLs, they often
run out of memory, do not terminate, or take too much
running time [4], [25], [26], [27], [28]. Although the t-wise
testing can drastically reduce the number of products to
consider (compared to testing all possible products exhaus-
tively), this number can still be too large to fit the test budget
allocated. This is particularly true if the number of features,
and/or the strength t is large. For example, according to
[19], 480 products are required to achieve a full 2-wise
coverage for the Linux kernal FM (2.6.28.6-icse11) with 6,888
features [29]. Similarly, Song et al. [30] mentioned that one
needs to test too many products to obtain a full 7-wise cover-
age of a realistic system. In fact, the maximum number of all
the t-wise combinations of features is Ct

n ·2t [14], where n is
the number of features. Clearly, a huge amount of products
are required to cover all the combinations in case that n and
t are large. In practice, most real-world SPLs are variability-
intensive, with hundreds or even thousands of features [29],
like for example Linux kernal [29], Automotive02 [31] and
Eclipse [32]. Moreover, there is a practical need to deal with
high interaction strengths (t > 2) [33], [34], [35]. Petke et al.
[34] showed that higher-strength test suites are able to find
more faults, and Kuhn et al. [14] indicated that almost all
the defects can be found for the 6-wise coverage.

As an avenue to circumvent the scalability issue faced by
the t-wise CIT, the similarity testing [36], [37], [38], [39], a
technique used to select a subset of test cases by increasing
diversity among test cases so as to achieve a given goal,
such as maximising the fault detection rate or the structural
coverage criteria, was introduced to the SPL testing. Henard
et al. [4] applied similarity testing to SPLs in order to sample
and prioritize products to test. The key idea is to mimic
t-wise testing by maximizing diversity among products.
In their work, a genetic algorithm (GA) is designed to
evolve a population of products by optimizing the fitness
function which is defined based on a similarity metric.
Their results showed that the approach is promising for
large SPLs and high interaction strengths, forming a scalable
and flexible alternative to the t-wise testing. Later, Fischer
et al. [40] empirically assessed this approach with respect
to fault detection capability in the Drupal [41] case study.
They reported that Henard’s similarity approach is useful to
detect interaction faults in Drupal, being also able to yield a
t-wise coverage comparable with CASA [17]. These findings
indicate that similarity is a suitable surrogate metric for
the t-wise coverage. Using a different similarity metric, Al-
Hajjaji et al. [9] also adopted similarity testing for SPLs.
In particular they focused on similarity-based prioritization
which orders a set of the products before they are tested. In a
subsequent study [7], this work was substantially extended
by the same authors in the experimental evaluations using
three SPLs with real faults in their source code. There have
been a number of other works exploiting similarity in the
context of SPL testing, e.g., [21], [42], [43], [44], [45], [46],
[47], [48]. This is also the topic we focus on in this article.

The suitability of similarity as a surrogate metric for the
t-wise coverage was demonstrated in the aforementioned
prior works mainly by means of observing and analyzing
empirical results. However, there has been no work on in-
depth explanation of this, particularly from the statistics
point of view. In this paper, we make a first step along

this line. In particular, a correlation analysis is performed to
explore the internal relationship between similarity metrics
and t-wise coverage in the context of SPL testing. Our pri-
mary finding is that similarity metrics (e.g., the fitness used
by Henard et al. [4]) has a significantly positive correlation
with the t-wise coverage for most of the FMs considered
in this study. This clearly suggests that an improvement on
similarity metrics will potentially foster the increase of the
t-wise converge, and it thus makes sense to apply a search-
based method to optimize similarity metrics to indirectly in-
crease, as much as possible, the t-wise coverage. Interpreting
the rationale of similarity-based testing by using correlation
analysis forms the first contribution of this paper.

Furthermore, we apply, for the first time, the novelty
search (NS) algorithm [49], [50] [51] to the similarity-based
testing of SPLs. Unlike classical objective-oriented evolu-
tionary algorithm, the NS algorithm abandons objectives
and it promotes evolution through the search for “novelty”
in the behaviour (or decision) space, wherein “novelty” im-
plies being different from individuals discovered previously.
More precisely, instead of rewarding performance based on
an objective, the NS rewards performance based on any nov-
elty metric, which measures the uniqueness of an individual
with respect to the rest of the population and an archive of
past individuals [50]. This way, it creates a constant pressure
to do something novel, being able to generate a set of
diverse individuals. The NS has been successfully applied
to a certain number of domains, e.g., maze navigation and
biped locomotion [50] and the evolution of plastic neural
networks [52]. It has been recently pointed out by Romero
et al. [53] that NS seems to well fit precepts of search-based
software engineering (SBSE). However, there has been only
a very limited number of studies relating to the application
of this algorithm to the SBSE field. Boussaa et al. [54] applied
the NS algorithm to the test data generation problem based
on statement-covered criteria. As stated by Boussaa et al.
[54], that work is the first one in the literature to adopt NS
to generate test data. López-López et al. [55] used, for the
first time, NS for software improvement by combining it
with a genetic improvement system. Recently, Romero et
al. [53] have explored the use of NS for the next release
problem [56]. In this paper, we apply NS to the similarity-
based testing of SPLs because we notice that NS perfectly
matches the goal of this testing technique, i.e., searching for
a set of diverse products. In particular, the suitability of the
proposed NS is evaluated on 31 FMs, being either real or
artificial, with respect to the t-wise coverage. To investigate
the scalability of the proposed method, we consider small-
, moderate- and large-scale models and five values of t
(i.e., t = 2, . . . , 6), following the common practice in [4].
Moreover, the NS algorithm is comprehensively compared
with three highly-related approaches [4], [7], and all of them
are able to well scale to large FMs and high interaction
strengths. Finally, we investigate how NS is affected by
the way of generating new configurations and by its key
parameters.

In summary, this paper provides the following contribu-
tions:

1) We perform a correlation analysis to explore the
internal relationship between similarity metrics and

3

the t-wise coverage, observing that similarity met-
rics have a significantly positive correlation with the
t-wise coverage. The above finding, which has not
been revealed before, is important as it forms the
theoretical foundation of the similarity-based test-
ing (as a surrogation of the t-wise testing).

2) We demonstrate that NS is inherently an ideal tool
for the similarity-based testing of SPLs. We show
that, compared with the fitness function used in
GA [4], the novelty score adopted by NS has a
(much) stronger positive correlation with the t-wise
coverage in most cases. This potentially implies the
superiority of NS over GA in achieving higher t-
wise coverage. According to our experiments, NS
indeed performs better than GA, as well as other
related algorithms.

3) In search-based approaches, the unpredictable way
[4], implemented by the randomized SAT4J solver,
forms a state-of-the-art strategy for generating new
products in the SPL field [8], [57], [58], [59], [60],
[61]. In this paper, we empirically demonstrate that
combining two types of satisfiability solvers (i.e., the
randomized SAT4J1 + probSAT2 [63]) in a similar
way as in [59], [60] can be more effective than the
unpredictable way when generating new products on
some large-scale real-world FMs, such as the Linux
kernel model (2.6.28.6-icse11) [29]. We consider this
as one of the contributions because it provides a
powerful alternative to generating new products in
the domain of SPL testing.

The remainder of this paper is organized as follows.
Section 2 presents concepts and notations used in this work.
Section 3 details the proposed method, and Section 4 reports
on the empirical study. In Section 5, we discuss threats to
validity before reviewing related work in Section 6. Finally,
Section 7 concludes the paper and outlines possible research
lines for future studies.

2 CONCEPTS AND NOTATIONS

In this section we present background concepts and nota-
tions used in this paper.

2.1 Feature model configurations as test cases

This paper focuses on model-based testing of SPLs in which
an FM [2] is used as the variability model. An FM is tree-
like structure encompassing a set of features and constraints
among them. Since feature modeling is a popular way of
documenting commonality and variability of an SPL in both
academic and industrial communities [4], [10], [64], it makes
sense to develop FM-based SPL testing techniques.

Definition 1. A feature model can be seen as a tuple (F , C) [4],
where F = (f1, . . . , fn) represents a set of n Boolean features
(or configuration options), and C = (c1, . . . , ck) is a set of k
constraints among these features. C is satisfied if and only if
all ci (i = 1, . . . , k) are evaluated to True. Each ci is called a

1. The SAT4J [62] is a conflict-driven clause learning (CDCL) solver.
2. The probSAT is a stochastic local search (SLS) solver.

clause if the feature model is transformed to a Boolean formula in
conjunctive normal form (CNF) [65].

In this context, we define a configuration of an FM as
a set of selected/deselected features. Formally, we have the
following definition.

Definition 2. A configuration is a set CF = {±f1, . . . ,±fn},
where +fi and −fi indicate that the feature fi is selected and
deselected in the current configuration, respectively. Note that a
feature can be either selected or deselected. Moreover, a configura-
tion is said to be valid if and only if all the FM constraints are
satisfied. Otherwise, it is called an invalid configuration.

In the program, a configuration is encoded as a binary
vector, and each of the elements takes either 1 (selected)
or 0 (deselected). Notice that a configuration can be also
called a product in the SPL terminology, an individual (or a
solution/point) in the evolutionary computation (EC) termi-
nology. In essence, these terms refer to the same thing, and
thus they are used interchangeably in this paper.

Definition 3. A test suite of an SPL is a list TS =
CF1, . . . , CFN , where each CFi (i = 1, . . . , N) is a valid
configuration.

In this context, the valid configuration CFi is called a
test case.

2.2 T-wise testing and coverage
The t-wise testing for SPLs focuses on the combinations
of t ≥ 2 features of an SPL [19], [66]. It considers all
the possible interactions between selected and deselected
features. We list the following definitions related to the t-
wise testing.

Definition 4. A t-set is a set {±f1, . . . ,±ft}, where t ≤ n. It
represents a partially configured product [13].

Definition 5. A t-set is called a valid t-set if it satisfies the
constraint C of the FM. A t-set that does not satisfy C is said to
be invalid.

A valid t-set, ts, is covered by a configuration CF , if
ts ⊆ CF . Note that invalid t-sets need not to be covered [7].

Definition 6. The t-wise coverage of a test suite TS =

CF1, . . . , CFN is defined as the ratio
| ∪Ni=1 VT CFi |
|VT fm|

, where

VT fm is the set of all the valid t-sets of the given FM; VT CFi

denotes the set of t-sets covered by the configuration CFi, and
| · | returns the cardinality of a set. For simplicity, we also refer to
t-wise coverage as coverage.

3 THE NOVELTY SEARCH FOR SPL TESTING

The NS algorithm for test case generation in SPL testing,
as outlined in Algorithm 1, aims at looking for a speci-
fied amount of diverse configurations, using the specified
amount of time. The key idea behind this algorithm is to
use “novelty” for the selection of promising configurations.
In the algorithm, the following control parameters need
to be specified before the algorithm begins. The first two
parameters are common in search-based algorithms, while
the remaining two ones are unique to the NS algorithm.

4

• The archive size (N) specifies the number of config-
urations to be returned. The setting of this parameter
depends largely on the demands of software testers.

• The execution time allowed (max t) serves as the
termination condition of the algorithm. Similar to N ,
this parameter is preset by software testers.

• The repair probability (Pr) is introduced when gener-
ating new configurations. A random configuration is
repaired, with the probability Pr, using the probSAT
solver [63]. Proper values of this parameter will be
experimentally investigated later in Section 4.4.1.

• The neighbor size (Nb) specifies the number of neigh-
bors to be considered when evaluating the “novelty”
of a configuration. Empirical studies will be conduct-
ed in Section 4.4.2 to tune this parameter.

Notice that the NS algorithm allows software testers
flexibly specifying the number of configurations as well
as the execution time. Such flexibility is desirable for the
sampling algorithm to meet a given testing budget [4]. In
the following subsections, we will give details on the main
algorithmic components.

Algorithm 1 NS algorithm for SPL testing
Input: archive size (N), execution time allowed (max t),

repair probability (Pr) and neighbor size (Nb)
Output: archive A

1: Initialize the archive A by generating N configurations
in an unpredictable way as in [4]

2: while the elapsed time is less than max t do
3: Generate a random configuration c
4: if c is not valid then
5: if rand(0, 1) < Pr then
6: Repair c using the probSAT solver [63]
7: else
8: Replace c by an unpredictable configuration got

from the randomized SAT4J solver
9: end if

10: end if
11: Calculate the novelty score ρ(x), where x ∈ A ∪ {c}
12: cworst ← the worst member in A concerning the

novelty score // cworst has the minimum novelty score
13: if ρ(c) > ρ(cworst) then
14: cworst ← c // Replace the worst archived member by c
15: end if
16: end while
17: return A

3.1 Initialization of the archive
According to Line 1 of Algorithm 1, A is initialized with N
valid configurations produced in an unpredictable way [4].
Since an FM can be converted into a Boolean formula [65],
an off-the-shelf satisfiability (SAT) solver, such as SAT4J3

[62], can be naturally used to generate valid products.
However, the internal order used by the solver to parse
the logical clauses and literals typically produces the same
solution in a deterministic way, resulting in the loss of
diversity of configurations. To overcome this issue, Henard

3. https://www.sat4j.org/

et al. [4] proposed to randomize the order how the logical
clauses and the literals are parsed by the solver. In the
implementation, they used the randomized SAT4J solver
[62]. This way, it is impossible to predict the next product
to be returned. In other words, products are generated in
an unpredictable way. Experimental results have shown
that this unpredictable way can significantly improve the
diversity of the configurations [4], [58].

Being simple and effective, the above unpredictable way
forms a state-of-the-art strategy to sample configurations
from the space of all the valid products [57]. In fact, this
strategy has been widely used to generate configurations in
the context of both optimal software product selection [58],
[59], [60] and software product line testing [8], [61].

To initialize the archive A, we also adopt this unpre-
dictable way to generate configurations. Notice that, to fur-
ther improve diversity, the archive only allows the entry of
configurations that are different from the already archived
ones.

3.2 Generation of new configurations
In the iteration process (Lines 3-15 of Algorithm 1), the
procedure tries to update A by generating a new valid con-
figuration each time. To this end, we first produce a random
configuration c, with each feature being either selected or
deselected both with a probability 0.5. Due to constraints
among features, the randomly generated configuration is
very likely to be invalid. In this case, it is either repaired
by the probSAT solver [63] with the probability Pr (see Line
6), or replaced by an unpredictable configuration obtained
from the randomized SAT4J solver [62] (see Line 8).

3.2.1 Repair configurations using probSAT
The procedure of probSAT [63], an SAT solver based on the
stochastic local search (SLS)4 [68], is given in Algorithm 2.
Essentially, it iteratively flips a selected variable (by chang-
ing its value from 0 to 1, or vice verse) until the number
of flips reaches the maximum value, max flips. For an
invalid configuration c, it violates at least one clause. As
shown in Line 3 of Algorithm 2, we randomly pick one of
these falsified clauses, denoted by cls. Next, the procedure
works out the break value of each variable v in cls (Line 5
in Algorithm 2). The break value of a variable is defined as
the number of satisfied clauses that would become falsified
after flipping this variable [69]. It is clear from this definition
that it would be better (in a general case) to flip the variable
with smaller break value. To efficiently compute this value,
we adopt the fast procedure proposed in [69]. For details,
please refer to the original study.

Subsequently, as shown in Line 6, the break (v) is
transformed by the following polynomial function5.

4. In addition to SLS-style solvers, another mainstream of high-
performance algorithms for satisfiability solving is conflict-driven
clause learning (CDCL) solvers [67], such as SAT4J. Different from
CDCL-style solvers which need to methodically traverse the whole
search space, SLS-style solvers are typically greedy algorithms aiming
at quickly satisfying clauses as many as possible. Therefore, SLS-style
solvers are in general computationally efficient. However, they have no
guarantee on finding a satisfying solution for each solver call.

5. According to [63], break (v) can be transformed by other types of
functions. The polynomial function is chosen in this study primarily
because of its simplicity and effectiveness [63].

5

f(v) = [ϵ+ break(v)]−cb , (1)

where ϵ = 1, and cb > 1.0. Clearly, f(v) monotonically
decreases with respect to break(v). This means that we tend
to choose the variables with large f(v).

Algorithm 2 Procedure of the probSAT solver
Input: an invalid configuration (c), maximum number of

flips (max flips)
Output: the repaired c

1: n← 0 // the number of flips
2: while n ≤ max flips do
3: Randomly pick a falsified clause cls with respect to

the configuration c
4: for each variable v in cls do
5: Compute the break value of v, i.e., break (v)
6: Transform break (v) according to Eq. (1)
7: end for
8: var ← the variable selected based on the probability

f(var)∑
z∈cls

f(z)

9: Flip the variable var in c
10: n++
11: end while
12: return c

Finally, according to Line 8 of Algorithm 2, the vari-
able var to be flipped is chosen based on the probabili-
ty f(var)∑

z∈cls
f(z)

. This calculation of probability ensures that

variables with larger f values are given more chances to be
selected. The chosen variable is then flipped, coming with
the counter n increased by 1 (Lines 9 and 10).

It should be mentioned that repairing SPL configurations
using probSAT has already been explored in our previous
work [60] in the context of multi-objective software product
selection from SPLs. It has been shown that probSAT is
more effective than WalkSAT [70], another popular SLS-
style solver, in search for dissimilar products. Since this fits
well our goal in this study (generating SPL configurations as
dissimilar as possible), we choose probSAT instead of Walk-
SAT. Moreover, the possibility of using SLS-style solvers
to repair SPL configurations has not yet been explored in
the context of SPL testing. We make the first step in this
regard. Most importantly, as will be demonstrated in Section
3.2, the introduce of probSAT-based repair operator can
significantly improve the coverage on some FMs, like for
example the Linux kernel model (2.6.28.6-icse11) [29] which
is the largest FM widely studied before.

In the detailed implementation, max flips is set to
4,000, following the common practice in [59], [60]. The
parameter cb in (1) is set to 2.165, and this value is suggested
by the developers of probSAT. Since we use standard values
from the literature for the two parameters, a tuning phase is
not required in this case.

3.2.2 Replacement based on randomized SAT4J solver
In case that the random configuration c is invalid, it will be
replaced, with the probability 1 − Pr, by an unpredictable
configuration obtained from the randomized SAT4J solver
[4]. As discussed previously in Section 3.1, the randomized

solver enables an exploration of the valid search space in
an unpredictable way, being capable of improving diversity
of configurations. To implement the randomized solver, fol-
lowing the common practice in [4], we primarily randomize
the order in which the assignments (true or false) to literals
are instantiated. More specifically, literals are assigned with
either true (i.e., 1) or false (i.e., 0) both with a probability 0.5.
That way, it prevents from generating biased configurations
towards either true or false assignment.

3.3 Evaluation of novelty
According to Line 11 in Algorithm 1, the generated configu-
ration c (after repair or replacement) and all the archived
members are jointly evaluated for novelty. For any x ∈
A ∪ {c}, the novelty score of x is given by

ρ(x) =
1

Nb

Nb∑
i=1

d(x,µi), (2)

where Nb is the neighbor size, and µi is the i-th nearest
neighbor of x with respect to the following Jaccard distance
[71].

d(x,µi) = 1− |x ∩ µi|
|x ∪ µi|

, (3)

where | · | denotes the cardinality of a set. Since both x
and µi are sets according to Definition 2, d(x,µi) is a
set-based distance. Clearly, the distance varies between 0
and 1. In particular, a distance of 0 indicates two identical
configurations, while a distance equal to 1 suggests that
the two considered configurations are totally different. In
fact, this distance metric was adopted in [4] to measure
the degree of similarity between two configurations. Given
its good performance presented in the prior work [4], we
choose it in our study as a measure of behavioral difference
between two configurations in the search space.

According to (2), the novelty score is defined as the aver-
age distance to the Nb-nearest neighbors of a configuration,
where Nb is a fixed parameter. In fact, the novelty score
estimates the sparseness of a point in the decision space. If
the score of a given point (or configuration) is large, then it
is in a sparse area; in contrast, it is in a dense area in case
that the novelty score is small.

It is important to note that the novelty score measures
how unique an individual’s behaviour is, with respect to
the behaviours of both archived individuals and the current
one that represents the most recently visited point [50]. This
is reason why we consider the set A ∪ {c}, instead of A,
when evaluating the novelty of an individual.

3.4 Reward novel individuals
As shown in Line 12 of Algorithm 1, the worst member inA,
cworst, is identified by comparing novelty scores. After that,
cworst will be replaced by the newly generated c in case
that ρ(c) > ρ(cworst). The above operation simply aims at
rewarding “novel” individuals, creating a constant pressure
to do something new. Indeed, the new individual that is far
away from its predecessors takes place of the archived one
with the least novelty. That way, the search is driven toward
unexplored regions, enabling a diverse exploration of the
search space.

6

It should be noted that no explicit objective is used in
the NS algorithm. Instead, by attempting to maximize the
novelty metric defined in the decision space, the algorithm
tends to generate dissimilar configurations. This is precisely
what we pursue in SPL testing.

3.5 Why Novelty Search?

As discussed in [53], NS is well suitable for SBSE problems.
Going one step further, we demonstrate in this paper that
NS is an ideal tool for the similarity-based testing of SPLs
because of the following truths.

• In SPL testing, a set of test cases are required to cover
valid t-sets as many as possible. The NS algorithm
maintains an archive which stores the first N most
novel individuals found during the whole search
process. These individuals can directly serve as test
cases for the SPLs.

• The results presented in [4] suggest that two dissimilar
configurations are more likely to cover a greater number
of valid t-sets than two similar ones. Therefore, the
goal of similarity-based SPL testing is essentially to
find a set of configurations as diverse (or dissimilar)
as possible. In fact, different from fitness-oriented
evolutionary algorithms which drive the individuals
towards peaks of fitness, the NS is born to achieve
this goal since it constantly searches for “novel” (a
synonym for “diverse”) individuals. This way, the di-
versity of the population can be naturally improved.

• Previous works [4], [9] on SPL testing ambiguously
adopt the idea of NS, i.e., searching for diverse
configurations using heuristics like GA to optimize
similarity-based fitness function. In this paper, we
explicitly use NS because of its good theoretical
properties, e.g., behaving like a uniform random search
process in the behavior space [51] and creating a pressure
for high evolvability even in bounded behavior spaces
[72]. These properties are very useful in guiding the
search towards diverse configurations in the testing
of SPLs.

Experiments presented in the next section will show that
NS can indeed obtain promising results in testing SPLs with
respect to the t-wise coverage.

4 EMPIRICAL STUDY

The empirical study conducted in this section aims at an-
swering the following four research questions.

• RQ1: What is the relationship between similarity metrics
and the t-wise coverage?

• RQ2: How does the NS perform compared with state-of-
the-art algorithms for similarity-based testing of SPLs?

• RQ3: Do ways of generating new configurations make any
difference in similarity-based testing of SPLs?

• RQ4: How is the performance of NS affected by its key
parameters?

The first research question is a foundational question
in similarity-based testing of SPLs. Indeed, if similarity
metrics have no relationships with the t-wise coverage,

then it is meaningless to optimize the similarity metric-
s so as to achieve a decent t-wise coverage. To address
RQ1, a correlation analysis is performed to investigate the
internal relationship between two similarity metrics (i.e.,
the similarity-based fitness function [4] and the novelty
score) and the t-wise coverage. The second research question
amounts to evaluating the NS algorithm in comparison
with some state-of-the-art approaches. We expect the NS to
provide a t-wise coverage better than or close to the state of
the art. The third research question aims at comparing dif-
ferent ways of generating new configurations in similarity-
based SPL testing. Currently, the unpredictable way proposed
by Henard et al. [4] forms a state-of-the-art strategy for
new individuals generation. However, it remains unknown
whether this strategy can be further improved. Finally, the
fourth research question seeks to provide useful guidelines
for tuning parameters in the NS algorithm. Since this is the
first work which adopts NS for the testing of SPLs, it is of
practical importance to give some suggestions on the setting
of its key parameters.

The conducted experiments are performed on a Quad
Core@2.20 GHz with 8 GB of RAM. As shown in Table 1,
this study employs 31 FMs which are divided into three
categories. The first category is composed of 12 FMs with
the number of features lower than 200; they are referred
to as small-scale FMs. The second category consists of 13
models (with the number of features larger than 200 but
lower than or equal to 1,000), and they are referred to as
moderate-scale FMs. The third category contains 6 models of
large size (beyond 1,000); they are referred to as large-scale
FMs. For each FM, Table 1 presents its name, the number of
features, the number of CNF constraints, the number of free
features and the number of valid 2-sets.

A free feature is the feature whose assignment is unde-
termined, while a fixed feature can be either mandatory or
dead. A mandatory feature must be presented in any valid
configuration, whereas a dead feature cannot be included in
any case. It is the number of free features that determines the
size of the search space. According to Table 1, the number
of free features ranges from the smallest 18 to the largest
16,664.

For small- and moderate-scale FMs and for t = 2, we
enumerate all the possible t-sets and ask an SAT solver to
determine whether they are valid or not. For the large FMs,
it is very time-consuming to obtain all the valid t-sets even
for t = 2 [4]. To compute the t-wise coverage in this case,
we instead randomly generate a set of 10,000 valid t-sets,
which can be seen as a sample of the whole space of all the
valid t-sets. Since the number of valid t-sets explodes as t
increases, we sample 10,000 valid t-sets for the FMs when
t ≥ 3. The number of valid 2-sets is listed in the last column
in Table 1.

Finally, notice that most of the FMs have been chosen
by Henard et al. [4] in their empirical study, and they are
taken from either the SPLOT repository [73]6 or the LVAT
repository [29]7. In this work, we add three moderate FMs,
i.e., E-shop from SPLOT; toybox and axTLS from LVAT, and

6. SPLOT: http://www.splot-research.org/
7. LVAT: http://code.google.com/p/linux-variability-analysis-tools

http://www.splot-research.org/
http://code.google.com/p/linux-variability-analysis-tools

7

TABLE 1
Feature models used in the empirical study

Feature model #Features #Constraints #Free Features #Valid 2-sets

Small

CounterStrikeSimpleFM 24 35 18 833
SPLSSimuelESPnP 32 54 23 1,448
DSSample 41 201 34 2,592
WebPortal 43 68 39 3,196
Drupal 48 79 40 3,751
ElectronicDrum 52 119 36 3,746
SmartHomev2.2 60 82 53 6,189
VideoPlayer 71 99 53 7,528
Amazon 79 250 73 10,555
ModelTransformation 88 151 76 13,139
CocheEcologico 94 191 57 11,075
Printers 172 310 122 42,638

Moderate

E-shop 290 426 260 149,723
toybox 544 1,020 175 256,494
axTLS 684 2,155 300 476,386
SPLOT-Generated-FM-1000-1 1,000 1,875 949 1,861,476
SPLOT-Generated-FM-1000-2 1,000 1,927 979 1,939,079
SPLOT-Generated-FM-1000-3 1,000 1,933 966 1,913,540
SPLOT-Generated-FM-1000-4 1,000 1,807 970 1,929,827
SPLOT-Generated-FM-1000-5 1,000 1,889 994 1,973,526
SPLOT-Generated-FM-1000-6 1,000 1,814 990 1,968,013
SPLOT-Generated-FM-1000-7 1,000 1,874 967 1,919,404
SPLOT-Generated-FM-1000-8 1,000 1,897 880 1,742,123
SPLOT-Generated-FM-1000-9 1,000 1,788 846 1,688,239
SPLOT-Generated-FM-1000-10 1,000 1,935 982 1,952,788

Large

ecos-icse11 1,244 3,146 1,189 10,000
freebsd-icse11 1,396 62,183 1,355 10,000
Automotive01 2,513 10,311 2,218 10,000
SPLOT-Generated-FM-5000 5,000 9,419 4,925 10,000
2.6.28.6-icse11 6,888 343,944 6,728 10,000
Automotive02 V3 18,434 347,557 16,664 10,000

two large FMs, i.e., Automotive018 and Automotive02 [25],
[31]9. The two large FMs are closed-source product lines
from automotive industry, and are well suited as subjects
for examining the scalability of t-wise testing algorithms
[25]. Regarding the FMs, 20 of them are real, while 11 are
artificially generated by the SPLOT FM generator [73], with
the prefix being “SPLOT-Generated-FM” in their names.

4.1 Correlation analysis between similarity metrics and
t-wise coverage (RQ1)

In this section, we perform a correlation analysis to investi-
gate the relationship between two similarity metrics and the
t-wise coverage. We first briefly introduce the two similarity
metrics, and then present results of the correlation analysis.
Finally, answers to RQ1 are given.

4.1.1 Similarity metrics under study
Two similarity metrics are considered. Given a test suite
with N configurations, i.e., TS = CF1, . . . , CFN , both
similarity metrics map a test suite to a positive real value.
Formally, the first one, as given in Eq. (4), is called the
similarity-based fitness function [4].

f(TS) =
N∑
j>i

d(CFi, CFj), (4)

8. Automotive01 is integrated in the FeatureIDE [74]: https://
featureide.github.io/

9. https://github.com/PettTo/SPLC2019
The-Scalability-Challenge Product-Lines/tree/master/Automotive02

where d(CFi, CFj) calculates the Jaccard distance between
CFi and CFj (see Eq. (3)). This similarity metric sums the
Jaccard distance over all pairs of configurations such that
j > i.

The second one is formulated as follows:

ρ(TS) =
N∑
i=1

ρ(CFi), (5)

where ρ(CFi) is the novelty score of a single configuration
(see Eq. (2)). This function generalizes the calculation of
novelty score from a single configuration to a test suite TS.

Intuitively, according to [4], the higher both similarity
metrics of a given TS, the higher the distance among con-
figurations, leading to potentially larger t-wise coverage.
However, this has not been rigorously verified. Since it may
be very difficult to directly prove the above argument, we
instead statistically demonstrate it by performing a correla-
tion analysis. To this end, we generate 100 samples for each
FM, with a sample being a test suite of 100 configurations.
Note that these configurations are generated using the un-
predictable strategy suggested by Henard et al. [4]. For each
sample, we can calculate its t-wise coverage, as well as the
values of the two similarity metrics. This way, we obtain 100
pairs of data for each FM regarding each similarity metric,
enabling us to perform a correlation analysis to observe how
and, to what extend, the t-wise coverage is correlated with
the similarity metrics.

https://featureide.github.io/
https://featureide.github.io/
https://github.com/PettTo/SPLC2019_The-Scalability-Challenge_Product-Lines/tree/master/Automotive02
https://github.com/PettTo/SPLC2019_The-Scalability-Challenge_Product-Lines/tree/master/Automotive02

8

TABLE 2
Results of the correlation analysis performed on small-scale FMs. For r, larger values are shown in bold; For p, values larger than α = 0.05 are

underlined.

Feature model t-wise r p
Similarity-based fitness Novelty score Similarity-based fitness Novelty score

CounterStrikeSimpleFM

2 0.0594 0.0109 0.5571 0.9141
3 0.1798 0.1928 0.0734 0.0546
4 0.3986 0.3583 0.0000 0.0003
5 0.4490 0.5556 0.0000 0.0000
6 0.4680 0.6732 0.0000 0.0000

SPLSSimuelESPnP

2 0.0899 0.0479 0.3739 0.6358
3 0.5782 0.6970 0.0000 0.0000
4 0.6711 0.8395 0.0000 0.0000
5 0.6973 0.9040 0.0000 0.0000
6 0.6715 0.9449 0.0000 0.0000

DSSample

2 0.1716 0.2277 0.0878 0.0227
3 0.3012 0.3517 0.0023 0.0003
4 0.2645 0.3787 0.0078 0.0001
5 0.3388 0.4928 0.0006 0.0000
6 0.4001 0.5322 0.0000 0.0000

WebPortal

2 0.4806 -0.0475 0.0000 0.6389
3 0.6900 0.3815 0.0000 0.0001
4 0.7064 0.4494 0.0000 0.0000
5 0.7281 0.6498 0.0000 0.0000
6 0.6254 0.7144 0.0000 0.0000

Drupal

2 0.1216 0.1008 0.2280 0.3183
3 0.4768 0.3098 0.0000 0.0017
4 0.6855 0.5851 0.0000 0.0000
5 0.8087 0.7066 0.0000 0.0000
6 0.7425 0.7318 0.0000 0.0000

ElectronicDrum

2 0.2416 0.1549 0.0154 0.1238
3 0.4964 0.5268 0.0000 0.0000
4 0.6892 0.6622 0.0000 0.0000
5 0.7091 0.7687 0.0000 0.0000
6 0.7366 0.7239 0.0000 0.0000

SmartHomev2.2

2 0.1783 -0.0473 0.0759 0.6400
3 0.5075 0.1731 0.0000 0.0850
4 0.6987 0.4409 0.0000 0.0000
5 0.8048 0.6245 0.0000 0.0000
6 0.7531 0.6826 0.0000 0.0000

VideoPlayer

2 0.0589 0.1231 0.5603 0.2222
3 0.4626 0.5259 0.0000 0.0000
4 0.8300 0.8603 0.0000 0.0000
5 0.9330 0.9481 0.0000 0.0000
6 0.9536 0.9656 0.0000 0.0000

Amazon

2 -0.0313 -0.0042 0.7575 0.9666
3 0.1015 0.1434 0.3151 0.1547
4 0.0499 0.1981 0.6220 0.0482
5 0.2678 0.3733 0.0071 0.0001
6 0.2105 0.3774 0.0355 0.0001

ModelTransformation

2 0.6405 0.7297 0.0000 0.0000
3 0.7925 0.8853 0.0000 0.0000
4 0.8354 0.9339 0.0000 0.0000
5 0.8493 0.9531 0.0000 0.0000
6 0.8417 0.9663 0.0000 0.0000

CocheEcologico

2 0.2460 0.1986 0.0136 0.0476
3 0.4665 0.4482 0.0000 0.0000
4 0.4348 0.7277 0.0000 0.0000
5 0.4921 0.8163 0.0000 0.0000
6 0.5052 0.9111 0.0000 0.0000

Printers

2 0.3021 0.3357 0.0023 0.0006
3 0.5668 0.6554 0.0000 0.0000
4 0.6743 0.8375 0.0000 0.0000
5 0.6931 0.8995 0.0000 0.0000
6 0.6964 0.9335 0.0000 0.0000

4.1.2 Results of the correlation analysis

The correlation analysis returns the correlation coefficient
r and the p-value for testing the hypothesis that there is
no relationship between the two random variables (null
hypothesis). The r measures the linear dependence between

two variables, and its value can range from -1 to 1, with -
1 representing a perfect negative correlation, 0 representing
no correlation, and 1 representing a perfect positive correla-
tion. The p-values range from 0 to 1, where values smaller
than the significance level α (default is 0.05) indicate that the

9

TABLE 3
Results of the correlation analysis performed on moderate-scale FMs. For r, larger values are shown in bold; For p, values larger than α = 0.05

are underlined.

Feature model t-wise r p
Similarity-based fitness Novelty score Similarity-based fitness Novelty score

E-shop

2 0.3125 0.3669 0.0016 0.0002
3 0.6836 0.7222 0.0000 0.0000
4 0.8769 0.8975 0.0000 0.0000
5 0.9400 0.9569 0.0000 0.0000
6 0.9639 0.9694 0.0000 0.0000

toybox

2 0.0249 0.3083 0.8059 0.0018
3 0.1358 0.6312 0.1780 0.0000
4 0.1363 0.7360 0.1763 0.0000
5 0.1494 0.7566 0.1379 0.0000
6 0.1840 0.8710 0.0669 0.0000

axTLS

2 0.5016 0.5786 0.0000 0.0000
3 0.5679 0.6677 0.0000 0.0000
4 0.5852 0.7844 0.0000 0.0000
5 0.6017 0.8128 0.0000 0.0000
6 0.6000 0.8185 0.0000 0.0000

SPLOT-Generated-FM-1000-1

2 0.4757 0.5817 0.0000 0.0000
3 0.5443 0.8106 0.0000 0.0000
4 0.4839 0.8932 0.0000 0.0000
5 0.5122 0.9435 0.0000 0.0000
6 0.5187 0.9235 0.0000 0.0000

SPLOT-Generated-FM-1000-2

2 0.5943 0.7623 0.0000 0.0000
3 0.6383 0.8706 0.0000 0.0000
4 0.6429 0.9296 0.0000 0.0000
5 0.6275 0.9407 0.0000 0.0000
6 0.6247 0.9555 0.0000 0.0000

SPLOT-Generated-FM-1000-3

2 0.5285 0.7239 0.0000 0.0000
3 0.5659 0.8560 0.0000 0.0000
4 0.5287 0.9134 0.0000 0.0000
5 0.5330 0.9336 0.0000 0.0000
6 0.5301 0.9457 0.0000 0.0000

SPLOT-Generated-FM-1000-4

2 0.7002 0.8651 0.0000 0.0000
3 0.7327 0.9450 0.0000 0.0000
4 0.7565 0.9692 0.0000 0.0000
5 0.7461 0.9723 0.0000 0.0000
6 0.7242 0.9700 0.0000 0.0000

SPLOT-Generated-FM-1000-5

2 0.6545 0.7784 0.0000 0.0000
3 0.6824 0.8900 0.0000 0.0000
4 0.7255 0.9292 0.0000 0.0000
5 0.6946 0.9599 0.0000 0.0000
6 0.6939 0.9524 0.0000 0.0000

SPLOT-Generated-FM-1000-6

2 0.7167 0.8317 0.0000 0.0000
3 0.7397 0.9012 0.0000 0.0000
4 0.7552 0.9400 0.0000 0.0000
5 0.7229 0.9453 0.0000 0.0000
6 0.7357 0.9553 0.0000 0.0000

SPLOT-Generated-FM-1000-7

2 0.6122 0.7781 0.0000 0.0000
3 0.6917 0.9011 0.0000 0.0000
4 0.6857 0.9329 0.0000 0.0000
5 0.6947 0.9627 0.0000 0.0000
6 0.6729 0.9584 0.0000 0.0000

SPLOT-Generated-FM-1000-8

2 0.4667 0.6720 0.0000 0.0000
3 0.5268 0.8243 0.0000 0.0000
4 0.5081 0.8879 0.0000 0.0000
5 0.4959 0.9322 0.0000 0.0000
6 0.4683 0.9390 0.0000 0.0000

SPLOT-Generated-FM-1000-9

2 0.6020 0.7874 0.0000 0.0000
3 0.6394 0.9220 0.0000 0.0000
4 0.6639 0.9373 0.0000 0.0000
5 0.6718 0.9600 0.0000 0.0000
6 0.6611 0.9694 0.0000 0.0000

SPLOT-Generated-FM-1000-10

2 0.3864 0.7449 0.0000 0.0000
3 0.4542 0.8776 0.0000 0.0000
4 0.5377 0.9450 0.0000 0.0000
5 0.5307 0.9532 0.0000 0.0000
6 0.5143 0.9669 0.0000 0.0000

10

TABLE 4
Results of the correlation analysis performed on large-scale FMs. For r, larger values are shown in bold; For p, values larger than α = 0.05 are

underlined.

Feature model t-wise r p
Similarity-based fitness Novelty score Similarity-based fitness Novelty score

ecos-icse11

2 0.7063 0.5451 0.0000 0.0000
3 0.8388 0.7853 0.0000 0.0000
4 0.8969 0.8984 0.0000 0.0000
5 0.8951 0.9490 0.0000 0.0000
6 0.8766 0.9647 0.0000 0.0000

freebsd-icse11

2 0.5171 0.5201 0.0000 0.0000
3 0.8260 0.8266 0.0000 0.0000
4 0.9161 0.9484 0.0000 0.0000
5 0.9389 0.9665 0.0000 0.0000
6 0.9313 0.9585 0.0000 0.0000

Automotive01

2 0.6649 0.8067 0.0000 0.0000
3 0.7074 0.8961 0.0000 0.0000
4 0.6947 0.9061 0.0000 0.0000
5 0.6887 0.9110 0.0000 0.0000
6 0.6942 0.9292 0.0000 0.0000

SPLOT-Generated-FM-5000

2 0.5219 0.7741 0.0000 0.0000
3 0.5681 0.8757 0.0000 0.0000
4 0.5358 0.9348 0.0000 0.0000
5 0.5364 0.9468 0.0000 0.0000
6 0.5567 0.9465 0.0000 0.0000

2.6.28.6-icse11

2 0.6590 0.7707 0.0000 0.0000
3 0.7537 0.9521 0.0000 0.0000
4 0.7704 0.9794 0.0000 0.0000
5 0.7537 0.9795 0.0000 0.0000
6 0.7532 0.9822 0.0000 0.0000

Automotive02 V3

2 0.2012 0.2150 0.0447 0.0317
3 0.2895 0.3999 0.0035 0.0000
4 0.1981 0.1965 0.0482 0.0501
5 0.3633 0.5469 0.0002 0.0000
6 0.3981 0.6013 0.0000 0.0000

corresponding correlation is considered significant. Table 2
summarizes results of the correlation analysis performed
on small-scale FMs. In almost all the cases, as seen, both
similarity metrics show a positive correlation with the t-wise
coverage. Moreover, most of the correlations are statistically
significant since p < 0.05. In particular, it is observed that
values of p are equal or very close to 0 in most cases.
Going one step further, we work out the percentage of cases
in which significant correlations are observed. It is 83.3 %
for the similarity-based fitness, and 81.7% for the novelty
score. From this perspective of view, the two metrics have
no obvious differences. However, the novelty score shows
better (or larger) r values than the similarity-based fitness in
63.3 percent of all the cases, and worse in only 36.7 percent.
This implies that the novelty score would be more suitable
than the similarity-based fitness as a substitution of the t-
wise coverage.

In a similar way, we perform a correlation analysis on all
the moderate-scale FMs, and tabulate the results in Table 3.
Regarding the novelty score, it is observed that all p-values
are smaller than 0.05. Regarding the similarity-based fitness,
the corresponding correlations are considered significant on
all the moderate-scale FMs except toybox. However, it can
be found from the r values that the novelty score has a
(much) stronger positive correlation with the t-wise coverage
than its counterpart on all the feature models regardless of
the value of t. Notice that r values for the novelty score are
larger than 0.9 in a number of cases, which suggests that the
novelty score and the t-wise coverage are almost linearly

dependent.
The correlation analysis results on large-scale FMs are

presented in Table 4, where we can find that both similarity
metrics, just as in the moderate-scale case, have significantly
positive correlations with the t-wise coverage on all large-
scale FMs for all values of t, expect Automotive02 for t = 4.
In this case, the p-value for the novelty score is sightly larger
than 0.05. Moreover, as clearly reflected by the r values, the
novelty score has a (much) stronger correlation with the t-
wise coverage than the similarity-based fitness.

4.1.3 RQ1 summary
The correlation analysis performed in this section brings out
the following conclusions. First, both the similarity-based fit-
ness and the novelty score have, in general, a significantly positive
correlation with the t-wise coverage. Moreover, this relationship
is not affected by the size of feature models and by the t-
wise strengths. The above findings explain why similarity
can be used as a surrogate metric for the t-wise coverage.
More importantly, it makes the similarity-based SPL testing
theoretically solid. Second, the novelty score has, in general,
a (much) stronger positive correlation with the t-wise coverage
than the similarity-based fitness suggested by Henard et al. [4]. It
means that the novelty score should be more effective than
the similarity-based fitness in guiding the search towards a
set of configurations with a decent t-wise coverage. In the
forthcoming subsection, we will empirically verify this by
comparing NS with three highly-related approaches, one of
which is Henard’s GA algorithm developed on the basis of
the similarity-based fitness function.

11

4.2 Comparison with state-of-the-art algorithms (RQ2)

This section focuses on demonstrating the effectiveness of
NS through a comparative study. To begin with, we give a
brief introduction to the algorithms under examination, and
then we specify the experiment setup used in the empirical
study. In what follows, experiment results are presented and
conclusions are summarized.

4.2.1 Algorithms under comparison
We compare NS with three state-of-the-art algorithms, i.e.,
Unpredictable [4], GA [4] and SamplingDown [7]. Notice that
we choose the above algorithms because: 1) they are all
dedicated for similarity-based testing of SPLs, and 2) they
are all able to scale to large FMs and high t-wise strengths.

• The Unpredictable approach, suggested by Henard
et al. [4], uses the randomized SAT4J solver (see
Section 3.2.2) to generate N configurations in an
unpredictable way. This approach was chosen in [4]
as a comparison basis because of its good scalability
and high efficiency.

• The GA algorithm, also proposed by Henard et al.
[4], may be the first one using a similarity-based
heuristic to generate and prioritize product config-
urations for especially large SPLs. The algorithms
starts with an initial population consisting of N
configurations generated in the unpredictable way.
Then they are prioritized using the global maximum
distance prioritization method, and evaluated using
the similarity-based fitness function defined by Eq.
(4). The next step consists of attempting to replace
the worst configuration by an unpredictable one got
from the randomized SAT solver. This replacement
is permitted if and only if the similarity-based fitness
increases. The above step is repeated until the termi-
nation condition is satisfied. According to Henard et
al. [4], this technique can be seen as a (1+1) genetic
algorithm without crossover.

• The SamplingDown is adapted from the similarity-
based prioritization proposed by Al-Hajjaji et al. [7].
The original approach, applied on any product sam-
ple, focuses solely on ordering products to increase
the probability of detecting faults faster. In this paper,
we extend it to an approach which samples down
from a large set of unpredictable configurations.
More specifically, the algorithm begins with a large
initial set of configurations, then it selects candidates
one by one based on similarity. First, the product
with maximum number of features (or all-yes-config
[75]) is selected. Then, we choose one by one the
next product that has the minimum similarity with
the already selected products. The process continues
until N products are selected (N is often specified by
software testers according to their test budgets).

4.2.2 Experiment setup
Experiment setups used in this section are summarized as
follows.

• The number of returned configurations is 100 for all
the algorithms, following the practice in [4].

• Each algorithm is independently run 30 times, and
we present and analyze the experiment results re-
garding mean values and standard deviations of the
obtained t-wise coverage.

• For both NS and GA, the termination of the algo-
rithms can be flexibly controlled by specifying the
maximum running time allowed (i.e., max t). Both
algorithms are allowed to run 6 seconds for small
FMs, 30 seconds for moderate FMs, and 600 seconds
for large FMs. These settings follow the practice in
[59]. For Unpredictable and SamplingDown, their
termination can not be manually controlled. Instead,
they are automatically terminated once 100 configu-
rations are generated/selected.

• In the NS algorithm, control parameters are set as
follows: Pr = 0.1 and Nb = 20. The turning of the
two parameters can be found later in Section 4.4. For
the SamplingDown algorithm, the number of initial
configurations is set to 1,000. For the remaining two
algorithms, no control parameters are involved.

4.2.3 Experiment results
Table 5 presents mean values and standard deviations of the
t-wise coverage obtained on the small-scale FMs. To deter-
mine whether the difference between NS and each of the
peer algorithms is significant or not, we perform a Mann-
Whitney U Test with a 0.05 significance level, following the
guidelines suggested by Arcuri and Briand [76]. In particu-
lar, the symbols •, ‡ and ◦ indicate that NS performs better
than, equivalently to and worse than the corresponding
algorithms, respectively. Furthermore, the best mean results
for each FM and each value of t are indicated by a dark-
gray background, and the second-best results a light-gray
background.

According to the summary at the bottom of Table 5, NS
is the best-performing algorithm on small FMs, obtaining
the best/second-best results in about 59/60 ≈ 98% cases. It
is followed by SamplingDown which performs either best
or second best in 35/60 ≈ 58% cases. Being competitive
with SamplingDown, GA is able to obtain promising results
in 31/60 ≈ 52% cases. Finally, the Unpredictable, the most
ineffective algorithm, performs best in only two cases, and
second best in only four cases. For moderate FMs, as shown
in Table 6, NS is still the best algorithm, dramatically outper-
forming the other three algorithms. In particular, NS obtains
the best average t-wise coverage in almost all the 65 cases
except E-shop for t = 2 and t = 3, and SPLOT-Generated-
FM-1000-3 for t = 2. It is observed that GA ranks second
concerning the overall performance on moderate-scale FMs.
As for the large-scale FMs, it can be found from Table 7
that NS and GA are highly competitive with each other,
obtaining the best/second-best results in 29/30 ≈ 97% and
28/30 ≈ 93% cases, respectively. Clearly, both algorithms
are overwhelmingly better than SamplingDown and Un-
predictable, which are capable of obtaining the second-best
results in only one and two cases, respectively.

Going one step further, we compute the percentage of
cases in which NS performs better than (•), equivalently to
(‡) and worse than (◦) each peer algorithm regarding all
the FMs and all the t values considered (resulting in 155
cases in total). As shown in Table 8, NS shows a significant

12

TABLE 5
Mean values and standard deviations (in brackets) of the t-wise coverage on small-scale FMs for t = 2, . . . , 6. The best and the second-best

results are indicated by a dark-gray and a light-gray background, respectively.

Feature model t-wise NS GA SamplingDown Unpredictable

CounterStrikeSimpleFM

2 100.00% (0.00) 100.00% (0.00)‡ 100.00% (0.00)‡ 99.988% (0.06)‡
3 99.996% (0.01) 99.945% (0.03)• 99.989% (0.01)• 99.899% (0.20)•
4 99.836% (0.05) 99.405% (0.11)• 99.667% (0.11)• 99.195% (0.37)•
5 98.716% (0.14) 96.625% (0.31)• 98.166% (0.24)• 96.580% (0.67)•
6 94.651% (0.26) 89.435% (0.51)• 93.771% (0.35)• 90.413% (0.86)•

SPLSSimuelESPnP

2 100.00% (0.00) 100.00% (0.00)‡ 100.00% (0.00)‡ 100.000% (0.00)‡
3 100.00% (0.00) 99.993% (0.01)• 100.00% (0.00)‡ 99.995% (0.01)•
4 99.994% (0.01) 99.853% (0.06)• 99.966% (0.02)• 99.770% (0.08)•
5 99.461% (0.09) 98.528% (0.16)• 99.229% (0.10)• 97.896% (0.22)•
6 96.065% (0.21) 93.716% (0.29)• 95.610% (0.22)• 92.492% (0.34)•

DSSample

2 99.034% (0.12) 98.392% (0.14)• 98.188% (0.26)• 97.515% (0.50)•
3 95.228% (0.27) 93.931% (0.33)• 93.615% (0.48)• 92.242% (0.72)•
4 88.872% (0.41) 87.235% (0.42)• 87.037% (0.64)• 84.966% (0.94)•
5 81.507% (0.47) 80.074% (0.57)• 79.894% (0.58)• 77.343% (0.68)•
6 72.376% (0.52) 70.836% (0.48)• 70.820% (0.62)• 68.203% (0.88)•

WebPortal

2 99.998% (0.01) 99.999% (0.01)‡ 99.969% (0.03)• 99.944% (0.06)•
3 99.867% (0.04) 99.889% (0.03)◦ 99.636% (0.08)• 99.348% (0.21)•
4 98.810% (0.10) 98.382% (0.17)• 97.892% (0.21)• 96.658% (0.51)•
5 94.671% (0.26) 92.929% (0.40)• 92.861% (0.43)• 89.980% (0.76)•
6 85.064% (0.30) 81.430% (0.52)• 82.972% (0.43)• 78.816% (0.86)•

Drupal

2 100.00% (0.00) 100.00% (0.00)‡ 100.00% (0.00)‡ 99.989% (0.02)•
3 99.981% (0.02) 99.979% (0.02)‡ 99.872% (0.05)• 99.771% (0.09)•
4 99.622% (0.07) 99.528% (0.07)• 99.000% (0.13)• 98.302% (0.32)•
5 96.936% (0.20) 96.142% (0.19)• 95.252% (0.25)• 93.160% (0.62)•
6 88.719% (0.32) 86.821% (0.34)• 86.136% (0.42)• 82.976% (0.65)•

ElectronicDrum

2 100.00% (0.00) 100.00% (0.00)‡ 100.00% (0.00)‡ 99.992% (0.02)•
3 99.856% (0.04) 99.656% (0.05)• 99.758% (0.06)• 99.447% (0.10)•
4 98.489% (0.09) 97.740% (0.16)• 98.154% (0.14)• 97.038% (0.26)•
5 94.495% (0.21) 92.926% (0.22)• 93.690% (0.26)• 91.744% (0.43)•
6 87.887% (0.23) 85.706% (0.36)• 86.879% (0.28)• 83.956% (0.51)•

SmartHomev2.2

2 100.00% (0.00) 99.999% (0.00)‡ 99.991% (0.01)• 99.964% (0.04)•
3 99.952% (0.03) 99.951% (0.04)‡ 99.822% (0.08)• 99.639% (0.13)•
4 99.357% (0.08) 99.169% (0.12)• 98.620% (0.17)• 97.671% (0.27)•
5 95.752% (0.21) 94.562% (0.28)• 93.825% (0.25)• 91.560% (0.39)•
6 86.012% (0.33) 83.690% (0.38)• 83.346% (0.31)• 80.003% (0.55)•

VideoPlayer

2 100.00% (0.00) 100.00% (0.00)‡ 100.00% (0.00)‡ 100.000% (0.00)‡
3 99.999% (0.00) 100.00% (0.00)‡ 99.977% (0.02)• 99.985% (0.02)•
4 99.834% (0.04) 99.909% (0.03)◦ 99.575% (0.09)• 99.693% (0.12)•
5 98.346% (0.11) 98.180% (0.14)• 97.542% (0.28)• 97.366% (0.26)•
6 92.232% (0.25) 91.302% (0.29)• 90.895% (0.33)• 90.012% (0.45)•

Amazon

2 94.548% (0.28) 93.922% (0.28)• 93.563% (0.61)• 92.136% (0.87)•
3 86.478% (0.35) 85.240% (0.48)• 85.111% (0.61)• 83.022% (0.90)•
4 77.475% (0.34) 75.823% (0.42)• 76.099% (0.65)• 73.598% (0.83)•
5 68.142% (0.42) 66.090% (0.41)• 66.669% (0.59)• 64.004% (0.78)•
6 60.215% (0.34) 58.146% (0.44)• 58.893% (0.61)• 56.175% (0.63)•

ModelTransformation

2 100.00% (0.00) 99.999% (0.00)‡ 100.00% (0.00)‡ 99.992% (0.02)•
3 99.889% (0.03) 99.778% (0.05)• 99.798% (0.05)• 99.581% (0.14)•
4 98.097% (0.13) 97.638% (0.16)• 97.590% (0.16)• 96.739% (0.31)•
5 91.870% (0.25) 90.763% (0.24)• 90.773% (0.34)• 89.043% (0.47)•
6 80.171% (0.30) 78.444% (0.42)• 78.878% (0.40)• 76.805% (0.54)•

CocheEcologico

2 99.772% (0.03) 99.682% (0.05)• 99.729% (0.04)• 99.566% (0.08)•
3 98.672% (0.12) 98.288% (0.16)• 98.508% (0.10)• 97.908% (0.18)•
4 96.079% (0.18) 95.220% (0.26)• 95.702% (0.17)• 94.499% (0.32)•
5 91.168% (0.20) 89.953% (0.30)• 90.607% (0.26)• 88.848% (0.43)•
6 85.345% (0.26) 83.583% (0.35)• 84.636% (0.35)• 82.328% (0.44)•

Printers

2 99.127% (0.28) 99.101% (0.29)‡ 99.415% (0.14)◦ 99.214% (0.12)‡
3 96.745% (0.35) 96.448% (0.36)• 96.994% (0.22)◦ 96.497% (0.27)•
4 92.040% (0.31) 91.693% (0.39)• 92.189% (0.35)‡ 91.462% (0.30)•
5 84.843% (0.31) 84.228% (0.35)• 84.645% (0.31)• 83.754% (0.33)•
6 75.299% (0.33) 74.697% (0.34)• 75.109% (0.27)• 74.177% (0.51)•

Best or second best 59/60 31/60 35/60 6/60

improvement over GA, SamplingDown and Unpredictable
in about 77%, 89% and 94% cases, respectively. Converse-
ly, NS performs significantly worse in about 5%, 1% and
0% cases compared against the above three algorithms,
respectively. These results imply that the performance of the
algorithms follows the order: NS > GA > SamplingDown

> Unpredictable.

Since both NS and GA are search-based approaches,
one may be interested in how the performance (regarding
the t-wise coverage) changes during the search process. To
this end, we record and plot curves of the t-wise coverage
with respect to the running time on some representative

13

TABLE 6
Mean values and standard deviations (in brackets) of the t-wise coverage on moderate-scale FMs for t = 2, . . . , 6. The best and the second-best

results are indicated by a dark-gray and a light-gray background, respectively.

Feature model t-wise NS GA SamplingDown Unpredictable

E-shop

2 99.986% (0.01) 99.990% (0.01)◦ 99.910% (0.04)• 99.917% (0.05)•
3 99.697% (0.06) 99.741% (0.06)◦ 99.211% (0.15)• 99.159% (0.21)•
4 97.679% (0.20) 97.570% (0.20)‡ 96.282% (0.30)• 95.813% (0.45)•
5 91.276% (0.23) 90.464% (0.31)• 88.861% (0.38)• 87.578% (0.69)•
6 78.642% (0.41) 77.101% (0.41)• 75.820% (0.41)• 74.016% (0.64)•

toybox

2 100.00% (0.00) 100.00% (0.00)‡ 100.00% (0.00)‡ 100.00% (0.00)‡
3 99.999% (0.00) 99.992% (0.01)• 99.980% (0.02)• 99.989% (0.01)•
4 99.970% (0.02) 99.947% (0.02)• 99.889% (0.05)• 99.927% (0.03)•
5 99.782% (0.05) 99.699% (0.06)• 99.496% (0.10)• 99.589% (0.08)•
6 99.335% (0.08) 99.153% (0.08)• 98.867% (0.14)• 98.891% (0.12)•

axTLS

2 100.00% (0.00) 99.997% (0.00)• 99.989% (0.01)• 99.983% (0.01)•
3 99.964% (0.02) 99.895% (0.03)• 99.807% (0.05)• 99.776% (0.07)•
4 99.697% (0.05) 99.437% (0.08)• 99.146% (0.11)• 99.094% (0.13)•
5 98.900% (0.11) 98.245% (0.11)• 97.698% (0.19)• 97.618% (0.25)•
6 97.308% (0.16) 96.249% (0.23)• 95.426% (0.32)• 95.273% (0.28)•

SPLOT-Generated-FM-1000-1

2 97.460% (0.13) 97.022% (0.22)• 97.048% (0.16)• 96.755% (0.24)•
3 91.871% (0.19) 90.795% (0.33)• 90.847% (0.29)• 90.097% (0.31)•
4 81.864% (0.34) 80.298% (0.36)• 80.267% (0.24)• 79.151% (0.41)•
5 68.815% (0.38) 66.926% (0.40)• 66.925% (0.34)• 65.633% (0.39)•
6 54.639% (0.41) 52.573% (0.40)• 52.765% (0.41)• 51.458% (0.47)•

SPLOT-Generated-FM-1000-2

2 98.406% (0.07) 98.186% (0.14)• 98.163% (0.07)• 97.912% (0.20)•
3 93.160% (0.22) 92.317% (0.28)• 92.505% (0.25)• 91.688% (0.33)•
4 82.407% (0.35) 80.999% (0.32)• 81.218% (0.25)• 80.013% (0.37)•
5 67.909% (0.35) 66.365% (0.36)• 66.573% (0.32)• 65.150% (0.45)•
6 51.966% (0.37) 50.434% (0.43)• 50.748% (0.42)• 49.424% (0.50)•

SPLOT-Generated-FM-1000-3

2 96.880% (0.18) 97.051% (0.16)◦ 96.948% (0.16)‡ 96.965% (0.19)‡
3 90.563% (0.28) 90.153% (0.28)• 90.117% (0.28)• 89.675% (0.30)•
4 79.795% (0.37) 78.733% (0.33)• 78.835% (0.31)• 77.803% (0.34)•
5 65.816% (0.34) 64.185% (0.43)• 64.430% (0.45)• 63.101% (0.43)•
6 51.124% (0.36) 49.831% (0.44)• 49.969% (0.33)• 48.804% (0.32)•

SPLOT-Generated-FM-1000-4

2 99.542% (0.04) 99.470% (0.08)• 99.295% (0.06)• 99.374% (0.10)•
3 96.600% (0.19) 96.309% (0.22)• 95.746% (0.21)• 95.880% (0.26)•
4 89.158% (0.20) 88.278% (0.27)• 87.751% (0.25)• 87.600% (0.35)•
5 75.672% (0.34) 74.888% (0.37)• 74.117% (0.31)• 73.766% (0.42)•
6 59.334% (0.32) 58.243% (0.41)• 57.958% (0.38)• 57.361% (0.46)•

SPLOT-Generated-FM-1000-5

2 98.688% (0.05) 98.460% (0.13)• 98.405% (0.07)• 98.189% (0.19)•
3 93.497% (0.20) 92.883% (0.22)• 92.813% (0.21)• 92.186% (0.41)•
4 83.048% (0.31) 81.908% (0.38)• 81.880% (0.37)• 80.848% (0.45)•
5 66.994% (0.32) 65.562% (0.31)• 65.596% (0.34)• 64.400% (0.44)•
6 50.548% (0.27) 49.238% (0.46)• 49.285% (0.37)• 48.332% (0.34)•

SPLOT-Generated-FM-1000-6

2 99.322% (0.07) 99.130% (0.09)• 99.178% (0.07)• 98.949% (0.13)•
3 95.717% (0.19) 94.993% (0.23)• 95.203% (0.17)• 94.480% (0.23)•
4 86.791% (0.31) 85.454% (0.35)• 85.802% (0.26)• 84.374% (0.29)•
5 72.524% (0.38) 70.676% (0.44)• 71.082% (0.40)• 69.634% (0.39)•
6 55.533% (0.37) 53.638% (0.38)• 54.145% (0.33)• 52.811% (0.43)•

SPLOT-Generated-FM-1000-7

2 99.444% (0.04) 99.383% (0.06)• 98.784% (0.21)• 99.300% (0.08)•
3 96.230% (0.13) 95.934% (0.18)• 94.686% (0.31)• 95.534% (0.23)•
4 88.228% (0.23) 87.377% (0.30)• 86.175% (0.38)• 86.787% (0.33)•
5 75.439% (0.31) 74.381% (0.46)• 73.180% (0.45)• 73.499% (0.39)•
6 58.977% (0.43) 57.810% (0.36)• 57.105% (0.37)• 57.318% (0.41)•

SPLOT-Generated-FM-1000-8

2 97.391% (0.16) 97.333% (0.17)‡ 97.200% (0.15)• 97.160% (0.17)•
3 92.253% (0.20) 91.665% (0.30)• 91.471% (0.27)• 91.197% (0.31)•
4 83.669% (0.30) 82.580% (0.27)• 82.482% (0.35)• 81.668% (0.40)•
5 71.739% (0.30) 70.348% (0.42)• 70.192% (0.34)• 68.957% (0.40)•
6 58.611% (0.32) 56.961% (0.41)• 56.848% (0.33)• 55.763% (0.38)•

SPLOT-Generated-FM-1000-9

2 99.137% (0.09) 99.031% (0.10)• 99.070% (0.09)• 98.974% (0.09)•
3 96.099% (0.17) 95.647% (0.17)• 95.628% (0.20)• 95.281% (0.21)•
4 89.783% (0.26) 88.846% (0.25)• 88.765% (0.29)• 88.053% (0.27)•
5 79.166% (0.31) 78.033% (0.27)• 77.879% (0.41)• 76.951% (0.44)•
6 65.684% (0.37) 64.465% (0.37)• 64.081% (0.50)• 63.349% (0.46)•

SPLOT-Generated-FM-1000-10

2 99.208% (0.05) 99.081% (0.10)• 98.981% (0.08)• 98.892% (0.13)•
3 95.398% (0.22) 94.852% (0.24)• 94.736% (0.19)• 94.373% (0.28)•
4 85.858% (0.26) 84.956% (0.33)• 84.747% (0.30)• 83.989% (0.45)•
5 71.810% (0.29) 70.496% (0.36)• 70.349% (0.36)• 69.301% (0.42)•
6 55.478% (0.42) 54.211% (0.39)• 54.202% (0.34)• 53.173% (0.42)•

Best or second best 64/65 47/65 19/65 2/65

small, moderate and large FMs. As shown in Fig. 1, the t-
wise coverage for NS is better than (or at least comparable

to) that for GA throughout the search process on all the
FMs selected regardless of the value of t. In particular,

14

TABLE 7
Mean values and standard deviations (in brackets) of the t-wise coverage on large-scale FMs for t = 2, . . . , 6. The best and the second-best

results are indicated by a dark-gray and a light-gray background, respectively.

Feature model t-wise NS GA SamplingDown Unpredictable

ecos-icse11

2 99.719% (0.06) 99.666% (0.06)• 98.529% (0.09)• 99.449% (0.19)•
3 98.079% (0.12) 97.451% (0.15)• 95.160% (0.29)• 96.578% (0.54)•
4 93.057% (0.19) 90.984% (0.29)• 88.167% (0.38)• 89.851% (0.57)•
5 83.807% (0.31) 80.289% (0.32)• 78.055% (0.45)• 79.371% (0.65)•
6 69.969% (0.33) 64.636% (0.31)• 64.611% (0.58)• 64.757% (0.59)•

freebsd-icse11

2 99.589% (0.06) 99.463% (0.10)• 99.311% (0.09)• 92.629% (0.11)•
3 98.187% (0.11) 98.028% (0.13)• 97.221% (0.19)• 87.121% (0.13)•
4 93.754% (0.19) 93.796% (0.19)‡ 91.965% (0.22)• 78.976% (0.25)•
5 84.087% (0.40) 84.112% (0.22)‡ 82.111% (0.27)• 67.167% (0.41)•
6 67.631% (0.47) 67.820% (0.29)‡ 65.617% (0.45)• 51.573% (0.36)•

Automotive01

2 96.384% (0.09) 96.304% (0.14)‡ 95.604% (0.39)• 96.203% (0.21)•
3 89.067% (0.20) 88.879% (0.24)‡ 87.503% (0.45)• 88.538% (0.20)•
4 79.327% (0.30) 79.021% (0.23)• 77.312% (0.40)• 78.380% (0.25)•
5 65.131% (0.26) 64.309% (0.30)• 63.100% (0.38)• 63.868% (0.27)•
6 51.664% (0.24) 51.090% (0.20)• 49.864% (0.44)• 49.911% (0.30)•

SPLOT-Generated-FM-5000

2 98.291% (0.12) 98.299% (0.17)‡ 98.039% (0.13)• 97.956% (0.22)•
3 92.215% (0.26) 92.197% (0.22)‡ 91.493% (0.26)• 91.205% (0.28)•
4 80.949% (0.28) 80.549% (0.34)• 79.605% (0.30)• 79.133% (0.39)•
5 65.854% (0.44) 65.263% (0.17)• 64.430% (0.31)• 63.715% (0.29)•
6 49.443% (0.25) 48.880% (0.29)• 48.152% (0.43)• 47.813% (0.42)•

2.6.28.6-icse11

2 98.676% (0.11) 98.797% (0.13)◦ 97.923% (0.17)• 97.293% (0.20)•
3 95.744% (0.12) 96.153% (0.19)◦ 94.769% (0.30)• 94.152% (0.31)•
4 90.044% (0.24) 90.351% (0.30)◦ 88.694% (0.26)• 87.247% (0.34)•
5 79.877% (0.17) 79.773% (0.36)‡ 78.564% (0.30)• 76.633% (0.27)•
6 63.741% (0.24) 63.286% (0.34)• 62.410% (0.31)• 60.358% (0.33)•

Automotive02 V3

2 78.260% (0.32) 78.075% (0.40)‡ 78.128% (0.20)‡ 78.191% (0.33)‡
3 59.576% (0.35) 59.675% (0.23)‡ 59.540% (0.34)‡ 59.487% (0.20)‡
4 43.145% (0.36) 43.196% (0.26)‡ 42.900% (0.28)‡ 43.011% (0.36)‡
5 30.225% (0.31) 30.417% (0.22)‡ 30.323% (0.31)‡ 30.283% (0.21)‡
6 20.713% (0.24) 20.808% (0.16)‡ 20.705% (0.24)‡ 19.943% (0.19)•

Best or second best 29/30 28/30 1/30 2/30

TABLE 8
Summary of the Mann-Whitney U test results on all FMs

NS v.s. GA SamplingDown Unpredictable
• 119/155 ≈ 77% 138/155 ≈ 89% 145/155 ≈ 94%
‡ 28/155 ≈ 18% 15/155 ≈ 10% 10/155 ≈ 6%
◦ 8/155 ≈ 5% 2/155 ≈ 1% 0/155 ≈ 0%

NS shows an obviously larger t-wise coverage than GA in
most cases, and a close t-wise coverage to GA on several
large FMs, e.g., Automotive01, SPLOT-Generated-FM-5000
and Automotive02. As observed, the t-wise coverage, in
the majority of the cases, tends to increase as the search
proceeds. However, we notice that the curve of the t-wise
coverage for GA obviously declines on CounterStrikeSim-
pleFeatureModel for t = 5 and t = 6, and ecos-icse11 for
t = 6. This fact implies that the search via GA may hamper
the t-wise coverage in some cases. One of the most likely
explanations of this phenomenon is that the fitness function
adopted by GA gives an improper measure of the similarity
[7], [9].

Finally, notice that the time budget for testing is usually
limited in practice [4], [9]. Therefore, products should be
prioritized such that the t-wise coverage provided by these
configurations is achieved faster. That way, it potentially
increases the probability of improving the fault detection
ratio [7]. How do the four algorithms perform in terms of
prioritizing products? To answer this question, we plot in
Fig. 2 the average t-wise (t = 6) coverage with respect to
the number of used configurations on nine representative

FMs. For instance, regarding SmartHomev2.2, NS enables
covering around 70 percent of the 6-sets on average (over
30 runs) with 50 percent of the configurations. According to
[4], the area under the curve reflects the effectiveness of the
prioritization. The larger this area, the better the prioritiza-
tion. As observed, NS performs either (significantly) better
than or similarly to its competitors on these FMs. It must
be noted that both GA and SamplingDown use a similarity-
based prioritization approach to order products. In contrast,
our NS algorithm does not explicitly consider prioritization
(because we mainly focus on product sampling in this paper.
Certainly, any prioritization approach can be applied to the
resulting samples). Despite of this, NS can still be effective
concerning prioritization. One of the most likely explanation
is that configurations generated by NS are already with high
quality. Even with the default order, they can achieve large
t-wise coverage as early as possible.

4.2.4 RQ2 summary
The following are some conclusions drawn from the above
numerical results.

• Generally, the two search-based approaches, i.e., NS
and GA, are more effective than the two sample-
based approaches, i.e., SamplingDown and Unpre-
dictable. This observation can be explained by the re-
sults of the correlation analysis performed in Section
4.1. It has been shown that similarity metrics used in
NS and GA have a significantly positive correlation
with the t-wise coverage in most cases. Therefore, it is
not surprising that the two search-based approaches

15

0.0 1.4 3 4.4 6
Time (s)

88

90

92

94

96

98

100
 W

or
se

 ←
 C

ov
er

ag
e
→

 B
et

te
r CounterStrikeSimpleFeatureModel

4-wise (GA)
4-wise (NS)
5-wise (GA)
5-wise (NS)
6-wise (GA)
6-wise (NS)

0.0 1.4 3 4.4 6
Time (s)

92

94

96

98

100

102

 W
or

se
 ←

 C
ov

er
ag

e
→

 B
et

te
r SPLSSimuelESPnP

4-wise (GA)
4-wise (NS)
5-wise (GA)
5-wise (NS)
6-wise (GA)
6-wise (NS)

0.0 1.4 3 4.4 6
Time (s)

65

70

75

80

85

90

 W
or

se
 ←

 C
ov

er
ag

e
→

 B
et

te
r DSSample

4-wise (GA)
4-wise (NS)
5-wise (GA)
5-wise (NS)
6-wise (GA)
6-wise (NS)

0.0 1.4 3 4.4 6
Time (s)

75

80

85

90

95

100

 W
or

se
 ←

 C
ov

er
ag

e
→

 B
et

te
r WebPortal

4-wise (GA)
4-wise (NS)
5-wise (GA)
5-wise (NS)
6-wise (GA)
6-wise (NS)

0.0 1.4 3 4.4 6
Time (s)

80

85

90

95

100

 W
or

se
 ←

 C
ov

er
ag

e
→

 B
et

te
r Drupal

4-wise (GA)
4-wise (NS)
5-wise (GA)
5-wise (NS)
6-wise (GA)
6-wise (NS)

0.0 1.4 3 4.4 6
Time (s)

80

85

90

95

100

 W
or

se
 ←

 C
ov

er
ag

e
→

 B
et

te
r ElectronicDrum

4-wise (GA)
4-wise (NS)
5-wise (GA)
5-wise (NS)
6-wise (GA)
6-wise (NS)

0.0 1.4 3 4.4 6
Time (s)

75

80

85

90

95

100

 W
or

se
 ←

 C
ov

er
ag

e
→

 B
et

te
r SmartHomev2.2

4-wise (GA)
4-wise (NS)
5-wise (GA)
5-wise (NS)
6-wise (GA)
6-wise (NS)

0.0 1.4 3 4.4 6
Time (s)

90

92

94

96

98

100

 W
or

se
 ←

 C
ov

er
ag

e
→

 B
et

te
r VideoPlayer

4-wise (GA)
4-wise (NS)
5-wise (GA)
5-wise (NS)
6-wise (GA)
6-wise (NS)

0.0 1.4 3 4.4 6
Time (s)

50

55

60

65

70

75

80

 W
or

se
 ←

 C
ov

er
ag

e
→

 B
et

te
r Amazon

4-wise (GA)
4-wise (NS)
5-wise (GA)
5-wise (NS)
6-wise (GA)
6-wise (NS)

0.0 1.4 3 4.4 6
Time (s)

75

80

85

90

95

100

 W
or

se
 ←

 C
ov

er
ag

e
→

 B
et

te
r ModelTransformation

4-wise (GA)
4-wise (NS)
5-wise (GA)
5-wise (NS)
6-wise (GA)
6-wise (NS)

0.0 1.4 3 4.4 6
Time (s)

80

85

90

95

100

 W
or

se
 ←

 C
ov

er
ag

e
→

 B
et

te
r CocheEcologico

0.0 1.4 3 4.4 6
Time (s)

70

75

80

85

90

95

 W
or

se
 ←

 C
ov

er
ag

e
→

 B
et

te
r Printers

4-wise (GA)
4-wise (NS)
5-wise (GA)
5-wise (NS)
6-wise (GA)
6-wise (NS)

0.0 7.2 15 22.2 30
Time (s)

70

75

80

85

90

95

100

 W
or

se
 ←

 C
ov

er
ag

e
→

 B
et

te
r E-shop

4-wise (GA)
4-wise (NS)
5-wise (GA)
5-wise (NS)
6-wise (GA)
6-wise (NS)

0.0 7.2 15 22.2 30
Time (s)

98.5

99

99.5

100

100.5

 W
or

se
 ←

 C
ov

er
ag

e
→

 B
et

te
r toybox

0.0 7.2 15 22.2 30
Time (s)

95

96

97

98

99

100

 W
or

se
 ←

 C
ov

er
ag

e
→

 B
et

te
r axTLS

4-wise (GA)
4-wise (NS)
5-wise (GA)
5-wise (NS)
6-wise (GA)
6-wise (NS)

0.0 7.2 15 22.2 30
Time (s)

50

60

70

80

90

 W
or

se
 ←

 C
ov

er
ag

e
→

 B
et

te
r SPLOT-Generated-FM-1000-1

0.0 7.2 15 22.2 30
Time (s)

50

60

70

80

90

 W
or

se
 ←

 C
ov

er
ag

e
→

 B
et

te
r SPLOT-Generated-FM-1000-2

0.0 7.2 15 22.2 30
Time (s)

40

50

60

70

80

90

 W
or

se
 ←

 C
ov

er
ag

e
→

 B
et

te
r SPLOT-Generated-FM-1000-3

0.0 144 300 444 600
Time (s)

60

70

80

90

100

 W
or

se
 ←

 C
ov

er
ag

e
→

 B
et

te
r ecos-icse11

0.0 144 300 444 600
Time (s)

50

60

70

80

90

100

 W
or

se
 ←

 C
ov

er
ag

e
→

 B
et

te
r freebsd-icse11

0.0 144 300 444 600
Time (s)

50

55

60

65

70

75

80

 W
or

se
 ←

 C
ov

er
ag

e
→

 B
et

te
r Automotive01

4-wise (GA)
4-wise (NS)
5-wise (GA)
5-wise (NS)
6-wise (GA)
6-wise (NS)

0.0 144 300 444 600
Time (s)

40

50

60

70

80

90

 W
or

se
 ←

 C
ov

er
ag

e
→

 B
et

te
r SPLOT-Generated-FM-5000

4-wise (GA)
4-wise (NS)
5-wise (GA)
5-wise (NS)
6-wise (GA)
6-wise (NS)

0.0 144 300 444 600
Time (s)

50

60

70

80

90

 W
or

se
 ←

 C
ov

er
ag

e
→

 B
et

te
r 2.6.28.6-icse11

4-wise (GA)
4-wise (NS)
5-wise (GA)
5-wise (NS)
6-wise (GA)
6-wise (NS)

0.0 144 300 444 600
Time (s)

20

25

30

35

40

45

 W
or

se
 ←

 C
ov

er
ag

e
→

 B
et

te
r Automotive02

4-wise (GA)
4-wise (NS)
5-wise (GA)
5-wise (NS)
6-wise (GA)
6-wise (NS)

Fig. 1. The t-wise coverage obtained by NS and GA for t = 4, 5, 6 in a typical run during the search process. Both algorithms start with the same
initial population.

are better than sample-based approaches, because
the improvement on similarity metrics will potential-
ly increase the t-wise coverage. In contrast, the two
sample-based algorithms generate a certain number

of configurations in an unpredictable way, without
exploring sufficient configurations. As a result, there
is no enough selection pressure towards configura-
tions that can contribute to the t-wise coverage.

16

0% 25% 50% 75% 100%
Product configurations used

0

10

20

30

40

50

60

70

80

90

 6
-w

is
e

co
ve

ra
ge

 (
%

)

SmartHomev2.2

NS
GA
SamplingDown
Unpredictable

0% 25% 50% 75% 100%
Product configurations used

0

10

20

30

40

50

60

70

80

90

 6
-w

is
e

co
ve

ra
ge

 (
%

)

WebPortal

NS
GA
SamplingDown
Unpredictable

0% 25% 50% 75% 100%
Product configurations used

0

10

20

30

40

50

60

70

80

90

 6
-w

is
e

co
ve

ra
ge

 (
%

)

Drupal

NS
GA
SamplingDown
Unpredictable

0% 25% 50% 75% 100%
Product configurations used

0

10

20

30

40

50

60

70

80

 6
-w

is
e

co
ve

ra
ge

 (
%

)

E-shop

NS
GA
SamplingDown
Unpredictable

0% 25% 50% 75% 100%
Product configurations used

0

20

40

60

80

100

 6
-w

is
e

co
ve

ra
ge

 (
%

)

axTLS

NS
GA
SamplingDown
Unpredictable

0% 25% 50% 75% 100%
Product configurations used

0

10

20

30

40

50

60

 6
-w

is
e

co
ve

ra
ge

 (
%

)

SPLOT-Generated-FM-1000-1

NS
GA
SamplingDown
Unpredictable

0% 25% 50% 75% 100%
Product configurations used

0

10

20

30

40

50

60

70

 6
-w

is
e

co
ve

ra
ge

 (
%

)

ecos-icse11

NS
GA
SamplingDown
Unpredictable

0% 25% 50% 75% 100%
Product configurations used

0

10

20

30

40

50

60

 6
-w

is
e

co
ve

ra
ge

 (
%

)

Automotive01

NS
GA
SamplingDown
Unpredictable

0% 25% 50% 75% 100%
Product configurations used

0

10

20

30

40

50

60

70

 6
-w

is
e

co
ve

ra
ge

 (
%

)

2.6.28.6-icse11

NS
GA
SamplingDown
Unpredictable

Fig. 2. Comparisons of prioritization on nine representative FMs. The larger the area under the curve, the better the prioritization.

• In general, NS outperforms GA concerning both the
final t-wise coverage and the performance over time.
This observation is in line with the finding of the
correlation analysis. It has been observed in Section
4.1 that the novelty score used in NS has a (much)
stronger positive correlation with the t-wise coverage
than the similarity-based fitness used in GA. This can
be the primary reason for the superiority of NS over
GA.

• Concerning the prioritization capacity, NS is promis-
ing even without employing any prioritization strat-
egy, being even more effective than those algorithms
in which prioritization is explicitly considered. This
indicates the potential of NS in improving the fault
detection ratio.

4.3 Comparison of different ways of generating new
configurations (RQ3)

This part investigates how the performance of NS is affected
by the ways (or strategies) in which new configurations
are generated. The way of generating new individuals is
an important aspect of a search-based approach. Currently,
the unpredictable way, realized by the randomized SAT4J

solver, forms a state-of-the-art approach. It remains open
whether this approach can be further improved by using
two types of solvers as in [59], [60], and whether it is
necessary to introduce traditional genetic operators. In this
section, the answers to these questions will be made clear
after a comparative study.

4.3.1 Experiment setup and results

We empirically evaluate the following three strategies of
generating new configurations. The first one, as described
in Section 3.2 and currently being used, generates each time
a random configuration that is to be handled by two dif-
ferent types of SAT solvers in case of infeasibility: probSAT
[63] for repair and randomized SAT4J for replacement. In
the remainder of this paper, we refer to this strategy as
Random+TwoSAT. The second strategy follows a traditional
way as in evolutionary algorithms. In this strategy, genetic
operators (uniform crossover and single-point mutation) are
adopted to generate a new configuration. As in the first
strategy, this configuration will be then handled by two
SAT solvers. We refer to this strategy as Genetic+TwoSAT
hereafter. Comparisons with this strategy allow us exploring
how genetic operators perform compared with the simple

17

randomization. Finally, the third strategy relies solely on the
randomized SAT4J to generate unpredictable configurations
[4]. We refer to this strategy as Randomized SAT4J. Notice
that requesting to a randomized SAT4J solver to get unpre-
dictable configurations forms a state-of-the-art approach in
the SPL engineering [8], [57], [58], [59], [60], [61]. Choosing
this strategy as a baseline enables us to investigate whether
it is necessary to employ two different SAT solvers.

Considering Table 9, the differences among the three
strategies are not statistically significant on 4 out of the 6
large-scale FMs regardless of the value of t. As observed,
however, both Random+TwoSAT and Genetic+TwoSAT sig-
nificantly outperform Randomized SAT4J on freebsd-icse11
and 2.6.28.6-icse11 with respect to all the values of t. Fig. 3
illustrates this behavior in the form of histogram. As seen,
the t-wise coverage obtained by the first two strategies are
obviously higher than that obtained by Randomized SAT4J,
especially on freebsd-icse11. By comparing Random+TwoSAT
and Genetic+TwoSAT in Table 9, one can find that the genet-
ic operators perform equally to the simple randomization
method in generating new configurations.

t=2 t=3 t=4 t=5 t=6
0%

20%

40%

60%

80%

100%

C
ov

er
ag

e
(%

)

Random+TwoSAT
Genetic+TwoSAT
Randomized SAT4J

(a) freebsd-icse11

t=2 t=3 t=4 t=5 t=6
0%

20%

40%

60%

80%

100%

C
ov

er
ag

e
(%

)

Random+TwoSAT
Genetic+TwoSAT
Randomized SAT4J

(b) 2.6.28.6-icse11

Fig. 3. The t-wise (t = 2, . . . , 6) coverage obtained by the there con-
figuration generation strategies on (a) freebsd-icse11, and (b) 2.6.28.6-
icse11.

4.3.2 RQ3 summary
Experiments performed in this section emphasize that dif-
ferent ways of generating new configurations have similar
performance in most cases, but can indeed make a difference
in some cases. In particular, the use of two SAT solvers
should be encouraged as it can achieve (much) better or at least

comparable performance to the state-of-the-art strategy where only
one SAT solver is employed. This conclusion is in line with the
one drawn in [59]. It is stated that the simultaneous use
of two types of SAT solvers is more effective than the use
of only one in the context of configuring SPLs [59]. In this
paper, we show, for the first time, this is also the case for
the similarity-based testing of SPLs. Moreover, when aided
by two SAT solvers, ways of generating new configurations make
no difference. Indeed, the simple randomization method can
be as effective as genetic operators. The former, however, is
quite easy to use as it requires no efforts of tuning control
parameters, like the crossover and mutation probabilities
involved in genetic operators. Therefore, its use is advisable.

4.4 Parameter study (RQ4)
From the practical point of view, it is important to provide
some suggestions on the setting of the key parameters
involved in the NS algorithm. As shown in Algorithm 1,
the repair probability (Pr) and the neighbor size (Nb) are
two key parameters that needs to be carefully tuned.

4.4.1 Sensitivity analysis on Pr

The Pr ∈ [0, 1] determines the probability of using probSAT
solver, and its impact on the t-wise coverage is investigated
by examining some typical values. To this end, we change
Pr from 0.0 to 1.0 with a step size 0.1, and present the t-
wise coverage over 30 runs in the form of boxplots for each
value of Pr . This way, it enables us to observe the trend of
the average t-wise coverage as Pr increases. As observed in
Fig 4, the t-wise (t = 2, . . . , 6) coverage slightly fluctuates as
Pr increases from 0.0 to 1.0 on the two representative small-
scale FMs (i.e., WebPortal and CocheEcologico), and tends to
descend on the two moderate FMs (i.e., E-shop and axTLS),
especially when Pr ≥ 0.5. This observation suggests that
the value of Pr should not be too large. Considering the two
large FMs (i.e., freebsd-icse11 and 2.6.28.6-icse11), the t-wise
coverage is improved obviously when Pr is changed from
0.0 to 0.1, and retains relatively stable for Pr ≥ 0.1. This
implies that the value of Pr should not be too small (< 0.1),
either. Considering all the above scenarios, it is reasonable
to restrict Pr to the region [0.1, 0.5] for a common usage.

4.4.2 Sensitivity analysis on Nb

In a similar way, we conduct sensitivity analysis experi-
ments on the parameter Nb. We change Nb from 10 to 100
with a step size 10. In addition, Nb = 2 is also examined.
In this case, the novelty score of a solution is determined
by its two closest neighbors (including itself). For each FM
and each value of Nb, the t-wise coverage over 30 runs is
exhibited in the form of boxplots. Moreover, we use a green
line to connect two adjacent average values. By doing so,
it makes easy observing how the average t-wise coverage
changes.

We can identify the following three types of curves from
Fig. 5.

• Type-I curve, as observed on FMs from Counter-
StrikeSimpleFM to WebPortal (note that the order is
from left to right, and from top to bottom), rises as Nb

increases from 2, and quickly reaches a peak around
Nb = 10 or 20. It then declines until Nb reaches 70

18

TABLE 9
Comparison of different ways of generating new configurations on large-scale FMs

Feature model t-wise Random+TwoSAT Genetic+TwoSAT Randomized SAT4J

ecos-icse11

2 99.719% (0.06) 99.696% (0.04)‡ 99.715% (0.04)‡
3 98.079% (0.12) 98.101% (0.13)‡ 98.048% (0.18)‡
4 93.057% (0.19) 93.111% (0.24)‡ 93.137% (0.28)‡
5 83.807% (0.31) 83.827% (0.22)‡ 83.789% (0.29)‡
6 69.969% (0.33) 69.789% (0.35)‡ 69.760% (0.37)‡

freebsd-icse11

2 99.589% (0.06) 99.592% (0.05)‡ 92.801% (0.07)•
3 98.187% (0.11) 98.172% (0.10)‡ 87.818% (0.10)•
4 93.754% (0.19) 93.725% (0.22)‡ 80.627% (0.20)•
5 84.087% (0.40) 84.077% (0.39)‡ 69.320% (0.23)•
6 67.631% (0.47) 67.585% (0.37)‡ 53.683% (0.33)•

Automotive01

2 96.384% (0.09) 96.439% (0.19)‡ 96.349% (0.10)‡
3 89.067% (0.20) 88.974% (0.30)‡ 88.955% (0.23)‡
4 79.327% (0.30) 79.280% (0.36)‡ 79.125% (0.25)‡
5 65.131% (0.26) 65.125% (0.28)‡ 65.129% (0.26)‡
6 51.664% (0.24) 51.898% (0.33)‡ 51.715% (0.31)‡

SPLOT-Generated-FM-5000

2 98.291% (0.12) 98.301% (0.12)‡ 98.249% (0.13)‡
3 92.215% (0.26) 92.247% (0.18)‡ 92.355% (0.18)‡
4 80.949% (0.28) 80.817% (0.31)‡ 80.932% (0.31)‡
5 65.854% (0.44) 65.711% (0.18)‡ 65.694% (0.29)‡
6 49.443% (0.25) 49.435% (0.30)‡ 49.479% (0.41)‡

2.6.28.6-icse11

2 98.676% (0.11) 98.645% (0.10)‡ 97.359% (0.11)•
3 95.744% (0.12) 95.848% (0.20)‡ 94.381% (0.16)•
4 90.044% (0.24) 90.105% (0.20)‡ 87.678% (0.20)•
5 79.877% (0.17) 79.910% (0.30)‡ 77.686% (0.33)•
6 63.741% (0.24) 63.551% (0.32)‡ 61.317% (0.37)•

Automotive02 V3

2 78.260% (0.32) 78.294% (0.24)‡ 78.331% (0.28)‡
3 59.576% (0.35) 59.474% (0.35)‡ 59.503% (0.31)‡
4 43.145% (0.36) 43.155% (0.28)‡ 43.147% (0.30)‡
5 30.225% (0.31) 30.573% (0.17)‡ 30.387% (0.22)‡
6 20.713% (0.24) 20.638% (0.21)‡ 20.625% (0.24)‡

or 80. Finally, the curve rises, in general, again till
Nb = 100. Note that the average t-wise coverage
obtained on axTLS and WebPortal roughly follows
the above curve, rather than exactly. According to
Table 1, the median value of the number of free
features for the FMs in this group is 37.5.

• Type-II curve, as observed on FMs from Drupal to
ecos-icse11, is unimodal. The only peak is obtained
when Nb falls in the region [30, 50]. Note that the
median value of the number of free features for these
FMs is 76.

• Type-III curve, as observed on FMs from E-shop to
2.6.28.6-icse11, tends to increase along with the value
of Nb until it reaches around 80, and then the curve
slightly drops till to the end (note that 2.6.28.6-icse11
is an exception, in which the curve always increases).
The median value of the number of free features in
these group is 2218.

According to the above observations, we are aware
that the optimal value of Nb seems to be relevant to the
model size, more precisely the number of free features. In
general, higher value of Nb is required to obtain decent
performance for larger feature models. This phenomenon
can be explained as follows. As the number of (free) features
increases, the size of the search space grows exponentially.
It naturally follows that more points are need to provide
a more precise estimation to the density around a point.
Therefore, the number of neighbors should be increased in
this case.

4.4.3 RQ4 summary

The parameter study performed brings out the following
outcomes. First, the NS algorithm prefers to relatively small Pr .
In other words, less calls should be given to the probSAT
than to the randomized SAT4J. Generally, the algorithm is
not sensitive to the value of Pr ∈ [0.1, 0.5]. Second, the
(nearly) optimal value of the parameter Nb varies with the size
of the FMs. It is found that higher Nb is required for larger
models. This is a practical guidance when using NS in the
context of SPL testing.

5 THREATS TO VALIDITY

In this section we briefly discuss threats to validity and
how they could be mitigated. We consider threats to internal
validity, external validity and construct validity.

Internal validity. This is concerned with any aspect
which may lead to bias. Potential errors in the implemen-
tation of our algorithm and the tools used for comparison
could affect the presented results and lead to this type of
threats. To diminish these threats, we carefully tested our
implementation of NS by performing unit testing, and by
analyzing the outcomes step by step on small FMs. The
comparison with existing tools gave us confidence in our
implementation. For the algorithms used for comparison,
they are implemented by the code provided by their au-
thors. In addition, we make our implementation and ex-
periments data publicly available10 to enable reproducibility
and to reduce the aforementioned threats.

10. https://www.zenodo.org/deposit/3928922

https://www.zenodo.org/deposit/3928922

19

 p
r

99.97

99.98

99.99

100
C

ov
er

ag
e

(%
)

WebPortal (t = 2)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 p

r

99.75

99.8

99.85

99.9

99.95

C
ov

er
ag

e
(%

)

WebPortal (t = 3)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 p

r

98.6

98.8

99

99.2

C
ov

er
ag

e
(%

)

WebPortal (t = 4)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 p

r

94

94.5

95

C
ov

er
ag

e
(%

)

WebPortal (t = 5)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 p

r

84

84.5

85

85.5

86

C
ov

er
ag

e
(%

)

WebPortal (t = 6)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

 p
r

99.65

99.7

99.75

99.8

99.85

C
ov

er
ag

e
(%

)

CocheEcologico (t = 2)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 p

r

98.4

98.6

98.8

99
C

ov
er

ag
e

(%
)

CocheEcologico (t = 3)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 p

r

95.5

96

96.5

C
ov

er
ag

e
(%

)

CocheEcologico (t = 4)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 p

r

90.5

91

91.5

C
ov

er
ag

e
(%

)

CocheEcologico (t = 5)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 p

r

85

85.5

86

C
ov

er
ag

e
(%

)

CocheEcologico (t = 6)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

 p
r

99.9

99.92

99.94

99.96

99.98

100

C
ov

er
ag

e
(%

)

E-shop (t = 2)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 p

r

99.2

99.4

99.6

99.8

C
ov

er
ag

e
(%

)

E-shop (t = 3)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 p

r

95

96

97

98

C
ov

er
ag

e
(%

)

E-shop (t = 4)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 p

r

87

88

89

90

91

92

C
ov

er
ag

e
(%

)

E-shop (t = 5)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 p

r

74

76

78

C
ov

er
ag

e
(%

)

E-shop (t = 6)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

 p
r

99.92

99.94

99.96

99.98

100

C
ov

er
ag

e
(%

)

axTLS (t = 2)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 p

r

99.5

99.6

99.7

99.8

99.9

100

C
ov

er
ag

e
(%

)

axTLS (t = 3)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 p

r

99

99.2

99.4

99.6

99.8

C
ov

er
ag

e
(%

)

axTLS (t = 4)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 p
r

97.5

98

98.5

99

C
ov

er
ag

e
(%

)

axTLS (t = 5)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 p

r

95

95.5

96

96.5

97

97.5

C
ov

er
ag

e
(%

)

axTLS (t = 6)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

 p
r

94

96

98

100

C
ov

er
ag

e
(%

)

freebsd-icse11 (t = 2)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 p

r

88

90

92

94

96

98

C
ov

er
ag

e
(%

)

freebsd-icse11 (t = 3)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 p

r

80

85

90

C
ov

er
ag

e
(%

)

freebsd-icse11 (t = 4)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 p

r

70

75

80

85

C
ov

er
ag

e
(%

)

freebsd-icse11 (t = 5)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 p

r

55

60

65

C
ov

er
ag

e
(%

)

freebsd-icse11 (t = 6)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

 p
r

97.5

98

98.5

C
ov

er
ag

e
(%

)

2.6.28.6-icse11 (t = 2)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 p

r

94

94.5

95

95.5

96

C
ov

er
ag

e
(%

)

2.6.28.6-icse11 (t = 3)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 p

r

88

89

90

C
ov

er
ag

e
(%

)

2.6.28.6-icse11 (t = 4)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 p

r

77

78

79

80

C
ov

er
ag

e
(%

)

2.6.28.6-icse11 (t = 5)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 p

r

61

62

63

64

C
ov

er
ag

e
(%

)

2.6.28.6-icse11 (t = 6)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Fig. 4. Parameter study of Pr on six representative small-, moderate- and large-scale FMs for t = 2, . . . , 6

Due to the stochastic nature of the techniques under
study, the outcome of a run can be different from the next
runs. To reduce risks caused by random effects, we inde-
pendently run each of the algorithms 30 times, and compare
the performance based on means and standard deviations.
In addition, to make comparisons reliable, nonparametric
statistical tests are applied.

Internal validity threats may be also introduced in the

computation of the t-wise coverage. Indeed, as discussed
previously, it is different or even practically impossible to
compute all the valid t-sets for large FMs and high t values.
Therefore, valid t-sets used to compute the coverage are
sampled. This means that the presented t-wise coverage
is not real, except on small and moderate FMs for t = 2
(exact valid t-sets are used in this case). To mitigate these
threats, we use the same set of valid t-sets (either sampled

20

 N
b

88

90

92

94

C
ov

er
ag

e
(%

)
CounterStrikeSimpleFM

2 10 20 30 40 50 60 70 80 90 10
0 N

b

90

92

94

96

C
ov

er
ag

e
(%

)

SPLSSimuelESPnP (t = 6)

2 10 20 30 40 50 60 70 80 90 10
0 N

b

68

70

72

74

C
ov

er
ag

e
(%

)

DSSample (t = 6)

2 10 20 30 40 50 60 70 80 90 10
0 N

b

85

86

87

88

C
ov

er
ag

e
(%

)

ElectronicDrum (t = 6)

2 10 20 30 40 50 60 70 80 90 10
0

 N
b

56

57

58

59

60

61

C
ov

er
ag

e
(%

)

Amazon (t = 6)

2 10 20 30 40 50 60 70 80 90 10
0 N

b

83.5

84

84.5

85

85.5

86
C

ov
er

ag
e

(%
)

CocheEcologico (t = 6)

2 10 20 30 40 50 60 70 80 90 10
0 N

b

95

96

97

C
ov

er
ag

e
(%

)

axTLS (t = 6)

2 10 20 30 40 50 60 70 80 90 10
0 N

b

78

80

82

84

86

C
ov

er
ag

e
(%

)

WebPortal (t = 6)

2 10 20 30 40 50 60 70 80 90 10
0

 N
b

85

86

87

88

89

C
ov

er
ag

e
(%

)

Drupal (t = 6)

2 10 20 30 40 50 60 70 80 90 10
0 N

b

82

83

84

85

86

87

C
ov

er
ag

e
(%

)

SmartHomev2.2 (t = 6)

2 10 20 30 40 50 60 70 80 90
10

0 N
b

90

91

92

93

C
ov

er
ag

e
(%

)

VideoPlayer (t = 6)

2 10 20 30 40 50 60 70 80 90 10
0 N

b

78

79

80

81

C
ov

er
ag

e
(%

)

ModelTransformation (t = 6)

2 10 20 30 40 50 60 70 80 90 10
0

 N
b

74.5

75

75.5

76

C
ov

er
ag

e
(%

)

Printers (t = 6)

2 10 20 30 40 50 60 70 80 90 10
0 N

b

98.5

99

99.5

C
ov

er
ag

e
(%

)

toybox (t = 6)

2 10 20 30 40 50 60 70 80 90 10
0 N

b

64

66

68

70

C
ov

er
ag

e
(%

)

ecos-icse11 (t = 6)

2 10 20 30 40 50 60 70 80 90 10
0 N

b

76

78

80

C
ov

er
ag

e
(%

)

E-shop (t = 6)

2 10 20 30 40 50 60 70 80 90 10
0

 N
b

64

66

68

70

C
ov

er
ag

e
(%

)

freebsd-icse11 (t = 6)

2 10 20 30 40 50 60 70 80 90 10
0 N

b

50

51

52

53

C
ov

er
ag

e
(%

)

Automotive01 (t = 6)

2 10 20 30 40 50 60 70 80 90 10
0 N

b

48

49

50

51

C
ov

er
ag

e
(%

)

SPLOT-Generated-FM-5000

2 10 20 30 40 50 60 70 80 90 10
0 N

b

62

63

64

65

C
ov

er
ag

e
(%

)

2.6.28.6-icse11 (t = 6)

2 10 20 30 40 50 60 70 80 90 10
0

Fig. 5. Parameter study of Nb on 20 representative FMs for t = 6.

or exactly generated) to compute the t-wise coverage of
the configurations returned by each algorithm. This way,
it enables a relative performance comparison among the
algorithms.

External validity. This threat commonly exists in soft-
ware engineering research, and it is related to the degree to

which we can generalize from the experiments. Indeed, we
cannot guarantee that the proposed algorithms will provide
similar results on different sets of FMs. This threat comes
from the size of the feature models, as well as the size of
constraints. To mitigate this threat, we use a relatively large
set of 31 FMs with the size ranging from 24 to 18,434. Also,

21

the number of constraints varies from the smallest 35 to
the largest 347,557. In addition, both realistic and randomly
generated feature models are carefully selected to provide a
variety of situations.

Construct validity. We choose t = 2, . . . , 6 in the em-
pirical study. This is in line with the previous studies. The
pairwise coverage (t = 2) is a widely used test criterion
in SPL testing. According to [33], [34], [35], there is also a
practical need to deal with high interaction strengths (t > 2).
Therefore, choosing t = 2, . . . , 6 is of interest in practice.

6 RELATED WORK

In recent years, there has been a growing interest in SPL
testing, and this is reflected by several surveys and system-
atic mapping studies on this topic [13], [77], [78], [79], [80],
[81], [82], [83]. Some of these surveys and mapping studies
cover various factors and aspects of the SPL testing, e.g.,
[77], [78], [79], [82], while some of them focus on a particular
aspect of the SPL testing, e.g., CIT-based approaches [13],
[81], EC-based approaches [80] and test coverage criteria
[82]. In this work, we focus on product sampling [10] for
SPL testing. In Section 6.1, we briefly review some promi-
nent t-wise sampling techniques. Since these techniques can
hardly scale to large product lines and/or high interaction
strengths, similarity is used as a surrogate metric for the t-
wise coverage, making similarity-based SPL testing popular
in this domain. Related similarity-based testing approaches
are summarized in Section 6.2.

6.1 T-wise product sampling

The Chvatal [18] is greedy algorithm originally proposed
to deal with the minimum set-covering problem, an NP-
complete problem. Johansen et al. [12] adapted and im-
proved this algorithm to approximate optimal solutions
for the minimal covering array. A t-wise covering array is
a subset of products that covers all the valid t-sets [15].
A covering array is typically represented by a table with
each row representing a feature and each column repre-
senting a product. With Chvatal, configurations are added
in an incremental manner until all the valid t-wise feature
combinations are covered at least once. More specifically,
the algorithm begins with generating all the t-wise feature
combinations, denoted by U . Then, an empty configuration
is created, and these feature combinations are added into
this configuration one by one. Each time a new combination
is added, and the resulting configuration is checked by an
SAT solver. If the configuration is valid and contains at least
one uncovered combination, then it is added to the sample
set. At the same time, this newly added combination is
removed from U . Otherwise, the combination is removed
from the configuration. The creation of configurations con-
tinues until all the valid combinations are covered. Built
upon the Chvatal algorithm [12] with several enhancements,
such as identifying invalid feature combinations early, and
parallelizing the sampling process, the ICPL [19] algorithm
is able to generate covering arrays for large-scale feature
models but it is limited to t = 3. For the largest 2.6.28.6-
icse11 model, ICPL is only capable of generating 1-wise and
2-wise covering arrays.

Oster et al. [16] proposed the MoSo-PoLiTe (Model-
based Software Product Line Testing) framework to gen-
erate a minimal set of products covering all pairs of feature
combinations. This is achieved by combining binary con-
straint solving and forward checking [84]. The algorithm
starts with the first pair of features and iteratively adds
the rest ones by applying a forward checking to determine
whether the selected pair can be combined with the remain-
ing pairs to create a valid product. Furthermore, MoSo-
PoLiTe allows including pre-defined products as part of
the covering arrays. Experiments were conducted on nine
realistic FMs, with the largest one containing 287 features.
Similarly, Hervieu et al. [85] adopted constraint program-
ming to generate minimal 2-wise covering arrays for SPLs.

The Incremental sampLing (IncLing), proposed by Al-
Hajjaji et al. [21], follows the general concept of ICPL [19],
but incorporates several crucial modifications to improve
the performance, such as detecting invalid combinations at
the beginning, using feature ranking heuristic, and detect-
ing conditionally dead or core features. With IncLing, the
algorithm takes into account already generated and tested
products when selecting the next product to be added into
the sample. The next product is selected in a greedy manner
to cover uncovered feature combinations as many as possi-
ble. Moreover, to increase the diversity among products, the
algorithm chooses dissimilar pair-wise feature combinations
when a new product is generated each time. This way, it
potentially increases the possibility of fault detection. Exper-
iment results on a corpus of real-world and artificial feature
models demonstrated that IncLing is more efficient than
existing sampling algorithms, e.g., Chvatal [12] and ICPL
[19]. Although large models (including 2.6.28.6-icse11) are
used in their empirical evaluations, the strength is limited
to t = 2.

Perrouin et al. [66] proposed a tool for generating t-wise
samples from a feature diagram. Using the divide and con-
quer technique, the problem of t-wise sampling is divided
into several sub-problems that are solved automatically. To
do so, a given feature diagram and its interactions should be
first transformed into a set of constraints into Alloy, a formal
modeling language. Then, a set of products are generated
using the resulting model, which provide t-wise coverage.
The evaluation of this tool is performed on a real-world
feature model called AspectOPTIMA.

Garvin et al. [17] used simulated annealing to construct
CIT samples of SPLs. The algorithm, named CASA, consists
of two parts: outer search and inner search. The outer search,
implemented by a binary search procedure, is concerned
with the minimization of the sample size, while the inner
search, implemented by the simulated annealing, aims at
finding a covering array. To this end, one value of the
covering array is changed each time and this change is
guided by the number of t-sets that are not covered. A
SAT solver is used to control whether the change should
be accepted or rejected. Moreover, several strategies were
incorporated to improve the performance, and experimental
results confirmed the usefulness of these strategies. Accord-
ing to [17], CASA can handle relatively high strengths, with
up to t = 4 for FMs with no more than 52 features. For
models beyond this size, the algorithm timed out after 27
days when t = 4.

22

Ensan et al. [22] devised, on the basis of genetic al-
gorithms, an approach to generate test suites for SPLs.
This algorithm starts with a set of randomly generated
configurations, and gradually improves the quality of the
test suite by iteratively applying genetic operators, i.e.,
crossover, mutation and natural selection. As opposed to
the aforementioned approaches, Ensan’s approach does not
guarantee a full t-wise coverage (only t = 1 is considered in
[22]) because the fitness function used indirectly measures
coverage. It should be mentioned that new individuals
developed based on crossover and mutation are not nec-
essarily valid. In this case, invalid ones are discarded and
are not included as a part of the new generation. This may
lead to scalability issues (according to [4], Ensan’s approach
does not scale over 300 features). Notice that, in addition to
the t-wise coverage, code coverage [86] and mutation scores
[87] are also considered as a criterion when applying genetic
algorithms to the product sampling process.

Marijan et al. [23] proposed a pairwise testing frame-
work for SPLs. It integrates feature modelling, combinato-
rial interaction testing, and constraint programming tech-
niques. In particular, the framework first, extracts variability
in an SPL as a feature model, and then employs an optimiza-
tion algorithm to generate a minimal set of valid products
covering all pairwise feature combinations for a given time
interval. The optimization algorithm is implemented by
constraint programming techniques, including a dedicated
branch-and-bound algorithm. This proposal was evaluated
on an industrial SPL with 78 features. The experiments
reveal that this framework can reduce the sample size while
guaranteeing a full pairwise coverage at the same time.

Cmyrev and Reissing [24] suggested a new test approach
to generate a test suite that is as small as possible, and yields
a full requirements coverage and a full feature coverage
(t = 1). Since finding the optimal set of test cases is
very hard, a greedy algorithm and a simulated annealing
approach are explored to find the nearly optimal set in a
fast way. Experiments on two case studies (with at most 37
features) in the automotive industry showed that the greedy
algorithm is superior to the simulated annealing concerning
both effectiveness and efficiency.

According to [28], most of the aforementioned t-wise
sampling techniques do not scale to large product lines
and/or high interaction strengths. Indeed, small-sized FMs
are used in most of the above prior works, considering often
t = 1 or t = 2. As discussed in Section 1, there is a practical
need of dealing with larger FMs and higher strengths. To
alleviate the limitation of existing t-wise sampling tech-
niques, several approaches have been proposed to reduce
the configuration space [88], [89]. These approaches, howev-
er, often require more domain knowledge to guide the sam-
pling process. As an alternative to the t-wise sampling, the
similarity-based sampling, which aims at generating a set
of configurations achieving a degree of t-wise coverage by
maximizing diversity among test cases, can bypassing the
scalability issues faced by the t-wise sampling techniques.
Moreover, it does not require more domain knowledge than
the feature model, i.e., knowledge on valid combinations of
features [7]. In the following part, we give an overview on
several prominent similarity-based SPL testing techniques.

6.2 Similarity-based SPL testing

In the context of software product lines, similarity has
been exploited to partially but efficiently mimic the t-wise
coverage for the created product samples. Henard et al.
[4] considered the similarity between configurations as the
fitness function, and used an (1+1) evolutionary algorithm
to optimize it. The use of similarity as a surrogate metric
for the t-wise coverage enables the algorithm to generate
and prioritize test configurations for large SPLs and high
strengths. Results in [4] suggest that two dissimilar config-
urations are more likely to cover a greater number of valid t-
sets than two similar ones. This approach is supported by a
test generation tool, called PLEDGE [61]. As an application
of the similarity testing, Henard et al. [90] evaluated the
capability of test suites to kill mutants of feature models,
i.e., erroneous feature models derived from an original one.
Experiments demonstrated that dissimilar tests suites kill
(or detect) more mutants than similar ones, thus validating
the effectiveness of similarity-based SPL testing. Further,
Fischer et al. [40] showed that Henard’s similarity approach
is useful to detect interaction faults in the Drupal case study
in which real fault data are used.

Al-Hajjaji et al. systematically studied similarity-based
prioritization in SPL testing in four related papers [7], [9],
[43], [44]. Similarity-based prioritization, aims at increasing
interaction coverage as fast as possible over time, selects
configurations based on their performance with respect to
similarity. The similarity (i.e., distance) between configura-
tions in [7], [9] are calculated by taking the deselected fea-
tures into account, making it different from the way in [4].
Furthermore, the approach proposed by Al-Hajjaji et al. [7],
[9] incrementally selects configurations with the maximum
of the minimum distances to those already chosen, rather
than with the maximum of the sum of distances as in [4].
According to Al-Hajjaji et al. [7], [9], the sum of distances
as a selection criterion may be misleading in some cases. In
[43], Al-Hajjaji et al. extended this prioritization approach by
considering the delta models, which can be used to reason
about the similarity of products on the solution-space level.
Results showed that prioritizing products based on delta
modeling can improve the effectiveness of SPL testing. In
a more recent work [44], they discussed how the similarity
between products of an SPL can be measured considering
different types of information. In particular, they distin-
guished the input information for similarity calculation into
problem-space information (e.g., feature-selection similari-
ty, attributes similarity, instance similarity), and solution-
space information (e.g., family models similarity). Besides,
they discussed the possibility of combining different types
of information to form an overall similarity between two
products. Finally, the calculation of similarity in differen-
t scenarios is implemented in an industrial tool, called
pure::variants.

Devroey et al. [45] assessed the SPL behavioural cov-
erage of configurations sampled by two structural testing
approaches, i.e., t-wise testing and similarity testing. To
this end, they modelled SPLs in terms of feature diagrams
and associated featured transitions systems (FTSs), and then
computed state, action and transition coverage for a set of
sampled configurations. To obtain samples, tools ICPL (t-

23

wise) [19] and PLEDGE (similarity-based) [61] were used.
In a subsequent study [46], they provided a configurable
search-based approach to support single and bi-objective
similarity-driven test case selection for behavioural SPLs.
Empirical results on four case studies showed the relevance
of similarity-based test case generation for behavioural SPL
models. Moreover, they examined different types of dis-
tances in measuring similarity between test cases, finding
that Hamming and Jaccard distances are the most efficient.

Lity et al. [47] proposed a similarity-based approach
to reorder products in the context of incremental product
line analysis. Most of the aforementioned coverage-driven
product selection/prioritization techniques [4], [7], [9], [43],
[45] select the most dissimilar product as the next products
to be tested/analyzed in order to increase the coverage of
feature interactions as early as possible. Different from this,
the incremental analysis requires a product order where
subsequent products are more similar to each other. This
way, it can potentially reduce the overall analysis efforts.
Lachmann et al. [48] employed a dissimilarity measure
(Jaccard distance) to avoid clustered test case orders. This
is motivated by the fact that, in a single system model-
based testing, dissimilar test cases detect more faults than
similar ones [37]. There have been several approaches ex-
ploiting similarity to the source code level, e.g., [91], [92],
[93]. As pointed out by Al-Hajjaji et al. [44], adapting these
approaches that consider the source code into the context of
software product line engineering may enhance the analysis
of SPLs, including SPL testing.

Similarity has been successfully applied to mimic cov-
erage criteria (e.g., the t-wise coverage) in an effective and
scalable manner in prior works [4], [7], [9], [45], [46]. The
suitability of similarity as a surrogate metric for the t-wise
coverage is mainly demonstrated by empirical results in an
intuitive way. No work, to our best knowledge, has been
done to reveal the internal relationship between similari-
ty and the t-wise coverage. In this paper, we perform a
correlation analysis to explore this relationship, observing
that similarity metrics have a significantly positive corre-
lation with the t-wise coverage. This finding consolidates
the foundation of search-based similarity-driven SPL testing
because improving similarity metrics (e.g., the one used by
[4]) consequentially increases the t-wise coverage. Moreover,
GA was extensively used in previous works [4], [40], [46],
[61]. In this work, we explore, for the first time, the use
of NS in similarity-based SPL testing because NS perfectly
matches the testing goal, i.e., searching for a set of diverse
configurations. We demonstrate that the novelty score has a
(much) stronger positive correlation with the t-wise cover-
age than the fitness function used in GA [4]. This is in line
with our empirical results, showing that NS (significantly)
outperforms GA in most cases. In addition, we systemati-
cally investigate how the performance of NS is affected by
its key parameters. Finally, we offer an alternative approach
to generate new configurations in search-based SPL testing.
This approach exploits two types of SAT solvers as in [59],
[60], and it is found to be more effective than the state-of-
the-art strategy [4] where only one SAT solver is used.

7 CONCLUSION AND FUTURE WORK

Testing SPLs is crucial to avoid fault propagation cross
products, but it is challenging because of a huge number
of possible products to be tested and a limited amount of
test budgets available in practice. The t-wise combinatorial
interaction testing (CIT) has been widely used to drastically
reduce the size of a test suite, a set of test cases (i.e., prod-
ucts). However, it can hardly scale to large-size SPLs and
high interaction strengths. As an alternative to this testing
technique, similarity-based SPL testing has shown a great
potential in dealing with the scalability issues. However,
the rationale of this testing technique deserves a more rig-
orous exploration. Moreover, genetic algorithms have been
extensively used in search-based similarity-driven testing.
It is meaningful to exploit the potential benefits of more
suitaible/powerful search algorithms in this context.

In this paper, we focus on sampling a set of products as
dissimilar as possible by using a search algorithm, called N-
S. We show, after performing a correlation analysis, that sim-
ilarity metrics (including the novelty score used in NS) have
a significantly positive correction with the t-wise coverage,
which well explains the rationale of similarity testing. More-
over, we give detailed discussions on the suitability of NS
for similarity-based SPL testing since NS perfectly matches
the goal, i.e., searching for a set of diverse products. The
suitability of NS and its superiority over some state-of-the-
art approaches are demonstrated through comprehensive
experimental studies performed on 31 feature models, either
realistic or artificially generated, considering t = 2, . . . , 6.
In particular, it is found that NS significantly outperforms
the state-of-the-art genetic algorithm [4] in 77% of all the
test scenarios. Finally, concerning the way of generating
new configurations, our results suggest that the use of two
SAT solvers should be encouraged (while the use of genetic
operators can be optional) in the context of similarity-based
SPL testing.

Our results show that NS is promising for similarity-
based testing of SPLs. In the future, it is possible to integrate
objectives functions [8], such as test suite cost, coefficient of
connectivity-density, into the framework of NS to handle
objective requirements. Currently, we focus on using NS
to generate product samples, without explicitly considering
prioritization. Developing NS-based techniques which take
both aspects into consideration is one of our subsequent
studies. Finally, we intend to investigate whether looking for
novelty can bring abundant benefits in other topics related
to SPL testing, such as mutation-based test case generation
[87], and behavioural SPL testing [46].

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for providing valuable comments to improve this paper.

REFERENCES

[1] P. Clements and L. Northrop, Software product lines: practices and
patterns. Addison-Wesley Longman Publishing Co., Inc., 2001.

[2] D. Batory, “Feature models, grammars, and propositional for-
mulas,” in Proceedings of the 9th International Conference Software
Product Lines, SPLC 2005, H. Obbink and K. Pohl, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 7–20.

24

[3] D. Benavides, S. Segura, and A. Ruiz-Corts, “Automated analysis
of feature models 20 years later: A literature review ,” Information
Systems, vol. 35, no. 6, pp. 615–636, 2010.

[4] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans,
and Y. Le Traon, “Bypassing the combinatorial explosion: Using
similarity to generate and prioritize t-wise test configurations for
software product lines,” IEEE Transactions on Software Engineering,
vol. 40, no. 7, pp. 650–670, July 2014.

[5] P. Knauber, J. Bermejo, G. Böckle, J. C. S. d. P. Leite, F. v. d. Linden,
L. Northrop, M. Stark, and D. M. Weiss, Quantifying Product Line
Benefits. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp.
155–163.

[6] D. M. Weiss, “The product line hall of fame,” in The 12th Interna-
tional Software Product Line Conference, 2008, pp. 395–395.

[7] M. Al-Hajjaji, T. Thüm, M. Lochau, J. Meinicke, and G. Saake,
“Effective product-line testing using similarity-based product pri-
oritization,” Software & Systems Modeling, vol. 18, pp. 499–521,
2019.

[8] R. M. Hierons, M. Li, X. Liu, J. A. Parejo, S. Segura, and X. Yao,
“Many-objective test suite generation for software product lines,”
ACM Transactions on Software Engineering and Methodology, vol. 29,
no. 1, pp. 2:1–2:46, Jan. 2020.

[9] M. Al-Hajjaji, T. Thüm, J. Meinicke, M. Lochau, and G. Saake,
“Similarity-based prioritization in software product-line testing,”
in Proceedings of the 18th International Software Product Line Confer-
ence - Volume 1, ser. SPLC’14. New York, NY, USA: Association
for Computing Machinery, 2014, pp. 197–206.

[10] M. Varshosaz, M. Al-Hajjaji, T. Thüm, T. Runge, M. R. Mousavi,
and I. Schaefer, “A classification of product sampling for software
product lines,” in Proceedings of the 22nd International Systems and
Software Product Line Conference - Volume 1, ser. SPLC’18. New
York, NY, USA: Association for Computing Machinery, 2018, pp.
1–13.

[11] M. B. Cohen, M. B. Dwyer, and J. Shi, “Constructing interaction
test suites for highly-configurable systems in the presence of
constraints: A greedy approach,” IEEE Transactions on Software
Engineering, vol. 34, no. 5, pp. 633–650, 2008.

[12] M. F. Johansen, Ø. Haugen, and F. Fleurey, “Properties of real-
istic feature models make combinatorial testing of product lines
feasible,” in Proceedings of the 14th International Conference on
Model Driven Engineering Languages and Systems, ser. MODELS’11.
Berlin, Heidelberg: Springer-Verlag, 2011, p. 638C652.

[13] R. E. Lopez-Herrejon, S. Fischer, R. Ramler, and A. Egyed, “A first
systematic mapping study on combinatorial interaction testing for
software product lines,” in IEEE Eighth International Conference
on Software Testing, Verification and Validation Workshops (ICSTW).
IEEE, 2015, pp. 1–10.

[14] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, “Software fault inter-
actions and implications for software testing,” IEEE Transactions
on Software Engineering, vol. 30, no. 6, pp. 418–421, 2004.

[15] M. B. Cohen, M. B. Dwyer, and J. Shi, “Interaction testing of
highly-configurable systems in the presence of constraints,” in
Proceedings of the 2007 International Symposium on Software Testing
and Analysis, ser. ISSTA’07. New York, NY, USA: Association for
Computing Machinery, 2007, pp. 129–139.

[16] S. Oster, F. Markert, and P. Ritter, “Automated incremental pair-
wise testing of software product lines,” in Proceedings of the Interna-
tional Software Product Line Conference (SPLC), J. Bosch and J. Lee,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp.
196–210.

[17] B. J. Garvin, M. B. Cohen, and M. B. Dwyer, “Evaluating im-
provements to a meta-heuristic search for constrained interaction
testing,” Empirical Software Engineering, vol. 16, no. 1, pp. 61–102,
2011.

[18] V. Chvatal, “A greedy heuristic for the set-covering problem,”
Mathematics of Operations Research, vol. 4, no. 3, pp. 233–235, 1979.

[19] M. F. Johansen, Ø. Haugen, and F. Fleurey, “An algorithm for
generating t-wise covering arrays from large feature models,” in
Proceedings of the 16th International Software Product Line Conference
- Volume 1, ser. SPLC’12. New York, NY, USA: Association for
Computing Machinery, 2012, pp. 46–55.

[20] M. N. Borazjany, L. Yu, Y. Lei, R. Kacker, and R. Kuhn, “Combina-
torial testing of acts: A case study,” in 2012 IEEE Fifth International
Conference on Software Testing, Verification and Validation, 2012, pp.
591–600.

[21] M. Al-Hajjaji, S. Krieter, T. Thüm, M. Lochau, and G. Saake,
“IncLing: Efficient Product-Line Testing Using Incremental

Pairwise Sampling,” in Proceedings of the 2016 ACM SIGPLAN
International Conference on Generative Programming: Concepts and
Experiences, ser. GPCE 2016. New York, NY, USA: Association
for Computing Machinery, 2016, pp. 144–155. [Online]. Available:
https://doi.org/10.1145/2993236.2993253

[22] F. Ensan, E. Bagheri, and D. Gašević, “Evolutionary search-based
test generation for software product line feature models,” in Pro-
ceedings of International Conference on Advanced Information Systems
Engineering (CAiSE), J. Ralyté, X. Franch, S. Brinkkemper, and
S. Wrycza, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 613–628.

[23] D. Marijan, A. Gotlieb, S. Sen, and A. Hervieu, “Practical
pairwise testing for software product lines,” in Proceedings
of the 17th International Software Product Line Conference, ser.
SPLC’13. New York, NY, USA: Association for Computing
Machinery, 2013, pp. 227–235. [Online]. Available: https:
//doi.org/10.1145/2491627.2491646

[24] A. Cmyrev and R. Reissing, “Efficient and effective testing of au-
tomotive software product lines,” Applied Science and Engineering
Progress, vol. 7, no. 2, pp. 53–57, 2014.

[25] T. Pett, T. Thüm, T. Runge, S. Krieter, M. Lochau, and I. Schaefer,
“Product sampling for product lines: The scalability challenge,”
in Proceedings of the 23rd International Systems and Software Product
Line Conference - Volume A, ser. SPLC’19. New York, NY, USA:
Association for Computing Machinery, 2019, pp. 78–83.

[26] A. Arcuri and L. Briand, “Formal analysis of the probability of in-
teraction fault detection using random testing,” IEEE Transactions
on Software Engineering, vol. 38, no. 5, pp. 1088–1099, 2012.

[27] M. Grindal, J. Offutt, and S. Andler, “Combination testing strate-
gies: A survey,” Software Testing, Verification, and Reliability, vol. 15,
pp. 167–199, 2005.

[28] F. Medeiros, C. Kästner, M. Ribeiro, R. Gheyi, and S. Apel, “A
comparison of 10 sampling algorithms for configurable systems,”
in 2016 IEEE/ACM 38th International Conference on Software Engi-
neering (ICSE), 2016, pp. 643–654.

[29] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki,
“Reverse engineering feature models,” in Proceedings of the 33rd
International Conference on Software Engineering, ser. ICSE ’11. New
York, NY, USA: ACM, 2011, pp. 461–470.

[30] C. Song, A. Porter, and J. S. Foster, “itree: Efficiently discovering
high-coverage configurations using interaction trees,” IEEE Trans-
actions on Software Engineering, vol. 40, no. 3, pp. 251–265, 2014.

[31] R. Schröter, S. Krieter, T. Thüm, F. Benduhn, and G. Saake,
“Feature-model interfaces: The highway to compositional analyses
of highly-configurable systems,” in Proceedings of the 38th Interna-
tional Conference on Software Engineering, ser. ICSE 16. New York,
NY, USA: Association for Computing Machinery, 2016, pp. 667–
678.

[32] M. F. Johansen, Ø. Haugen, F. Fleurey, E. Carlson, J. Endresen, and
T. Wien, “A technique for agile and automatic interaction testing
for product lines,” in International Conference on Testing Software and
Systems, B. Nielsen and C. Weise, Eds. Springer Berlin Heidelberg,
2012, pp. 39–54.

[33] R. Kuhn, Y. Lei, and R. Kacker, “Practical combinatorial testing:
Beyond pairwise,” IT Professional, vol. 10, no. 3, pp. 19–23, 2008.

[34] J. Petke, S. Yoo, M. B. Cohen, and M. Harman, “Efficiency and
early fault detection with lower and higher strength combinatorial
interaction testing,” in Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE 2013. New
York, NY, USA: Association for Computing Machinery, 2013, pp.
26–36.

[35] E. Reisner, C. Song, K.-K. Ma, J. S. Foster, and A. Porter, “Using
symbolic evaluation to understand behavior in configurable soft-
ware systems,” in Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ser. ICSE’10. New
York, NY, USA: Association for Computing Machinery, 2010, pp.
445–454.

[36] E. G. Cartaxo, P. D. L. Machado, and F. G. O. Neto, “On the use of
a similarity function for test case selection in the context of model-
based testing,” Software Testing, Verification and Reliability, vol. 21,
no. 2, pp. 75–100, 2011.

[37] H. Hemmati, A. Arcuri, and L. Briand, “Achieving scalable model-
based testing through test case diversity,” ACM Transactions on
Software Engineering and Methodology, vol. 22, no. 1, pp. 6:1–6:42,
Mar. 2013.

[38] H. Hemmati and L. Briand, “An industrial investigation of similar-
ity measures for model-based test case selection,” in 2010 IEEE 21st

https://doi.org/10.1145/2993236.2993253
https://doi.org/10.1145/2491627.2491646
https://doi.org/10.1145/2491627.2491646

25

International Symposium on Software Reliability Engineering, 2010,
pp. 141–150.

[39] D. Mondal, H. Hemmati, and S. Durocher, “Exploring test suite
diversification and code coverage in multi-objective test case selec-
tion,” in 2015 IEEE 8th International Conference on Software Testing,
Verification and Validation (ICST), 2015, pp. 1–10.

[40] S. Fischer, R. E. Lopez-Herrejon, R. Ramler, and A. Egyed, “A
preliminary empirical assessment of similarity for combinatorial
iteraction testing of software product lines,” in 2016 IEEE/ACM
9th International Workshop on Search-Based Software Testing (SBST).
Los Alamitos, CA, USA: IEEE Computer Society, may 2016, pp.
15–18.

[41] A. B. Sánchez, S. Segura, J. A. Parejo, and A. Ruiz-Cortés, “Vari-
ability testing in the wild: the drupal case study,” Software &
Systems Modeling, vol. 16, no. 1, pp. 173–194, Feb 2017.

[42] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. L. Traon,
“Assessing software product line testing via model-based muta-
tion: An application to similarity testing,” in 2013 IEEE Sixth In-
ternational Conference on Software Testing, Verification and Validation
Workshops, 2013, pp. 188–197.

[43] M. Al-Hajjaji, S. Lity, R. Lachmann, T. Thüm, I. Schaefer, and
G. Saake, “Delta-oriented product prioritization for similarity-
based product-line testing,” in 2017 IEEE/ACM 2nd International
Workshop on Variability and Complexity in Software Design (VACE),
2017, pp. 34–40.

[44] M. Al-Hajjaji, M. Schulze, and U. Ryssel, “Similarity analysis of
product-line variants,” in Proceedings of the 22nd International Sys-
tems and Software Product Line Conference - Volume 1, ser. SPLC’18.
New York, NY, USA: Association for Computing Machinery, 2018,
pp. 226–235.

[45] X. Devroey, G. Perrouin, A. Legay, P.-Y. Schobbens, and
P. Heymans, “Covering SPL Behaviour with Sampled
Configurations: An Initial Assessment,” in Proceedings of the
Ninth International Workshop on Variability Modelling of Software-
Intensive Systems, ser. VaMoS’15. New York, NY, USA: Association
for Computing Machinery, 2015, pp. 59–66. [Online]. Available:
https://doi.org/10.1145/2701319.2701325

[46] X. Devroey, G. Perrouin, A. Legay, P. Schobbens, and P. Heymans,
“Search-Based Similarity-Driven Behavioural SPL Testing,” in Pro-
ceedings of the Tenth International Workshop on Variability Modelling
of Software-Intensive Systems, ser. VaMoS’16. New York, NY, USA:
Association for Computing Machinery, 2016, pp. 89–96.

[47] S. Lity, M. Al-Hajjaji, T. Thüm, and I. Schaefer, “Optimizing
product orders using graph algorithms for improving incremental
product-line analysis,” in Proceedings of the Eleventh International
Workshop on Variability Modelling of Software-Intensive Systems,
ser. VAMOS’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 60C67. [Online]. Available:
https://doi.org/10.1145/3023956.3023961

[48] R. Lachmann, S. Lity, M. Al-Hajjaji, F. Fürchtegott, and
I. Schaefer, “Fine-grained test case prioritization for integration
testing of delta-oriented software product lines,” in Proceedings
of the 7th International Workshop on Feature-Oriented Software
Development, ser. FOSD 2016. New York, NY, USA: Association
for Computing Machinery, 2016, pp. 1–10. [Online]. Available:
https://doi.org/10.1145/3001867.3001868

[49] J. Lehman and K. O. Stanley, “Exploiting open-endedness to solve
problems through the search for novelty,” in Proceedings of the
Eleventh International Conference on Artificial Life (ALIFE XI), 2008,
pp. 329–336.

[50] J. Lehman and O. S. Kenneth, “Abandoning objectives: Evolution
through the search for novelty alone,” Evolutionary Computation,
vol. 19, no. 2, pp. 189–223, 2011.

[51] S. Doncieux, A. Laflaquière, and A. Coninx, “Novelty search: A
theoretical perspective,” in Proceedings of the Genetic and Evolution-
ary Computation Conference, ser. GECCO’19. New York, NY, USA:
Association for Computing Machinery, 2019, pp. 99–106.

[52] S. Risi, C. Hughes, and K. O. Stanley, “Evolving plastic neural
networks with novelty search,” Adaptive Behavior, vol. 18, no. 6,
pp. 470–491, 2010.

[53] J. R. Romero, A. Ramı́rez, and C. L. Simons, “Looking for novelty
in SBSE problems,” in Proceedings of the Spanish Conference on
Software Engineering and Databases (JISBD), ser. JISBD’19, 2019,
pp. 1–4. [Online]. Available: http://hdl.handle.net/11705/JISBD/
2019/028

[54] M. Boussaa, O. Barais, G. Sunyé, and B. Baudry, “A novelty search
approach for automatic test data generation,” in Proceedings of the

Eighth International Workshop on Search-Based Software Testing, ser.
SBST’15. IEEE Press, 2015, pp. 40–43.

[55] V. R. López-López, L. Trujillo, and P. Legrand, “Novelty Search
for Software Improvement of a SLAM System,” in Proceedings of
the Genetic and Evolutionary Computation Conference Companion, ser.
GECCO’18. New York, NY, USA: Association for Computing
Machinery, 2018, pp. 1598–1605.

[56] A. Bagnall, V. Rayward-Smith, and I. Whittley, “The next release
problem,” Information and Software Technology, vol. 43, no. 14, pp.
883–890, 2001.

[57] C. Kaltenecker, A. Grebhahn, N. Siegmund, J. Guo, and S. Apel,
“Distance-based sampling of software configuration spaces,”
in Proceedings of the 41st International Conference on Software
Engineering, ser. ICSE’19. IEEE Press, 2019, pp. 1084–1094.
[Online]. Available: https://doi.org/10.1109/ICSE.2019.00112

[58] C. Henard, M. Papadakis, M. Harman, and Y. L. Traon, “Combin-
ing multi-objective search and constraint solving for configuring
large software product lines,” in The 37th International Conference
on Software Engineering, vol. 1, May 2015, pp. 517–528.

[59] Y. Xiang, Y. Zhou, Z. Zheng, and M. Li, “Configuring Soft-
ware Product Lines by Combining Many-Objective Optimization
and SAT Solvers,” ACM Transactions on Software Engineering and
Methodology, vol. 26, no. 4, pp. 14:1–14:46, Feb. 2018.

[60] Y. Xiang, X. Yang, Y. Zhou, Z. Zheng, M. Li, and H. Huang,
“Going deeper with optimal software products selection using
many-objective optimization and satisfiability solvers,” Empirical
Software Engineering, vol. 25, pp. 591–626, 2020.

[61] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. L. Traon,
“PLEDGE: A Product Line Editor and Test Generation Tool,” in
Proceedings of the 17th International Software Product Line Conference
Co-Located Workshops, ser. SPLC’13 Workshops. New York, NY,
USA: Association for Computing Machinery, 2013, pp. 126–129.

[62] D. L. Berre and A. Parrain, “The Sat4j library, release 2.2, system
description,” Journal on Satisfiability, Boolean Modeling and Compu-
tation, vol. 7, pp. 59–64, 2010.

[63] A. Balint and U. Schöning, Choosing Probability Distributions for
Stochastic Local Search and the Role of Make versus Break. Berlin,
Heidelberg: International Conference on Theory and Applications
of Satisfiability Testing, 2012, pp. 16–29.

[64] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki,
and A. Wasowski, “A survey of variability modeling in industrial
practice,” in Proceedings of the Seventh International Workshop on
Variability Modelling of Software-Intensive Systems, ser. VaMoS ’13.
New York, NY, USA: Association for Computing Machinery, 2013,
pp. Article No.: 7, PP. 1–8.

[65] M. Mendonca, A. Wasowski, and K. Czarnecki, “SAT-based Anal-
ysis of Feature Models is Easy,” in Proceedings of the 13th Interna-
tional Software Product Line Conference, ser. SPLC ’09. Pittsburgh,
PA, USA: Carnegie Mellon University, 2009, pp. 231–240.

[66] G. Perrouin, S. Sen, J. K. B. Baudry, and Y. le Traon, “Automated
and Scalable T-wise Test Case Generation Strategies for Software
Product Lines,” IEEE Sixth International Conference on Software
Testing, Verification and Validation, pp. 459–468, 2010.

[67] M. Davis, G. Logemann, and D. Loveland, “A machine program
for theorem-proving,” Communications of the ACM, vol. 5, no. 5,
pp. 394–397, 1962.

[68] B. Selman, H. Levesque, and D. Mitchell, “A new method for
solving hard satisfiability problems,” in Proceedings of the Tenth
National Conference on Artificial Intelligence, ser. AAAI’92. AAAI
Press, 1992, pp. 440–446.

[69] S. Cai, “Faster implementation for walksat,” Queensland Research
Lab, NICTA, Australia, Tech. Rep., June 2013.

[70] B. Selman, H. A. Kautz, and B. Cohen, “Noise strategies for
improving local search,” in Proceedings of the Twelfth National
Conference on Artificial Intelligence (Vol. 1), ser. AAAI ’94. Menlo
Park, CA, USA: American Association for Artificial Intelligence,
1994, pp. 337–343.

[71] P. Jaccard, “Etude comparative de la distribution florale dans une
portion des alpes et des jura,” Bull. del la Société Vaudoise des
Sciences Naturelles, vol. 37, pp. 547–579, 1901.

[72] S. Doncieux, G. Paolo, A. Laflaquière, and A. Coninx, “Novelty
search makes evolvability inevitable,” in Proceedings of the Genetic
and Evolutionary Computation Conference, ser. GECCO’20. New
York, NY, USA: Association for Computing Machinery, 2020, pp.
85–93.

[73] M. Mendonca, M. Branco, and D. Cowan, “S.P.L.O.T.: Software
Product Lines Online Tools,” in Proceedings of the 24th ACM SIG-

https://doi.org/10.1145/2701319.2701325
https://doi.org/10.1145/3023956.3023961
https://doi.org/10.1145/3001867.3001868
http://hdl.handle.net/11705/JISBD/2019/028
http://hdl.handle.net/11705/JISBD/2019/028
https://doi.org/10.1109/ICSE.2019.00112

26

PLAN Conference Companion on Object Oriented Programming Sys-
tems Languages and Applications. New York, NY, USA: Association
for Computing Machinery, 2009, pp. 761–62.

[74] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake,
and T. Leich, “FeatureIDE: An extensible framework for
feature-oriented software development,” Science of Computer
Programming, vol. 79, pp. 70–85, 2014. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/S0167642312001128

[75] C. Dietrich, R. Tartler, W. Schröder-Preikshat, and D. Lohmann,
“Understanding linux feature distribution,” in Proceedings of the
2012 Workshop on Modularity in Systems Software, ser. MISS’12.
New York, NY, USA: Association for Computing Machinery, 2012,
pp. 15–20.

[76] A. Arcuri and L. Briand, “A practical guide for using statistical
tests to assess randomized algorithms in software engineering,”
in Proceedings of the 33rd International Conference on Software
Engineering, ser. ICSE’11. New York, NY, USA: Association
for Computing Machinery, 2011, pp. 1–10. [Online]. Available:
https://doi.org/10.1145/1985793.1985795

[77] P. A. da Mota Silveira Neto, I. do Carmo Machado, J. D.
McGregor, E. S. de Almeida, and S. R. de Lemos Meira, “A
systematic mapping study of software product lines testing,”
Information and Software Technology, vol. 53, no. 5, pp. 407 –
423, 2011. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0950584910002193

[78] J. Lee, S. Kang, and D. Lee, “A survey on software product line
testing,” in Proceedings of the 16th International Software Product
Line Conference - Volume 1, ser. SPLC’12. New York, NY, USA:
Association for Computing Machinery, 2012, pp. 31–40. [Online].
Available: https://doi.org/10.1145/2362536.2362545

[79] I. do Carmo Machado, J. D. McGregor, Y. C. Cavalcanti, and E. S.
de Almeida, “On strategies for testing software product lines: A
systematic literature review,” Information and Software Technology,
vol. 56, no. 10, pp. 1183 – 1199, 2014. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/S0950584914000834

[80] R. E. Lopez-Herrejon, J. Ferrer, F. Chicano, A. Egyed, and
E. Alba, Evolutionary Computation for Software Product Line
Testing: An Overview and Open Challenges. Cham: Springer
International Publishing, 2016, pp. 59–87. [Online]. Available:
https://doi.org/10.1007/978-3-319-25964-2 4

[81] B. S. Ahmed, K. Z. Zamli, W. Afzal, and M. Bures, “Constrained
interaction testing: A systematic literature study,” IEEE Access,
vol. 5, pp. 25 706–25 730, 2017.

[82] F. Ferreira, J. a. P. Diniz, C. Silva, and E. Figueiredo, “Testing
tools for configurable software systems: A review-based empirical
study,” in Proceedings of the 13th International Workshop on Variability
Modelling of Software-Intensive Systems, ser. VAMOS 19. New York,
NY, USA: Association for Computing Machinery, 2019.

[83] J. Lee, S. Kang, and P. Jung, “Test coverage criteria
for software product line testing: Systematic literature
review,” Information and Software Technology, vol. 122, p.
106272, 2020. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0950584920300227

[84] R. M. Haralick and G. L. Elliott, “Increasing tree search efficiency
for constraint satisfaction problems,” Artificial Intelligence, vol. 14,
no. 3, pp. 263–313, 1980. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/000437028090051X

[85] A. Hervieu, B. Baudry, and A. Gotlieb, “PACOGEN: Automatic
Generation of Pairwise Test Configurations from Feature Models,”
in 2011 IEEE 22nd International Symposium on Software Reliability
Engineering, 2011, pp. 120–129.

[86] Z. Xu, M. B. Cohen, W. Motycka, and G. Rothermel,
“Continuous test suite augmentation in software product lines,”
in Proceedings of the 17th International Software Product Line
Conference, ser. SPLC’13. New York, NY, USA: Association
for Computing Machinery, 2013, pp. 52–61. [Online]. Available:
https://doi.org/10.1145/2491627.2491650

[87] C. Henard, M. Papadakis, and Y. Le Traon, “Mutation-based gener-
ation of software product line test configurations,” in Proceedings of
the 6th International Symposium on Search-Based Software Engineering
(SSBSE 2014), 2014, pp. 92–106.

[88] E. N. Haslinger, R. E. Lopez-Herrejon, and A. Egyed, “Using
feature model knowledge to speed up the generation of
covering arrays,” in Proceedings of the Seventh International
Workshop on Variability Modelling of Software-Intensive Systems, ser.
VaMoS’13. New York, NY, USA: Association for Computing

Machinery, 2013, pp. 16:1–16:6. [Online]. Available: https:
//doi.org/10.1145/2430502.2430524

[89] C. H. P. Kim, D. S. Batory, and S. Khurshid, “Reducing
combinatorics in testing product lines,” in Proceedings of
the Tenth International Conference on Aspect-Oriented Software
Development, ser. AOSD’11. New York, NY, USA: Association
for Computing Machinery, 2011, pp. 57–68. [Online]. Available:
https://doi.org/10.1145/1960275.1960284

[90] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. L. Traon,
“Assessing software product line testing via model-based muta-
tion: An application to similarity testing,” in 2013 IEEE Sixth In-
ternational Conference on Software Testing, Verification and Validation
Workshops, March 2013, pp. 188–197.

[91] V. Tenev, S. Duszynski, and M. Becker, “Variant analysis:
Set-based similarity visualization for cloned software systems,”
in Proceedings of the 21st International Systems and Software Product
Line Conference - Volume B, ser. SPLC’17. New York, NY, USA:
Association for Computing Machinery, 2017, pp. 22–27. [Online].
Available: https://doi.org/10.1145/3109729.3109753

[92] T. Mende, R. Koschke, and F. Beckwermert, “An evaluation of
code similarity identification for the grow-and-prune model,”
Journal of Software Maintenance and Evolution: Research and
Practice, vol. 21, no. 2, pp. 143–169, 2009. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.402

[93] T. Yamamoto, M. Matsushita, T. Kamiya, and K. Inoue, “Mea-
suring similarity of large software systems based on source code
correspondence,” in Product Focused Software Process Improvement,
F. Bomarius and S. Komi-Sirviö, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 530–544.

Yi Xiang received the B.Sc. and M.Sc. de-
grees in mathematics from Guangzhou Univer-
sity, Guangzhou, China, in 2010 and 2013, re-
spectively, and the Ph.D. degree in computer sci-
ence from Sun Yat-sen University, Guangzhou,
in 2018. He is currently a Post-Doctoral Fel-
low working with Prof. X. W. Yang within the
School of Software Engineering, South China U-
niversity of Technology, Guangzhou. His current
research interests include many-objective opti-
mization and search-based software engineer-

ing.

Han Huang received the B.Man. degree in In-
formation Management and Information System,
in 2002, and the Ph.D. degree in Computer Sci-
ence from the South China University of Tech-
nology (SCUT), Guangzhou, in 2008. Currently,
he is a professor at School of Software Engineer-
ing in SCUT. His research interests include evo-
lutionary computation, swarm intelligence and
their application. Dr. Huang is a senior member
of CCF and member of IEEE.

Miqing Li is an assistant professor at School
of Computer Science at the University of Birm-
ingham. His research is principally on multi-
objective optimisation, where he focuses on
developing population-based randomised al-
gorithms (mainly evolutionary algorithms) for
both general challenging problems (e.g. many-
objective optimisation, constrained optimisation,
robust optimisation, expensive optimisation) and
specific challenging problems (e.g. those in soft-
ware engineering, system engineering, product

disassembly, post-disaster response, neural architecture search, rein-
forcement learning for games).

http://www.sciencedirect.com/science/article/pii/S0167642312001128
http://www.sciencedirect.com/science/article/pii/S0167642312001128
https://doi.org/10.1145/1985793.1985795
http://www.sciencedirect.com/science/article/pii/S0950584910002193
http://www.sciencedirect.com/science/article/pii/S0950584910002193
https://doi.org/10.1145/2362536.2362545
http://www.sciencedirect.com/science/article/pii/S0950584914000834
http://www.sciencedirect.com/science/article/pii/S0950584914000834
https://doi.org/10.1007/978-3-319-25964-2_4
http://www.sciencedirect.com/science/article/pii/S0950584920300227
http://www.sciencedirect.com/science/article/pii/S0950584920300227
http://www.sciencedirect.com/science/article/pii/000437028090051X
http://www.sciencedirect.com/science/article/pii/000437028090051X
https://doi.org/10.1145/2491627.2491650
https://doi.org/10.1145/2430502.2430524
https://doi.org/10.1145/2430502.2430524
https://doi.org/10.1145/1960275.1960284
https://doi.org/10.1145/3109729.3109753
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.402

27

Sizhe Li was born in Fujian, China in 2000. He is
an undergraduate of the School of Software En-
gineering, South China University of Technology,
Guangzhou, China.

Xiaowei Yang received the B.S. degree in the-
oretical and applied mechanics, the M.Sc. de-
gree in computational mechanics, and the Ph.D.
degree in solid mechanics from Jilin University,
Changchun, China, in 1991, 1996, and 2000, re-
spectively. He is currently a Full Time Professor
with the School of Software Engineering, South
China University of Technology, Guangzhou,
China. His current research interests include de-
signs and analyses of algorithms for large-scale
pattern recognitions, imbalanced learning, semi-

supervised learning, support vector machines, tensor learning, and
evolutionary computation. He has published over 100 journals and ref-
ereed international conference articles, including the areas of structural
reanalysis, interval analysis, soft computing, support vector machines,
and tensor learning.

	Introduction
	Concepts and notations
	Feature model configurations as test cases
	T-wise testing and coverage

	The novelty search for SPL testing
	Initialization of the archive
	Generation of new configurations
	Repair configurations using probSAT
	Replacement based on randomized SAT4J solver

	Evaluation of novelty
	Reward novel individuals
	Why Novelty Search?

	Empirical study
	Correlation analysis between similarity metrics and t-wise coverage (RQ1)
	Similarity metrics under study
	Results of the correlation analysis
	RQ1 summary

	Comparison with state-of-the-art algorithms (RQ2)
	Algorithms under comparison
	Experiment setup
	Experiment results
	RQ2 summary

	Comparison of different ways of generating new configurations (RQ3)
	Experiment setup and results
	RQ3 summary

	Parameter study (RQ4)
	Sensitivity analysis on Pr
	Sensitivity analysis on Nb
	RQ4 summary

	Threats to Validity
	Related Work
	T-wise product sampling
	Similarity-based SPL testing

	Conclusion and Future Work
	References
	Biographies
	Yi Xiang
	Han Huang
	Miqing Li
	Sizhe Li
	Xiaowei Yang

